/src/fftw3/rdft/scalar/r2cf/r2cf_9.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Sun Jun 22 06:43:29 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 38 FP additions, 30 FP multiplications, |
32 | | * (or, 12 additions, 4 multiplications, 26 fused multiply/add), |
33 | | * 48 stack variables, 18 constants, and 18 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP907603734, +0.907603734547952313649323976213898122064543220); |
40 | | DK(KP347296355, +0.347296355333860697703433253538629592000751354); |
41 | | DK(KP852868531, +0.852868531952443209628250963940074071936020296); |
42 | | DK(KP666666666, +0.666666666666666666666666666666666666666666667); |
43 | | DK(KP898197570, +0.898197570222573798468955502359086394667167570); |
44 | | DK(KP673648177, +0.673648177666930348851716626769314796000375677); |
45 | | DK(KP879385241, +0.879385241571816768108218554649462939872416269); |
46 | | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
47 | | DK(KP939692620, +0.939692620785908384054109277324731469936208134); |
48 | | DK(KP394930843, +0.394930843634698457567117349190734585290304520); |
49 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
50 | | DK(KP586256827, +0.586256827714544512072145703099641959914944179); |
51 | | DK(KP726681596, +0.726681596905677465811651808188092531873167623); |
52 | | DK(KP968908795, +0.968908795874236621082202410917456709164223497); |
53 | | DK(KP203604859, +0.203604859554852403062088995281827210665664861); |
54 | | DK(KP152703644, +0.152703644666139302296566746461370407999248646); |
55 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
56 | | DK(KP184792530, +0.184792530904095372701352047572203755870913560); |
57 | | { |
58 | | INT i; |
59 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { |
60 | | E T1, T4, To, Tk, Ta, Tu, Tf, Th, Tj, Tx, Tl, Tm, Ty, Tq, T2; |
61 | | E T3, T5, Tg; |
62 | | T1 = R0[0]; |
63 | | T2 = R1[WS(rs, 1)]; |
64 | | T3 = R0[WS(rs, 3)]; |
65 | | T4 = T2 + T3; |
66 | | To = T3 - T2; |
67 | | { |
68 | | E T6, Tb, T9, Te, Ti; |
69 | | T6 = R1[0]; |
70 | | Tb = R0[WS(rs, 1)]; |
71 | | { |
72 | | E T7, T8, Tc, Td; |
73 | | T7 = R0[WS(rs, 2)]; |
74 | | T8 = R1[WS(rs, 3)]; |
75 | | T9 = T7 + T8; |
76 | | Tk = T7 - T8; |
77 | | Tc = R1[WS(rs, 2)]; |
78 | | Td = R0[WS(rs, 4)]; |
79 | | Te = Tc + Td; |
80 | | Ti = Td - Tc; |
81 | | } |
82 | | Ta = T6 + T9; |
83 | | Tu = FMA(KP184792530, Tk, Ti); |
84 | | Tf = Tb + Te; |
85 | | Th = FNMS(KP500000000, Te, Tb); |
86 | | Tj = FNMS(KP152703644, Ti, Th); |
87 | | Tx = FMA(KP203604859, Th, Ti); |
88 | | Tl = FMS(KP500000000, T9, T6); |
89 | | Tm = FNMS(KP968908795, Tl, Tk); |
90 | | Ty = FMA(KP726681596, Tk, Tl); |
91 | | Tq = FMA(KP586256827, Tl, Ti); |
92 | | } |
93 | | Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta); |
94 | | T5 = T1 + T4; |
95 | | Tg = Ta + Tf; |
96 | | Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5); |
97 | | Cr[0] = T5 + Tg; |
98 | | { |
99 | | E Tv, Tt, Tn, TC, TB; |
100 | | Tt = FMA(KP394930843, Th, To); |
101 | | Tv = FNMS(KP939692620, Tu, Tt); |
102 | | Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl)); |
103 | | Tn = FMA(KP673648177, Tm, Tj); |
104 | | TB = FMA(KP898197570, Ty, Tx); |
105 | | TC = FMA(KP666666666, Tn, TB); |
106 | | Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn))); |
107 | | Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To)); |
108 | | { |
109 | | E Tp, Ts, Tz, TA, Tr, Tw; |
110 | | Tp = FNMS(KP500000000, T4, T1); |
111 | | Tr = FNMS(KP347296355, Tq, Tk); |
112 | | Ts = FNMS(KP907603734, Tr, Th); |
113 | | Tw = FNMS(KP673648177, Tm, Tj); |
114 | | Tz = FNMS(KP898197570, Ty, Tx); |
115 | | TA = FNMS(KP500000000, Tz, Tw); |
116 | | Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp); |
117 | | Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp); |
118 | | Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp); |
119 | | } |
120 | | } |
121 | | } |
122 | | } |
123 | | } |
124 | | |
125 | | static const kr2c_desc desc = { 9, "r2cf_9", { 12, 4, 26, 0 }, &GENUS }; |
126 | | |
127 | | void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc); |
128 | | } |
129 | | |
130 | | #else |
131 | | |
132 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */ |
133 | | |
134 | | /* |
135 | | * This function contains 38 FP additions, 26 FP multiplications, |
136 | | * (or, 21 additions, 9 multiplications, 17 fused multiply/add), |
137 | | * 36 stack variables, 14 constants, and 18 memory accesses |
138 | | */ |
139 | | #include "rdft/scalar/r2cf.h" |
140 | | |
141 | | static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
142 | 0 | { |
143 | 0 | DK(KP939692620, +0.939692620785908384054109277324731469936208134); |
144 | 0 | DK(KP296198132, +0.296198132726023843175338011893050938967728390); |
145 | 0 | DK(KP342020143, +0.342020143325668733044099614682259580763083368); |
146 | 0 | DK(KP813797681, +0.813797681349373692844693217248393223289101568); |
147 | 0 | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
148 | 0 | DK(KP150383733, +0.150383733180435296639271897612501926072238258); |
149 | 0 | DK(KP642787609, +0.642787609686539326322643409907263432907559884); |
150 | 0 | DK(KP663413948, +0.663413948168938396205421319635891297216863310); |
151 | 0 | DK(KP852868531, +0.852868531952443209628250963940074071936020296); |
152 | 0 | DK(KP173648177, +0.173648177666930348851716626769314796000375677); |
153 | 0 | DK(KP556670399, +0.556670399226419366452912952047023132968291906); |
154 | 0 | DK(KP766044443, +0.766044443118978035202392650555416673935832457); |
155 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
156 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
157 | 0 | { |
158 | 0 | INT i; |
159 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { |
160 | 0 | E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg; |
161 | 0 | T1 = R0[0]; |
162 | 0 | T2 = R1[WS(rs, 1)]; |
163 | 0 | T3 = R0[WS(rs, 3)]; |
164 | 0 | T4 = T2 + T3; |
165 | 0 | Tr = T3 - T2; |
166 | 0 | { |
167 | 0 | E T6, T7, T8, T9; |
168 | 0 | T6 = R1[0]; |
169 | 0 | T7 = R0[WS(rs, 2)]; |
170 | 0 | T8 = R1[WS(rs, 3)]; |
171 | 0 | T9 = T7 + T8; |
172 | 0 | Ta = T6 + T9; |
173 | 0 | Tl = T8 - T7; |
174 | 0 | Ti = FNMS(KP500000000, T9, T6); |
175 | 0 | } |
176 | 0 | { |
177 | 0 | E Tb, Tc, Td, Te; |
178 | 0 | Tb = R0[WS(rs, 1)]; |
179 | 0 | Tc = R1[WS(rs, 2)]; |
180 | 0 | Td = R0[WS(rs, 4)]; |
181 | 0 | Te = Tc + Td; |
182 | 0 | Tf = Tb + Te; |
183 | 0 | Tk = FNMS(KP500000000, Te, Tb); |
184 | 0 | Tj = Td - Tc; |
185 | 0 | } |
186 | 0 | Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta); |
187 | 0 | T5 = T1 + T4; |
188 | 0 | Tg = Ta + Tf; |
189 | 0 | Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5); |
190 | 0 | Cr[0] = T5 + Tg; |
191 | 0 | { |
192 | 0 | E Tt, Th, Tm, Tn, To, Tp, Tq, Ts; |
193 | 0 | Tt = KP866025403 * Tr; |
194 | 0 | Th = FNMS(KP500000000, T4, T1); |
195 | 0 | Tm = FMA(KP766044443, Ti, KP556670399 * Tl); |
196 | 0 | Tn = FMA(KP173648177, Tk, KP852868531 * Tj); |
197 | 0 | To = Tm + Tn; |
198 | 0 | Tp = FNMS(KP642787609, Ti, KP663413948 * Tl); |
199 | 0 | Tq = FNMS(KP984807753, Tk, KP150383733 * Tj); |
200 | 0 | Ts = Tp + Tq; |
201 | 0 | Cr[WS(csr, 1)] = Th + To; |
202 | 0 | Ci[WS(csi, 1)] = Tt + Ts; |
203 | 0 | Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To); |
204 | 0 | Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm))); |
205 | 0 | Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt; |
206 | 0 | Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl); |
207 | 0 | } |
208 | 0 | } |
209 | 0 | } |
210 | 0 | } |
211 | | |
212 | | static const kr2c_desc desc = { 9, "r2cf_9", { 21, 9, 17, 0 }, &GENUS }; |
213 | | |
214 | 1 | void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc); |
215 | 1 | } |
216 | | |
217 | | #endif |