/src/fftw3/dft/scalar/codelets/t1_9.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:51:33 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 96 FP additions, 88 FP multiplications, |
32 | | * (or, 24 additions, 16 multiplications, 72 fused multiply/add), |
33 | | * 55 stack variables, 10 constants, and 36 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP852868531, +0.852868531952443209628250963940074071936020296); |
40 | | DK(KP492403876, +0.492403876506104029683371512294761506835321626); |
41 | | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
42 | | DK(KP954188894, +0.954188894138671133499268364187245676532219158); |
43 | | DK(KP363970234, +0.363970234266202361351047882776834043890471784); |
44 | | DK(KP777861913, +0.777861913430206160028177977318626690410586096); |
45 | | DK(KP839099631, +0.839099631177280011763127298123181364687434283); |
46 | | DK(KP176326980, +0.176326980708464973471090386868618986121633062); |
47 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
48 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
49 | | { |
50 | | INT m; |
51 | | for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { |
52 | | E T1, T1R, Te, T1W, T10, T1Q, T1l, T1r, Ty, T1p, Tl, T1o, T1g, T1q, T1a; |
53 | | E T1d, TS, T18, TF, T13, T19, T1c; |
54 | | T1 = ri[0]; |
55 | | T1R = ii[0]; |
56 | | { |
57 | | E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8; |
58 | | T3 = ri[WS(rs, 3)]; |
59 | | T6 = ii[WS(rs, 3)]; |
60 | | T2 = W[4]; |
61 | | T4 = T2 * T3; |
62 | | TW = T2 * T6; |
63 | | T9 = ri[WS(rs, 6)]; |
64 | | Tc = ii[WS(rs, 6)]; |
65 | | T8 = W[10]; |
66 | | Ta = T8 * T9; |
67 | | TY = T8 * Tc; |
68 | | { |
69 | | E T7, TX, Td, TZ, T5, Tb; |
70 | | T5 = W[5]; |
71 | | T7 = FMA(T5, T6, T4); |
72 | | TX = FNMS(T5, T3, TW); |
73 | | Tb = W[11]; |
74 | | Td = FMA(Tb, Tc, Ta); |
75 | | TZ = FNMS(Tb, T9, TY); |
76 | | Te = T7 + Td; |
77 | | T1W = Td - T7; |
78 | | T10 = TX - TZ; |
79 | | T1Q = TX + TZ; |
80 | | } |
81 | | } |
82 | | { |
83 | | E Th, Tk, Ti, T1n, Tx, T1i, Tr, T1k, Tg, Tj; |
84 | | Th = ri[WS(rs, 1)]; |
85 | | Tk = ii[WS(rs, 1)]; |
86 | | Tg = W[0]; |
87 | | Ti = Tg * Th; |
88 | | T1n = Tg * Tk; |
89 | | { |
90 | | E Tt, Tw, Tu, T1h, Ts, Tv; |
91 | | Tt = ri[WS(rs, 7)]; |
92 | | Tw = ii[WS(rs, 7)]; |
93 | | Ts = W[12]; |
94 | | Tu = Ts * Tt; |
95 | | T1h = Ts * Tw; |
96 | | Tv = W[13]; |
97 | | Tx = FMA(Tv, Tw, Tu); |
98 | | T1i = FNMS(Tv, Tt, T1h); |
99 | | } |
100 | | { |
101 | | E Tn, Tq, To, T1j, Tm, Tp; |
102 | | Tn = ri[WS(rs, 4)]; |
103 | | Tq = ii[WS(rs, 4)]; |
104 | | Tm = W[6]; |
105 | | To = Tm * Tn; |
106 | | T1j = Tm * Tq; |
107 | | Tp = W[7]; |
108 | | Tr = FMA(Tp, Tq, To); |
109 | | T1k = FNMS(Tp, Tn, T1j); |
110 | | } |
111 | | T1l = T1i - T1k; |
112 | | T1r = Tr - Tx; |
113 | | Ty = Tr + Tx; |
114 | | T1p = T1k + T1i; |
115 | | Tj = W[1]; |
116 | | Tl = FMA(Tj, Tk, Ti); |
117 | | T1o = FNMS(Tj, Th, T1n); |
118 | | T1g = FNMS(KP500000000, Ty, Tl); |
119 | | T1q = FNMS(KP500000000, T1p, T1o); |
120 | | } |
121 | | { |
122 | | E TB, TE, TC, T12, TR, T17, TL, T15, TA, TD; |
123 | | TB = ri[WS(rs, 2)]; |
124 | | TE = ii[WS(rs, 2)]; |
125 | | TA = W[2]; |
126 | | TC = TA * TB; |
127 | | T12 = TA * TE; |
128 | | { |
129 | | E TN, TQ, TO, T16, TM, TP; |
130 | | TN = ri[WS(rs, 8)]; |
131 | | TQ = ii[WS(rs, 8)]; |
132 | | TM = W[14]; |
133 | | TO = TM * TN; |
134 | | T16 = TM * TQ; |
135 | | TP = W[15]; |
136 | | TR = FMA(TP, TQ, TO); |
137 | | T17 = FNMS(TP, TN, T16); |
138 | | } |
139 | | { |
140 | | E TH, TK, TI, T14, TG, TJ; |
141 | | TH = ri[WS(rs, 5)]; |
142 | | TK = ii[WS(rs, 5)]; |
143 | | TG = W[8]; |
144 | | TI = TG * TH; |
145 | | T14 = TG * TK; |
146 | | TJ = W[9]; |
147 | | TL = FMA(TJ, TK, TI); |
148 | | T15 = FNMS(TJ, TH, T14); |
149 | | } |
150 | | T1a = TR - TL; |
151 | | T1d = T15 - T17; |
152 | | TS = TL + TR; |
153 | | T18 = T15 + T17; |
154 | | TD = W[3]; |
155 | | TF = FMA(TD, TE, TC); |
156 | | T13 = FNMS(TD, TB, T12); |
157 | | T19 = FNMS(KP500000000, T18, T13); |
158 | | T1c = FNMS(KP500000000, TS, TF); |
159 | | } |
160 | | { |
161 | | E Tf, T1S, TU, T1U, T1O, T1P, T1L, T1T; |
162 | | Tf = T1 + Te; |
163 | | T1S = T1Q + T1R; |
164 | | { |
165 | | E Tz, TT, T1M, T1N; |
166 | | Tz = Tl + Ty; |
167 | | TT = TF + TS; |
168 | | TU = Tz + TT; |
169 | | T1U = TT - Tz; |
170 | | T1M = T1o + T1p; |
171 | | T1N = T13 + T18; |
172 | | T1O = T1M - T1N; |
173 | | T1P = T1M + T1N; |
174 | | } |
175 | | ri[0] = Tf + TU; |
176 | | ii[0] = T1P + T1S; |
177 | | T1L = FNMS(KP500000000, TU, Tf); |
178 | | ri[WS(rs, 6)] = FNMS(KP866025403, T1O, T1L); |
179 | | ri[WS(rs, 3)] = FMA(KP866025403, T1O, T1L); |
180 | | T1T = FNMS(KP500000000, T1P, T1S); |
181 | | ii[WS(rs, 3)] = FMA(KP866025403, T1U, T1T); |
182 | | ii[WS(rs, 6)] = FNMS(KP866025403, T1U, T1T); |
183 | | } |
184 | | { |
185 | | E T11, T1z, T1X, T21, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G; |
186 | | E T22, TV, T1V; |
187 | | TV = FNMS(KP500000000, Te, T1); |
188 | | T11 = FMA(KP866025403, T10, TV); |
189 | | T1z = FNMS(KP866025403, T10, TV); |
190 | | T1V = FNMS(KP500000000, T1Q, T1R); |
191 | | T1X = FMA(KP866025403, T1W, T1V); |
192 | | T21 = FNMS(KP866025403, T1W, T1V); |
193 | | { |
194 | | E T1b, T1e, T1m, T1s; |
195 | | T1b = FMA(KP866025403, T1a, T19); |
196 | | T1e = FMA(KP866025403, T1d, T1c); |
197 | | T1f = FMA(KP176326980, T1e, T1b); |
198 | | T1w = FNMS(KP176326980, T1b, T1e); |
199 | | T1m = FNMS(KP866025403, T1l, T1g); |
200 | | T1s = FNMS(KP866025403, T1r, T1q); |
201 | | T1t = FMA(KP839099631, T1s, T1m); |
202 | | T1x = FNMS(KP839099631, T1m, T1s); |
203 | | } |
204 | | T1u = FMA(KP777861913, T1t, T1f); |
205 | | T1Y = FNMS(KP777861913, T1x, T1w); |
206 | | { |
207 | | E T1A, T1B, T1D, T1E; |
208 | | T1A = FMA(KP866025403, T1r, T1q); |
209 | | T1B = FMA(KP866025403, T1l, T1g); |
210 | | T1C = FMA(KP176326980, T1B, T1A); |
211 | | T1I = FNMS(KP176326980, T1A, T1B); |
212 | | T1D = FNMS(KP866025403, T1d, T1c); |
213 | | T1E = FNMS(KP866025403, T1a, T19); |
214 | | T1F = FNMS(KP363970234, T1E, T1D); |
215 | | T1J = FMA(KP363970234, T1D, T1E); |
216 | | } |
217 | | T1G = FNMS(KP954188894, T1F, T1C); |
218 | | T22 = FMA(KP954188894, T1J, T1I); |
219 | | ri[WS(rs, 1)] = FMA(KP984807753, T1u, T11); |
220 | | ii[WS(rs, 1)] = FNMS(KP984807753, T1Y, T1X); |
221 | | ri[WS(rs, 2)] = FMA(KP984807753, T1G, T1z); |
222 | | ii[WS(rs, 2)] = FNMS(KP984807753, T22, T21); |
223 | | { |
224 | | E T1v, T1y, T1Z, T20; |
225 | | T1v = FNMS(KP492403876, T1u, T11); |
226 | | T1y = FMA(KP777861913, T1x, T1w); |
227 | | ri[WS(rs, 4)] = FMA(KP852868531, T1y, T1v); |
228 | | ri[WS(rs, 7)] = FNMS(KP852868531, T1y, T1v); |
229 | | T1Z = FMA(KP492403876, T1Y, T1X); |
230 | | T20 = FNMS(KP777861913, T1t, T1f); |
231 | | ii[WS(rs, 4)] = FMA(KP852868531, T20, T1Z); |
232 | | ii[WS(rs, 7)] = FNMS(KP852868531, T20, T1Z); |
233 | | } |
234 | | { |
235 | | E T1H, T1K, T23, T24; |
236 | | T1H = FNMS(KP492403876, T1G, T1z); |
237 | | T1K = FNMS(KP954188894, T1J, T1I); |
238 | | ri[WS(rs, 5)] = FNMS(KP852868531, T1K, T1H); |
239 | | ri[WS(rs, 8)] = FMA(KP852868531, T1K, T1H); |
240 | | T23 = FMA(KP492403876, T22, T21); |
241 | | T24 = FMA(KP954188894, T1F, T1C); |
242 | | ii[WS(rs, 5)] = FNMS(KP852868531, T24, T23); |
243 | | ii[WS(rs, 8)] = FMA(KP852868531, T24, T23); |
244 | | } |
245 | | } |
246 | | } |
247 | | } |
248 | | } |
249 | | |
250 | | static const tw_instr twinstr[] = { |
251 | | { TW_FULL, 0, 9 }, |
252 | | { TW_NEXT, 1, 0 } |
253 | | }; |
254 | | |
255 | | static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, { 24, 16, 72, 0 }, 0, 0, 0 }; |
256 | | |
257 | | void X(codelet_t1_9) (planner *p) { |
258 | | X(kdft_dit_register) (p, t1_9, &desc); |
259 | | } |
260 | | #else |
261 | | |
262 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */ |
263 | | |
264 | | /* |
265 | | * This function contains 96 FP additions, 72 FP multiplications, |
266 | | * (or, 60 additions, 36 multiplications, 36 fused multiply/add), |
267 | | * 41 stack variables, 8 constants, and 36 memory accesses |
268 | | */ |
269 | | #include "dft/scalar/t.h" |
270 | | |
271 | | static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
272 | 29 | { |
273 | 29 | DK(KP939692620, +0.939692620785908384054109277324731469936208134); |
274 | 29 | DK(KP342020143, +0.342020143325668733044099614682259580763083368); |
275 | 29 | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
276 | 29 | DK(KP173648177, +0.173648177666930348851716626769314796000375677); |
277 | 29 | DK(KP642787609, +0.642787609686539326322643409907263432907559884); |
278 | 29 | DK(KP766044443, +0.766044443118978035202392650555416673935832457); |
279 | 29 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
280 | 29 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
281 | 29 | { |
282 | 29 | INT m; |
283 | 471 | for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { |
284 | 442 | E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu; |
285 | 442 | E T1w, TW, T1k, T11, T1l; |
286 | 442 | { |
287 | 442 | E T6, TO, Tb, TP; |
288 | 442 | T1 = ri[0]; |
289 | 442 | T1B = ii[0]; |
290 | 442 | { |
291 | 442 | E T3, T5, T2, T4; |
292 | 442 | T3 = ri[WS(rs, 3)]; |
293 | 442 | T5 = ii[WS(rs, 3)]; |
294 | 442 | T2 = W[4]; |
295 | 442 | T4 = W[5]; |
296 | 442 | T6 = FMA(T2, T3, T4 * T5); |
297 | 442 | TO = FNMS(T4, T3, T2 * T5); |
298 | 442 | } |
299 | 442 | { |
300 | 442 | E T8, Ta, T7, T9; |
301 | 442 | T8 = ri[WS(rs, 6)]; |
302 | 442 | Ta = ii[WS(rs, 6)]; |
303 | 442 | T7 = W[10]; |
304 | 442 | T9 = W[11]; |
305 | 442 | Tb = FMA(T7, T8, T9 * Ta); |
306 | 442 | TP = FNMS(T9, T8, T7 * Ta); |
307 | 442 | } |
308 | 442 | TQ = KP866025403 * (TO - TP); |
309 | 442 | T1G = KP866025403 * (Tb - T6); |
310 | 442 | Tc = T6 + Tb; |
311 | 442 | TN = FNMS(KP500000000, Tc, T1); |
312 | 442 | T1A = TO + TP; |
313 | 442 | T1H = FNMS(KP500000000, T1A, T1B); |
314 | 442 | } |
315 | 442 | { |
316 | 442 | E Tz, T19, TE, T14, TJ, T15, TK, T1a; |
317 | 442 | { |
318 | 442 | E Tw, Ty, Tv, Tx; |
319 | 442 | Tw = ri[WS(rs, 2)]; |
320 | 442 | Ty = ii[WS(rs, 2)]; |
321 | 442 | Tv = W[2]; |
322 | 442 | Tx = W[3]; |
323 | 442 | Tz = FMA(Tv, Tw, Tx * Ty); |
324 | 442 | T19 = FNMS(Tx, Tw, Tv * Ty); |
325 | 442 | } |
326 | 442 | { |
327 | 442 | E TB, TD, TA, TC; |
328 | 442 | TB = ri[WS(rs, 5)]; |
329 | 442 | TD = ii[WS(rs, 5)]; |
330 | 442 | TA = W[8]; |
331 | 442 | TC = W[9]; |
332 | 442 | TE = FMA(TA, TB, TC * TD); |
333 | 442 | T14 = FNMS(TC, TB, TA * TD); |
334 | 442 | } |
335 | 442 | { |
336 | 442 | E TG, TI, TF, TH; |
337 | 442 | TG = ri[WS(rs, 8)]; |
338 | 442 | TI = ii[WS(rs, 8)]; |
339 | 442 | TF = W[14]; |
340 | 442 | TH = W[15]; |
341 | 442 | TJ = FMA(TF, TG, TH * TI); |
342 | 442 | T15 = FNMS(TH, TG, TF * TI); |
343 | 442 | } |
344 | 442 | TK = TE + TJ; |
345 | 442 | T1a = T14 + T15; |
346 | 442 | TL = Tz + TK; |
347 | 442 | T1x = T19 + T1a; |
348 | 442 | { |
349 | 442 | E T13, T16, T18, T1b; |
350 | 442 | T13 = FNMS(KP500000000, TK, Tz); |
351 | 442 | T16 = KP866025403 * (T14 - T15); |
352 | 442 | T17 = T13 + T16; |
353 | 442 | T1o = T13 - T16; |
354 | 442 | T18 = KP866025403 * (TJ - TE); |
355 | 442 | T1b = FNMS(KP500000000, T1a, T19); |
356 | 442 | T1c = T18 + T1b; |
357 | 442 | T1n = T1b - T18; |
358 | 442 | } |
359 | 442 | } |
360 | 442 | { |
361 | 442 | E Ti, TY, Tn, TT, Ts, TU, Tt, TZ; |
362 | 442 | { |
363 | 442 | E Tf, Th, Te, Tg; |
364 | 442 | Tf = ri[WS(rs, 1)]; |
365 | 442 | Th = ii[WS(rs, 1)]; |
366 | 442 | Te = W[0]; |
367 | 442 | Tg = W[1]; |
368 | 442 | Ti = FMA(Te, Tf, Tg * Th); |
369 | 442 | TY = FNMS(Tg, Tf, Te * Th); |
370 | 442 | } |
371 | 442 | { |
372 | 442 | E Tk, Tm, Tj, Tl; |
373 | 442 | Tk = ri[WS(rs, 4)]; |
374 | 442 | Tm = ii[WS(rs, 4)]; |
375 | 442 | Tj = W[6]; |
376 | 442 | Tl = W[7]; |
377 | 442 | Tn = FMA(Tj, Tk, Tl * Tm); |
378 | 442 | TT = FNMS(Tl, Tk, Tj * Tm); |
379 | 442 | } |
380 | 442 | { |
381 | 442 | E Tp, Tr, To, Tq; |
382 | 442 | Tp = ri[WS(rs, 7)]; |
383 | 442 | Tr = ii[WS(rs, 7)]; |
384 | 442 | To = W[12]; |
385 | 442 | Tq = W[13]; |
386 | 442 | Ts = FMA(To, Tp, Tq * Tr); |
387 | 442 | TU = FNMS(Tq, Tp, To * Tr); |
388 | 442 | } |
389 | 442 | Tt = Tn + Ts; |
390 | 442 | TZ = TT + TU; |
391 | 442 | Tu = Ti + Tt; |
392 | 442 | T1w = TY + TZ; |
393 | 442 | { |
394 | 442 | E TS, TV, TX, T10; |
395 | 442 | TS = FNMS(KP500000000, Tt, Ti); |
396 | 442 | TV = KP866025403 * (TT - TU); |
397 | 442 | TW = TS + TV; |
398 | 442 | T1k = TS - TV; |
399 | 442 | TX = KP866025403 * (Ts - Tn); |
400 | 442 | T10 = FNMS(KP500000000, TZ, TY); |
401 | 442 | T11 = TX + T10; |
402 | 442 | T1l = T10 - TX; |
403 | 442 | } |
404 | 442 | } |
405 | 442 | { |
406 | 442 | E T1y, Td, TM, T1v; |
407 | 442 | T1y = KP866025403 * (T1w - T1x); |
408 | 442 | Td = T1 + Tc; |
409 | 442 | TM = Tu + TL; |
410 | 442 | T1v = FNMS(KP500000000, TM, Td); |
411 | 442 | ri[0] = Td + TM; |
412 | 442 | ri[WS(rs, 3)] = T1v + T1y; |
413 | 442 | ri[WS(rs, 6)] = T1v - T1y; |
414 | 442 | } |
415 | 442 | { |
416 | 442 | E T1D, T1z, T1C, T1E; |
417 | 442 | T1D = KP866025403 * (TL - Tu); |
418 | 442 | T1z = T1w + T1x; |
419 | 442 | T1C = T1A + T1B; |
420 | 442 | T1E = FNMS(KP500000000, T1z, T1C); |
421 | 442 | ii[0] = T1z + T1C; |
422 | 442 | ii[WS(rs, 6)] = T1E - T1D; |
423 | 442 | ii[WS(rs, 3)] = T1D + T1E; |
424 | 442 | } |
425 | 442 | { |
426 | 442 | E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K; |
427 | 442 | TR = TN + TQ; |
428 | 442 | T1I = T1G + T1H; |
429 | 442 | { |
430 | 442 | E T12, T1d, T1g, T1h; |
431 | 442 | T12 = FMA(KP766044443, TW, KP642787609 * T11); |
432 | 442 | T1d = FMA(KP173648177, T17, KP984807753 * T1c); |
433 | 442 | T1e = T12 + T1d; |
434 | 442 | T1J = KP866025403 * (T1d - T12); |
435 | 442 | T1g = FNMS(KP642787609, TW, KP766044443 * T11); |
436 | 442 | T1h = FNMS(KP984807753, T17, KP173648177 * T1c); |
437 | 442 | T1i = KP866025403 * (T1g - T1h); |
438 | 442 | T1F = T1g + T1h; |
439 | 442 | } |
440 | 442 | ri[WS(rs, 1)] = TR + T1e; |
441 | 442 | ii[WS(rs, 1)] = T1F + T1I; |
442 | 442 | T1f = FNMS(KP500000000, T1e, TR); |
443 | 442 | ri[WS(rs, 7)] = T1f - T1i; |
444 | 442 | ri[WS(rs, 4)] = T1f + T1i; |
445 | 442 | T1K = FNMS(KP500000000, T1F, T1I); |
446 | 442 | ii[WS(rs, 4)] = T1J + T1K; |
447 | 442 | ii[WS(rs, 7)] = T1K - T1J; |
448 | 442 | } |
449 | 442 | { |
450 | 442 | E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O; |
451 | 442 | T1j = TN - TQ; |
452 | 442 | T1M = T1H - T1G; |
453 | 442 | { |
454 | 442 | E T1m, T1p, T1s, T1t; |
455 | 442 | T1m = FMA(KP173648177, T1k, KP984807753 * T1l); |
456 | 442 | T1p = FNMS(KP939692620, T1o, KP342020143 * T1n); |
457 | 442 | T1q = T1m + T1p; |
458 | 442 | T1N = KP866025403 * (T1p - T1m); |
459 | 442 | T1s = FNMS(KP984807753, T1k, KP173648177 * T1l); |
460 | 442 | T1t = FMA(KP342020143, T1o, KP939692620 * T1n); |
461 | 442 | T1u = KP866025403 * (T1s + T1t); |
462 | 442 | T1L = T1s - T1t; |
463 | 442 | } |
464 | 442 | ri[WS(rs, 2)] = T1j + T1q; |
465 | 442 | ii[WS(rs, 2)] = T1L + T1M; |
466 | 442 | T1r = FNMS(KP500000000, T1q, T1j); |
467 | 442 | ri[WS(rs, 8)] = T1r - T1u; |
468 | 442 | ri[WS(rs, 5)] = T1r + T1u; |
469 | 442 | T1O = FNMS(KP500000000, T1L, T1M); |
470 | 442 | ii[WS(rs, 5)] = T1N + T1O; |
471 | 442 | ii[WS(rs, 8)] = T1O - T1N; |
472 | 442 | } |
473 | 442 | } |
474 | 29 | } |
475 | 29 | } |
476 | | |
477 | | static const tw_instr twinstr[] = { |
478 | | { TW_FULL, 0, 9 }, |
479 | | { TW_NEXT, 1, 0 } |
480 | | }; |
481 | | |
482 | | static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, { 60, 36, 36, 0 }, 0, 0, 0 }; |
483 | | |
484 | 1 | void X(codelet_t1_9) (planner *p) { |
485 | 1 | X(kdft_dit_register) (p, t1_9, &desc); |
486 | 1 | } |
487 | | #endif |