/src/fftw3/dft/scalar/codelets/n1_10.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:51:30 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 84 FP additions, 36 FP multiplications, |
32 | | * (or, 48 additions, 0 multiplications, 36 fused multiply/add), |
33 | | * 41 stack variables, 4 constants, and 40 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT i; |
45 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) { |
46 | | E T3, Tj, TN, T1b, TU, TV, T1j, T1i, Tm, Tp, Tq, Ta, Th, Ti, TA; |
47 | | E TH, T17, T14, T1c, T1d, T1e, TO, TP, TQ; |
48 | | { |
49 | | E T1, T2, TL, TM; |
50 | | T1 = ri[0]; |
51 | | T2 = ri[WS(is, 5)]; |
52 | | T3 = T1 - T2; |
53 | | Tj = T1 + T2; |
54 | | TL = ii[0]; |
55 | | TM = ii[WS(is, 5)]; |
56 | | TN = TL - TM; |
57 | | T1b = TL + TM; |
58 | | } |
59 | | { |
60 | | E T6, Tk, Tg, To, T9, Tl, Td, Tn; |
61 | | { |
62 | | E T4, T5, Te, Tf; |
63 | | T4 = ri[WS(is, 2)]; |
64 | | T5 = ri[WS(is, 7)]; |
65 | | T6 = T4 - T5; |
66 | | Tk = T4 + T5; |
67 | | Te = ri[WS(is, 6)]; |
68 | | Tf = ri[WS(is, 1)]; |
69 | | Tg = Te - Tf; |
70 | | To = Te + Tf; |
71 | | } |
72 | | { |
73 | | E T7, T8, Tb, Tc; |
74 | | T7 = ri[WS(is, 8)]; |
75 | | T8 = ri[WS(is, 3)]; |
76 | | T9 = T7 - T8; |
77 | | Tl = T7 + T8; |
78 | | Tb = ri[WS(is, 4)]; |
79 | | Tc = ri[WS(is, 9)]; |
80 | | Td = Tb - Tc; |
81 | | Tn = Tb + Tc; |
82 | | } |
83 | | TU = T6 - T9; |
84 | | TV = Td - Tg; |
85 | | T1j = Tk - Tl; |
86 | | T1i = Tn - To; |
87 | | Tm = Tk + Tl; |
88 | | Tp = Tn + To; |
89 | | Tq = Tm + Tp; |
90 | | Ta = T6 + T9; |
91 | | Th = Td + Tg; |
92 | | Ti = Ta + Th; |
93 | | } |
94 | | { |
95 | | E Tw, T15, TG, T13, Tz, T16, TD, T12; |
96 | | { |
97 | | E Tu, Tv, TE, TF; |
98 | | Tu = ii[WS(is, 2)]; |
99 | | Tv = ii[WS(is, 7)]; |
100 | | Tw = Tu - Tv; |
101 | | T15 = Tu + Tv; |
102 | | TE = ii[WS(is, 6)]; |
103 | | TF = ii[WS(is, 1)]; |
104 | | TG = TE - TF; |
105 | | T13 = TE + TF; |
106 | | } |
107 | | { |
108 | | E Tx, Ty, TB, TC; |
109 | | Tx = ii[WS(is, 8)]; |
110 | | Ty = ii[WS(is, 3)]; |
111 | | Tz = Tx - Ty; |
112 | | T16 = Tx + Ty; |
113 | | TB = ii[WS(is, 4)]; |
114 | | TC = ii[WS(is, 9)]; |
115 | | TD = TB - TC; |
116 | | T12 = TB + TC; |
117 | | } |
118 | | TA = Tw - Tz; |
119 | | TH = TD - TG; |
120 | | T17 = T15 - T16; |
121 | | T14 = T12 - T13; |
122 | | T1c = T15 + T16; |
123 | | T1d = T12 + T13; |
124 | | T1e = T1c + T1d; |
125 | | TO = Tw + Tz; |
126 | | TP = TD + TG; |
127 | | TQ = TO + TP; |
128 | | } |
129 | | ro[WS(os, 5)] = T3 + Ti; |
130 | | io[WS(os, 5)] = TN + TQ; |
131 | | ro[0] = Tj + Tq; |
132 | | io[0] = T1b + T1e; |
133 | | { |
134 | | E TI, TK, Tt, TJ, Tr, Ts; |
135 | | TI = FMA(KP618033988, TH, TA); |
136 | | TK = FNMS(KP618033988, TA, TH); |
137 | | Tr = FNMS(KP250000000, Ti, T3); |
138 | | Ts = Ta - Th; |
139 | | Tt = FMA(KP559016994, Ts, Tr); |
140 | | TJ = FNMS(KP559016994, Ts, Tr); |
141 | | ro[WS(os, 9)] = FNMS(KP951056516, TI, Tt); |
142 | | ro[WS(os, 3)] = FMA(KP951056516, TK, TJ); |
143 | | ro[WS(os, 1)] = FMA(KP951056516, TI, Tt); |
144 | | ro[WS(os, 7)] = FNMS(KP951056516, TK, TJ); |
145 | | } |
146 | | { |
147 | | E TW, TY, TT, TX, TR, TS; |
148 | | TW = FMA(KP618033988, TV, TU); |
149 | | TY = FNMS(KP618033988, TU, TV); |
150 | | TR = FNMS(KP250000000, TQ, TN); |
151 | | TS = TO - TP; |
152 | | TT = FMA(KP559016994, TS, TR); |
153 | | TX = FNMS(KP559016994, TS, TR); |
154 | | io[WS(os, 1)] = FNMS(KP951056516, TW, TT); |
155 | | io[WS(os, 7)] = FMA(KP951056516, TY, TX); |
156 | | io[WS(os, 9)] = FMA(KP951056516, TW, TT); |
157 | | io[WS(os, 3)] = FNMS(KP951056516, TY, TX); |
158 | | } |
159 | | { |
160 | | E T18, T1a, T11, T19, TZ, T10; |
161 | | T18 = FNMS(KP618033988, T17, T14); |
162 | | T1a = FMA(KP618033988, T14, T17); |
163 | | TZ = FNMS(KP250000000, Tq, Tj); |
164 | | T10 = Tm - Tp; |
165 | | T11 = FNMS(KP559016994, T10, TZ); |
166 | | T19 = FMA(KP559016994, T10, TZ); |
167 | | ro[WS(os, 2)] = FNMS(KP951056516, T18, T11); |
168 | | ro[WS(os, 6)] = FMA(KP951056516, T1a, T19); |
169 | | ro[WS(os, 8)] = FMA(KP951056516, T18, T11); |
170 | | ro[WS(os, 4)] = FNMS(KP951056516, T1a, T19); |
171 | | } |
172 | | { |
173 | | E T1k, T1m, T1h, T1l, T1f, T1g; |
174 | | T1k = FNMS(KP618033988, T1j, T1i); |
175 | | T1m = FMA(KP618033988, T1i, T1j); |
176 | | T1f = FNMS(KP250000000, T1e, T1b); |
177 | | T1g = T1c - T1d; |
178 | | T1h = FNMS(KP559016994, T1g, T1f); |
179 | | T1l = FMA(KP559016994, T1g, T1f); |
180 | | io[WS(os, 2)] = FMA(KP951056516, T1k, T1h); |
181 | | io[WS(os, 6)] = FNMS(KP951056516, T1m, T1l); |
182 | | io[WS(os, 8)] = FNMS(KP951056516, T1k, T1h); |
183 | | io[WS(os, 4)] = FMA(KP951056516, T1m, T1l); |
184 | | } |
185 | | } |
186 | | } |
187 | | } |
188 | | |
189 | | static const kdft_desc desc = { 10, "n1_10", { 48, 0, 36, 0 }, &GENUS, 0, 0, 0, 0 }; |
190 | | |
191 | | void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc); |
192 | | } |
193 | | |
194 | | #else |
195 | | |
196 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */ |
197 | | |
198 | | /* |
199 | | * This function contains 84 FP additions, 24 FP multiplications, |
200 | | * (or, 72 additions, 12 multiplications, 12 fused multiply/add), |
201 | | * 41 stack variables, 4 constants, and 40 memory accesses |
202 | | */ |
203 | | #include "dft/scalar/n.h" |
204 | | |
205 | | static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
206 | 16 | { |
207 | 16 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
208 | 16 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
209 | 16 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
210 | 16 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
211 | 16 | { |
212 | 16 | INT i; |
213 | 144 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) { |
214 | 128 | E T3, Tj, TQ, T1e, TU, TV, T1c, T1b, Tm, Tp, Tq, Ta, Th, Ti, TA; |
215 | 128 | E TH, T17, T14, T1f, T1g, T1h, TL, TM, TR; |
216 | 128 | { |
217 | 128 | E T1, T2, TO, TP; |
218 | 128 | T1 = ri[0]; |
219 | 128 | T2 = ri[WS(is, 5)]; |
220 | 128 | T3 = T1 - T2; |
221 | 128 | Tj = T1 + T2; |
222 | 128 | TO = ii[0]; |
223 | 128 | TP = ii[WS(is, 5)]; |
224 | 128 | TQ = TO - TP; |
225 | 128 | T1e = TO + TP; |
226 | 128 | } |
227 | 128 | { |
228 | 128 | E T6, Tk, Tg, To, T9, Tl, Td, Tn; |
229 | 128 | { |
230 | 128 | E T4, T5, Te, Tf; |
231 | 128 | T4 = ri[WS(is, 2)]; |
232 | 128 | T5 = ri[WS(is, 7)]; |
233 | 128 | T6 = T4 - T5; |
234 | 128 | Tk = T4 + T5; |
235 | 128 | Te = ri[WS(is, 6)]; |
236 | 128 | Tf = ri[WS(is, 1)]; |
237 | 128 | Tg = Te - Tf; |
238 | 128 | To = Te + Tf; |
239 | 128 | } |
240 | 128 | { |
241 | 128 | E T7, T8, Tb, Tc; |
242 | 128 | T7 = ri[WS(is, 8)]; |
243 | 128 | T8 = ri[WS(is, 3)]; |
244 | 128 | T9 = T7 - T8; |
245 | 128 | Tl = T7 + T8; |
246 | 128 | Tb = ri[WS(is, 4)]; |
247 | 128 | Tc = ri[WS(is, 9)]; |
248 | 128 | Td = Tb - Tc; |
249 | 128 | Tn = Tb + Tc; |
250 | 128 | } |
251 | 128 | TU = T6 - T9; |
252 | 128 | TV = Td - Tg; |
253 | 128 | T1c = Tk - Tl; |
254 | 128 | T1b = Tn - To; |
255 | 128 | Tm = Tk + Tl; |
256 | 128 | Tp = Tn + To; |
257 | 128 | Tq = Tm + Tp; |
258 | 128 | Ta = T6 + T9; |
259 | 128 | Th = Td + Tg; |
260 | 128 | Ti = Ta + Th; |
261 | 128 | } |
262 | 128 | { |
263 | 128 | E Tw, T15, TG, T13, Tz, T16, TD, T12; |
264 | 128 | { |
265 | 128 | E Tu, Tv, TE, TF; |
266 | 128 | Tu = ii[WS(is, 2)]; |
267 | 128 | Tv = ii[WS(is, 7)]; |
268 | 128 | Tw = Tu - Tv; |
269 | 128 | T15 = Tu + Tv; |
270 | 128 | TE = ii[WS(is, 6)]; |
271 | 128 | TF = ii[WS(is, 1)]; |
272 | 128 | TG = TE - TF; |
273 | 128 | T13 = TE + TF; |
274 | 128 | } |
275 | 128 | { |
276 | 128 | E Tx, Ty, TB, TC; |
277 | 128 | Tx = ii[WS(is, 8)]; |
278 | 128 | Ty = ii[WS(is, 3)]; |
279 | 128 | Tz = Tx - Ty; |
280 | 128 | T16 = Tx + Ty; |
281 | 128 | TB = ii[WS(is, 4)]; |
282 | 128 | TC = ii[WS(is, 9)]; |
283 | 128 | TD = TB - TC; |
284 | 128 | T12 = TB + TC; |
285 | 128 | } |
286 | 128 | TA = Tw - Tz; |
287 | 128 | TH = TD - TG; |
288 | 128 | T17 = T15 - T16; |
289 | 128 | T14 = T12 - T13; |
290 | 128 | T1f = T15 + T16; |
291 | 128 | T1g = T12 + T13; |
292 | 128 | T1h = T1f + T1g; |
293 | 128 | TL = Tw + Tz; |
294 | 128 | TM = TD + TG; |
295 | 128 | TR = TL + TM; |
296 | 128 | } |
297 | 128 | ro[WS(os, 5)] = T3 + Ti; |
298 | 128 | io[WS(os, 5)] = TQ + TR; |
299 | 128 | ro[0] = Tj + Tq; |
300 | 128 | io[0] = T1e + T1h; |
301 | 128 | { |
302 | 128 | E TI, TK, Tt, TJ, Tr, Ts; |
303 | 128 | TI = FMA(KP951056516, TA, KP587785252 * TH); |
304 | 128 | TK = FNMS(KP587785252, TA, KP951056516 * TH); |
305 | 128 | Tr = KP559016994 * (Ta - Th); |
306 | 128 | Ts = FNMS(KP250000000, Ti, T3); |
307 | 128 | Tt = Tr + Ts; |
308 | 128 | TJ = Ts - Tr; |
309 | 128 | ro[WS(os, 9)] = Tt - TI; |
310 | 128 | ro[WS(os, 3)] = TJ + TK; |
311 | 128 | ro[WS(os, 1)] = Tt + TI; |
312 | 128 | ro[WS(os, 7)] = TJ - TK; |
313 | 128 | } |
314 | 128 | { |
315 | 128 | E TW, TY, TT, TX, TN, TS; |
316 | 128 | TW = FMA(KP951056516, TU, KP587785252 * TV); |
317 | 128 | TY = FNMS(KP587785252, TU, KP951056516 * TV); |
318 | 128 | TN = KP559016994 * (TL - TM); |
319 | 128 | TS = FNMS(KP250000000, TR, TQ); |
320 | 128 | TT = TN + TS; |
321 | 128 | TX = TS - TN; |
322 | 128 | io[WS(os, 1)] = TT - TW; |
323 | 128 | io[WS(os, 7)] = TY + TX; |
324 | 128 | io[WS(os, 9)] = TW + TT; |
325 | 128 | io[WS(os, 3)] = TX - TY; |
326 | 128 | } |
327 | 128 | { |
328 | 128 | E T18, T1a, T11, T19, TZ, T10; |
329 | 128 | T18 = FNMS(KP587785252, T17, KP951056516 * T14); |
330 | 128 | T1a = FMA(KP951056516, T17, KP587785252 * T14); |
331 | 128 | TZ = FNMS(KP250000000, Tq, Tj); |
332 | 128 | T10 = KP559016994 * (Tm - Tp); |
333 | 128 | T11 = TZ - T10; |
334 | 128 | T19 = T10 + TZ; |
335 | 128 | ro[WS(os, 2)] = T11 - T18; |
336 | 128 | ro[WS(os, 6)] = T19 + T1a; |
337 | 128 | ro[WS(os, 8)] = T11 + T18; |
338 | 128 | ro[WS(os, 4)] = T19 - T1a; |
339 | 128 | } |
340 | 128 | { |
341 | 128 | E T1d, T1l, T1k, T1m, T1i, T1j; |
342 | 128 | T1d = FNMS(KP587785252, T1c, KP951056516 * T1b); |
343 | 128 | T1l = FMA(KP951056516, T1c, KP587785252 * T1b); |
344 | 128 | T1i = FNMS(KP250000000, T1h, T1e); |
345 | 128 | T1j = KP559016994 * (T1f - T1g); |
346 | 128 | T1k = T1i - T1j; |
347 | 128 | T1m = T1j + T1i; |
348 | 128 | io[WS(os, 2)] = T1d + T1k; |
349 | 128 | io[WS(os, 6)] = T1m - T1l; |
350 | 128 | io[WS(os, 8)] = T1k - T1d; |
351 | 128 | io[WS(os, 4)] = T1l + T1m; |
352 | 128 | } |
353 | 128 | } |
354 | 16 | } |
355 | 16 | } |
356 | | |
357 | | static const kdft_desc desc = { 10, "n1_10", { 72, 12, 12, 0 }, &GENUS, 0, 0, 0, 0 }; |
358 | | |
359 | 1 | void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc); |
360 | 1 | } |
361 | | |
362 | | #endif |