Coverage Report

Created: 2025-06-22 06:45

/src/fftw3/rdft/scalar/r2cf/r2cf_9.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Sun Jun 22 06:43:29 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */
29
30
/*
31
 * This function contains 38 FP additions, 30 FP multiplications,
32
 * (or, 12 additions, 4 multiplications, 26 fused multiply/add),
33
 * 48 stack variables, 18 constants, and 18 memory accesses
34
 */
35
#include "rdft/scalar/r2cf.h"
36
37
static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP907603734, +0.907603734547952313649323976213898122064543220);
40
     DK(KP347296355, +0.347296355333860697703433253538629592000751354);
41
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
42
     DK(KP666666666, +0.666666666666666666666666666666666666666666667);
43
     DK(KP898197570, +0.898197570222573798468955502359086394667167570);
44
     DK(KP673648177, +0.673648177666930348851716626769314796000375677);
45
     DK(KP879385241, +0.879385241571816768108218554649462939872416269);
46
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
47
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
48
     DK(KP394930843, +0.394930843634698457567117349190734585290304520);
49
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
50
     DK(KP586256827, +0.586256827714544512072145703099641959914944179);
51
     DK(KP726681596, +0.726681596905677465811651808188092531873167623);
52
     DK(KP968908795, +0.968908795874236621082202410917456709164223497);
53
     DK(KP203604859, +0.203604859554852403062088995281827210665664861);
54
     DK(KP152703644, +0.152703644666139302296566746461370407999248646);
55
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
56
     DK(KP184792530, +0.184792530904095372701352047572203755870913560);
57
     {
58
    INT i;
59
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
60
         E T1, T4, To, Tk, Ta, Tu, Tf, Th, Tj, Tx, Tl, Tm, Ty, Tq, T2;
61
         E T3, T5, Tg;
62
         T1 = R0[0];
63
         T2 = R1[WS(rs, 1)];
64
         T3 = R0[WS(rs, 3)];
65
         T4 = T2 + T3;
66
         To = T3 - T2;
67
         {
68
        E T6, Tb, T9, Te, Ti;
69
        T6 = R1[0];
70
        Tb = R0[WS(rs, 1)];
71
        {
72
       E T7, T8, Tc, Td;
73
       T7 = R0[WS(rs, 2)];
74
       T8 = R1[WS(rs, 3)];
75
       T9 = T7 + T8;
76
       Tk = T7 - T8;
77
       Tc = R1[WS(rs, 2)];
78
       Td = R0[WS(rs, 4)];
79
       Te = Tc + Td;
80
       Ti = Td - Tc;
81
        }
82
        Ta = T6 + T9;
83
        Tu = FMA(KP184792530, Tk, Ti);
84
        Tf = Tb + Te;
85
        Th = FNMS(KP500000000, Te, Tb);
86
        Tj = FNMS(KP152703644, Ti, Th);
87
        Tx = FMA(KP203604859, Th, Ti);
88
        Tl = FMS(KP500000000, T9, T6);
89
        Tm = FNMS(KP968908795, Tl, Tk);
90
        Ty = FMA(KP726681596, Tk, Tl);
91
        Tq = FMA(KP586256827, Tl, Ti);
92
         }
93
         Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
94
         T5 = T1 + T4;
95
         Tg = Ta + Tf;
96
         Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
97
         Cr[0] = T5 + Tg;
98
         {
99
        E Tv, Tt, Tn, TC, TB;
100
        Tt = FMA(KP394930843, Th, To);
101
        Tv = FNMS(KP939692620, Tu, Tt);
102
        Ci[WS(csi, 2)] = KP984807753 * (FNMS(KP879385241, Tv, Tl));
103
        Tn = FMA(KP673648177, Tm, Tj);
104
        TB = FMA(KP898197570, Ty, Tx);
105
        TC = FMA(KP666666666, Tn, TB);
106
        Ci[WS(csi, 1)] = -(KP984807753 * (FNMS(KP879385241, To, Tn)));
107
        Ci[WS(csi, 4)] = KP866025403 * (FMA(KP852868531, TC, To));
108
        {
109
       E Tp, Ts, Tz, TA, Tr, Tw;
110
       Tp = FNMS(KP500000000, T4, T1);
111
       Tr = FNMS(KP347296355, Tq, Tk);
112
       Ts = FNMS(KP907603734, Tr, Th);
113
       Tw = FNMS(KP673648177, Tm, Tj);
114
       Tz = FNMS(KP898197570, Ty, Tx);
115
       TA = FNMS(KP500000000, Tz, Tw);
116
       Cr[WS(csr, 2)] = FNMS(KP939692620, Ts, Tp);
117
       Cr[WS(csr, 1)] = FMA(KP852868531, Tz, Tp);
118
       Cr[WS(csr, 4)] = FMA(KP852868531, TA, Tp);
119
        }
120
         }
121
    }
122
     }
123
}
124
125
static const kr2c_desc desc = { 9, "r2cf_9", { 12, 4, 26, 0 }, &GENUS };
126
127
void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc);
128
}
129
130
#else
131
132
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 9 -name r2cf_9 -include rdft/scalar/r2cf.h */
133
134
/*
135
 * This function contains 38 FP additions, 26 FP multiplications,
136
 * (or, 21 additions, 9 multiplications, 17 fused multiply/add),
137
 * 36 stack variables, 14 constants, and 18 memory accesses
138
 */
139
#include "rdft/scalar/r2cf.h"
140
141
static void r2cf_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
142
0
{
143
0
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
144
0
     DK(KP296198132, +0.296198132726023843175338011893050938967728390);
145
0
     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
146
0
     DK(KP813797681, +0.813797681349373692844693217248393223289101568);
147
0
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
148
0
     DK(KP150383733, +0.150383733180435296639271897612501926072238258);
149
0
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
150
0
     DK(KP663413948, +0.663413948168938396205421319635891297216863310);
151
0
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
152
0
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
153
0
     DK(KP556670399, +0.556670399226419366452912952047023132968291906);
154
0
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
155
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
156
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
157
0
     {
158
0
    INT i;
159
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
160
0
         E T1, T4, Tr, Ta, Tl, Ti, Tf, Tk, Tj, T2, T3, T5, Tg;
161
0
         T1 = R0[0];
162
0
         T2 = R1[WS(rs, 1)];
163
0
         T3 = R0[WS(rs, 3)];
164
0
         T4 = T2 + T3;
165
0
         Tr = T3 - T2;
166
0
         {
167
0
        E T6, T7, T8, T9;
168
0
        T6 = R1[0];
169
0
        T7 = R0[WS(rs, 2)];
170
0
        T8 = R1[WS(rs, 3)];
171
0
        T9 = T7 + T8;
172
0
        Ta = T6 + T9;
173
0
        Tl = T8 - T7;
174
0
        Ti = FNMS(KP500000000, T9, T6);
175
0
         }
176
0
         {
177
0
        E Tb, Tc, Td, Te;
178
0
        Tb = R0[WS(rs, 1)];
179
0
        Tc = R1[WS(rs, 2)];
180
0
        Td = R0[WS(rs, 4)];
181
0
        Te = Tc + Td;
182
0
        Tf = Tb + Te;
183
0
        Tk = FNMS(KP500000000, Te, Tb);
184
0
        Tj = Td - Tc;
185
0
         }
186
0
         Ci[WS(csi, 3)] = KP866025403 * (Tf - Ta);
187
0
         T5 = T1 + T4;
188
0
         Tg = Ta + Tf;
189
0
         Cr[WS(csr, 3)] = FNMS(KP500000000, Tg, T5);
190
0
         Cr[0] = T5 + Tg;
191
0
         {
192
0
        E Tt, Th, Tm, Tn, To, Tp, Tq, Ts;
193
0
        Tt = KP866025403 * Tr;
194
0
        Th = FNMS(KP500000000, T4, T1);
195
0
        Tm = FMA(KP766044443, Ti, KP556670399 * Tl);
196
0
        Tn = FMA(KP173648177, Tk, KP852868531 * Tj);
197
0
        To = Tm + Tn;
198
0
        Tp = FNMS(KP642787609, Ti, KP663413948 * Tl);
199
0
        Tq = FNMS(KP984807753, Tk, KP150383733 * Tj);
200
0
        Ts = Tp + Tq;
201
0
        Cr[WS(csr, 1)] = Th + To;
202
0
        Ci[WS(csi, 1)] = Tt + Ts;
203
0
        Cr[WS(csr, 4)] = FMA(KP866025403, Tp - Tq, Th) - (KP500000000 * To);
204
0
        Ci[WS(csi, 4)] = FNMS(KP500000000, Ts, KP866025403 * (Tr + (Tn - Tm)));
205
0
        Ci[WS(csi, 2)] = FNMS(KP342020143, Tk, KP813797681 * Tj) + FNMA(KP150383733, Tl, KP984807753 * Ti) - Tt;
206
0
        Cr[WS(csr, 2)] = FMA(KP173648177, Ti, Th) + FNMA(KP296198132, Tj, KP939692620 * Tk) - (KP852868531 * Tl);
207
0
         }
208
0
    }
209
0
     }
210
0
}
211
212
static const kr2c_desc desc = { 9, "r2cf_9", { 21, 9, 17, 0 }, &GENUS };
213
214
1
void X(codelet_r2cf_9) (planner *p) { X(kr2c_register) (p, r2cf_9, &desc);
215
1
}
216
217
#endif