Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/dft/scalar/codelets/t1_9.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:51:33 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 96 FP additions, 88 FP multiplications,
32
 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
33
 * 55 stack variables, 10 constants, and 36 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
40
     DK(KP492403876, +0.492403876506104029683371512294761506835321626);
41
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
42
     DK(KP954188894, +0.954188894138671133499268364187245676532219158);
43
     DK(KP363970234, +0.363970234266202361351047882776834043890471784);
44
     DK(KP777861913, +0.777861913430206160028177977318626690410586096);
45
     DK(KP839099631, +0.839099631177280011763127298123181364687434283);
46
     DK(KP176326980, +0.176326980708464973471090386868618986121633062);
47
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49
     {
50
    INT m;
51
    for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
52
         E T1, T1R, Te, T1W, T10, T1Q, T1l, T1r, Ty, T1p, Tl, T1o, T1g, T1q, T1a;
53
         E T1d, TS, T18, TF, T13, T19, T1c;
54
         T1 = ri[0];
55
         T1R = ii[0];
56
         {
57
        E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8;
58
        T3 = ri[WS(rs, 3)];
59
        T6 = ii[WS(rs, 3)];
60
        T2 = W[4];
61
        T4 = T2 * T3;
62
        TW = T2 * T6;
63
        T9 = ri[WS(rs, 6)];
64
        Tc = ii[WS(rs, 6)];
65
        T8 = W[10];
66
        Ta = T8 * T9;
67
        TY = T8 * Tc;
68
        {
69
       E T7, TX, Td, TZ, T5, Tb;
70
       T5 = W[5];
71
       T7 = FMA(T5, T6, T4);
72
       TX = FNMS(T5, T3, TW);
73
       Tb = W[11];
74
       Td = FMA(Tb, Tc, Ta);
75
       TZ = FNMS(Tb, T9, TY);
76
       Te = T7 + Td;
77
       T1W = Td - T7;
78
       T10 = TX - TZ;
79
       T1Q = TX + TZ;
80
        }
81
         }
82
         {
83
        E Th, Tk, Ti, T1n, Tx, T1i, Tr, T1k, Tg, Tj;
84
        Th = ri[WS(rs, 1)];
85
        Tk = ii[WS(rs, 1)];
86
        Tg = W[0];
87
        Ti = Tg * Th;
88
        T1n = Tg * Tk;
89
        {
90
       E Tt, Tw, Tu, T1h, Ts, Tv;
91
       Tt = ri[WS(rs, 7)];
92
       Tw = ii[WS(rs, 7)];
93
       Ts = W[12];
94
       Tu = Ts * Tt;
95
       T1h = Ts * Tw;
96
       Tv = W[13];
97
       Tx = FMA(Tv, Tw, Tu);
98
       T1i = FNMS(Tv, Tt, T1h);
99
        }
100
        {
101
       E Tn, Tq, To, T1j, Tm, Tp;
102
       Tn = ri[WS(rs, 4)];
103
       Tq = ii[WS(rs, 4)];
104
       Tm = W[6];
105
       To = Tm * Tn;
106
       T1j = Tm * Tq;
107
       Tp = W[7];
108
       Tr = FMA(Tp, Tq, To);
109
       T1k = FNMS(Tp, Tn, T1j);
110
        }
111
        T1l = T1i - T1k;
112
        T1r = Tr - Tx;
113
        Ty = Tr + Tx;
114
        T1p = T1k + T1i;
115
        Tj = W[1];
116
        Tl = FMA(Tj, Tk, Ti);
117
        T1o = FNMS(Tj, Th, T1n);
118
        T1g = FNMS(KP500000000, Ty, Tl);
119
        T1q = FNMS(KP500000000, T1p, T1o);
120
         }
121
         {
122
        E TB, TE, TC, T12, TR, T17, TL, T15, TA, TD;
123
        TB = ri[WS(rs, 2)];
124
        TE = ii[WS(rs, 2)];
125
        TA = W[2];
126
        TC = TA * TB;
127
        T12 = TA * TE;
128
        {
129
       E TN, TQ, TO, T16, TM, TP;
130
       TN = ri[WS(rs, 8)];
131
       TQ = ii[WS(rs, 8)];
132
       TM = W[14];
133
       TO = TM * TN;
134
       T16 = TM * TQ;
135
       TP = W[15];
136
       TR = FMA(TP, TQ, TO);
137
       T17 = FNMS(TP, TN, T16);
138
        }
139
        {
140
       E TH, TK, TI, T14, TG, TJ;
141
       TH = ri[WS(rs, 5)];
142
       TK = ii[WS(rs, 5)];
143
       TG = W[8];
144
       TI = TG * TH;
145
       T14 = TG * TK;
146
       TJ = W[9];
147
       TL = FMA(TJ, TK, TI);
148
       T15 = FNMS(TJ, TH, T14);
149
        }
150
        T1a = TR - TL;
151
        T1d = T15 - T17;
152
        TS = TL + TR;
153
        T18 = T15 + T17;
154
        TD = W[3];
155
        TF = FMA(TD, TE, TC);
156
        T13 = FNMS(TD, TB, T12);
157
        T19 = FNMS(KP500000000, T18, T13);
158
        T1c = FNMS(KP500000000, TS, TF);
159
         }
160
         {
161
        E Tf, T1S, TU, T1U, T1O, T1P, T1L, T1T;
162
        Tf = T1 + Te;
163
        T1S = T1Q + T1R;
164
        {
165
       E Tz, TT, T1M, T1N;
166
       Tz = Tl + Ty;
167
       TT = TF + TS;
168
       TU = Tz + TT;
169
       T1U = TT - Tz;
170
       T1M = T1o + T1p;
171
       T1N = T13 + T18;
172
       T1O = T1M - T1N;
173
       T1P = T1M + T1N;
174
        }
175
        ri[0] = Tf + TU;
176
        ii[0] = T1P + T1S;
177
        T1L = FNMS(KP500000000, TU, Tf);
178
        ri[WS(rs, 6)] = FNMS(KP866025403, T1O, T1L);
179
        ri[WS(rs, 3)] = FMA(KP866025403, T1O, T1L);
180
        T1T = FNMS(KP500000000, T1P, T1S);
181
        ii[WS(rs, 3)] = FMA(KP866025403, T1U, T1T);
182
        ii[WS(rs, 6)] = FNMS(KP866025403, T1U, T1T);
183
         }
184
         {
185
        E T11, T1z, T1X, T21, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G;
186
        E T22, TV, T1V;
187
        TV = FNMS(KP500000000, Te, T1);
188
        T11 = FMA(KP866025403, T10, TV);
189
        T1z = FNMS(KP866025403, T10, TV);
190
        T1V = FNMS(KP500000000, T1Q, T1R);
191
        T1X = FMA(KP866025403, T1W, T1V);
192
        T21 = FNMS(KP866025403, T1W, T1V);
193
        {
194
       E T1b, T1e, T1m, T1s;
195
       T1b = FMA(KP866025403, T1a, T19);
196
       T1e = FMA(KP866025403, T1d, T1c);
197
       T1f = FMA(KP176326980, T1e, T1b);
198
       T1w = FNMS(KP176326980, T1b, T1e);
199
       T1m = FNMS(KP866025403, T1l, T1g);
200
       T1s = FNMS(KP866025403, T1r, T1q);
201
       T1t = FMA(KP839099631, T1s, T1m);
202
       T1x = FNMS(KP839099631, T1m, T1s);
203
        }
204
        T1u = FMA(KP777861913, T1t, T1f);
205
        T1Y = FNMS(KP777861913, T1x, T1w);
206
        {
207
       E T1A, T1B, T1D, T1E;
208
       T1A = FMA(KP866025403, T1r, T1q);
209
       T1B = FMA(KP866025403, T1l, T1g);
210
       T1C = FMA(KP176326980, T1B, T1A);
211
       T1I = FNMS(KP176326980, T1A, T1B);
212
       T1D = FNMS(KP866025403, T1d, T1c);
213
       T1E = FNMS(KP866025403, T1a, T19);
214
       T1F = FNMS(KP363970234, T1E, T1D);
215
       T1J = FMA(KP363970234, T1D, T1E);
216
        }
217
        T1G = FNMS(KP954188894, T1F, T1C);
218
        T22 = FMA(KP954188894, T1J, T1I);
219
        ri[WS(rs, 1)] = FMA(KP984807753, T1u, T11);
220
        ii[WS(rs, 1)] = FNMS(KP984807753, T1Y, T1X);
221
        ri[WS(rs, 2)] = FMA(KP984807753, T1G, T1z);
222
        ii[WS(rs, 2)] = FNMS(KP984807753, T22, T21);
223
        {
224
       E T1v, T1y, T1Z, T20;
225
       T1v = FNMS(KP492403876, T1u, T11);
226
       T1y = FMA(KP777861913, T1x, T1w);
227
       ri[WS(rs, 4)] = FMA(KP852868531, T1y, T1v);
228
       ri[WS(rs, 7)] = FNMS(KP852868531, T1y, T1v);
229
       T1Z = FMA(KP492403876, T1Y, T1X);
230
       T20 = FNMS(KP777861913, T1t, T1f);
231
       ii[WS(rs, 4)] = FMA(KP852868531, T20, T1Z);
232
       ii[WS(rs, 7)] = FNMS(KP852868531, T20, T1Z);
233
        }
234
        {
235
       E T1H, T1K, T23, T24;
236
       T1H = FNMS(KP492403876, T1G, T1z);
237
       T1K = FNMS(KP954188894, T1J, T1I);
238
       ri[WS(rs, 5)] = FNMS(KP852868531, T1K, T1H);
239
       ri[WS(rs, 8)] = FMA(KP852868531, T1K, T1H);
240
       T23 = FMA(KP492403876, T22, T21);
241
       T24 = FMA(KP954188894, T1F, T1C);
242
       ii[WS(rs, 5)] = FNMS(KP852868531, T24, T23);
243
       ii[WS(rs, 8)] = FMA(KP852868531, T24, T23);
244
        }
245
         }
246
    }
247
     }
248
}
249
250
static const tw_instr twinstr[] = {
251
     { TW_FULL, 0, 9 },
252
     { TW_NEXT, 1, 0 }
253
};
254
255
static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, { 24, 16, 72, 0 }, 0, 0, 0 };
256
257
void X(codelet_t1_9) (planner *p) {
258
     X(kdft_dit_register) (p, t1_9, &desc);
259
}
260
#else
261
262
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 9 -name t1_9 -include dft/scalar/t.h */
263
264
/*
265
 * This function contains 96 FP additions, 72 FP multiplications,
266
 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
267
 * 41 stack variables, 8 constants, and 36 memory accesses
268
 */
269
#include "dft/scalar/t.h"
270
271
static void t1_9(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
272
29
{
273
29
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
274
29
     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
275
29
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
276
29
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
277
29
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
278
29
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
279
29
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
280
29
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
281
29
     {
282
29
    INT m;
283
471
    for (m = mb, W = W + (mb * 16); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
284
442
         E T1, T1B, TQ, T1G, Tc, TN, T1A, T1H, TL, T1x, T17, T1o, T1c, T1n, Tu;
285
442
         E T1w, TW, T1k, T11, T1l;
286
442
         {
287
442
        E T6, TO, Tb, TP;
288
442
        T1 = ri[0];
289
442
        T1B = ii[0];
290
442
        {
291
442
       E T3, T5, T2, T4;
292
442
       T3 = ri[WS(rs, 3)];
293
442
       T5 = ii[WS(rs, 3)];
294
442
       T2 = W[4];
295
442
       T4 = W[5];
296
442
       T6 = FMA(T2, T3, T4 * T5);
297
442
       TO = FNMS(T4, T3, T2 * T5);
298
442
        }
299
442
        {
300
442
       E T8, Ta, T7, T9;
301
442
       T8 = ri[WS(rs, 6)];
302
442
       Ta = ii[WS(rs, 6)];
303
442
       T7 = W[10];
304
442
       T9 = W[11];
305
442
       Tb = FMA(T7, T8, T9 * Ta);
306
442
       TP = FNMS(T9, T8, T7 * Ta);
307
442
        }
308
442
        TQ = KP866025403 * (TO - TP);
309
442
        T1G = KP866025403 * (Tb - T6);
310
442
        Tc = T6 + Tb;
311
442
        TN = FNMS(KP500000000, Tc, T1);
312
442
        T1A = TO + TP;
313
442
        T1H = FNMS(KP500000000, T1A, T1B);
314
442
         }
315
442
         {
316
442
        E Tz, T19, TE, T14, TJ, T15, TK, T1a;
317
442
        {
318
442
       E Tw, Ty, Tv, Tx;
319
442
       Tw = ri[WS(rs, 2)];
320
442
       Ty = ii[WS(rs, 2)];
321
442
       Tv = W[2];
322
442
       Tx = W[3];
323
442
       Tz = FMA(Tv, Tw, Tx * Ty);
324
442
       T19 = FNMS(Tx, Tw, Tv * Ty);
325
442
        }
326
442
        {
327
442
       E TB, TD, TA, TC;
328
442
       TB = ri[WS(rs, 5)];
329
442
       TD = ii[WS(rs, 5)];
330
442
       TA = W[8];
331
442
       TC = W[9];
332
442
       TE = FMA(TA, TB, TC * TD);
333
442
       T14 = FNMS(TC, TB, TA * TD);
334
442
        }
335
442
        {
336
442
       E TG, TI, TF, TH;
337
442
       TG = ri[WS(rs, 8)];
338
442
       TI = ii[WS(rs, 8)];
339
442
       TF = W[14];
340
442
       TH = W[15];
341
442
       TJ = FMA(TF, TG, TH * TI);
342
442
       T15 = FNMS(TH, TG, TF * TI);
343
442
        }
344
442
        TK = TE + TJ;
345
442
        T1a = T14 + T15;
346
442
        TL = Tz + TK;
347
442
        T1x = T19 + T1a;
348
442
        {
349
442
       E T13, T16, T18, T1b;
350
442
       T13 = FNMS(KP500000000, TK, Tz);
351
442
       T16 = KP866025403 * (T14 - T15);
352
442
       T17 = T13 + T16;
353
442
       T1o = T13 - T16;
354
442
       T18 = KP866025403 * (TJ - TE);
355
442
       T1b = FNMS(KP500000000, T1a, T19);
356
442
       T1c = T18 + T1b;
357
442
       T1n = T1b - T18;
358
442
        }
359
442
         }
360
442
         {
361
442
        E Ti, TY, Tn, TT, Ts, TU, Tt, TZ;
362
442
        {
363
442
       E Tf, Th, Te, Tg;
364
442
       Tf = ri[WS(rs, 1)];
365
442
       Th = ii[WS(rs, 1)];
366
442
       Te = W[0];
367
442
       Tg = W[1];
368
442
       Ti = FMA(Te, Tf, Tg * Th);
369
442
       TY = FNMS(Tg, Tf, Te * Th);
370
442
        }
371
442
        {
372
442
       E Tk, Tm, Tj, Tl;
373
442
       Tk = ri[WS(rs, 4)];
374
442
       Tm = ii[WS(rs, 4)];
375
442
       Tj = W[6];
376
442
       Tl = W[7];
377
442
       Tn = FMA(Tj, Tk, Tl * Tm);
378
442
       TT = FNMS(Tl, Tk, Tj * Tm);
379
442
        }
380
442
        {
381
442
       E Tp, Tr, To, Tq;
382
442
       Tp = ri[WS(rs, 7)];
383
442
       Tr = ii[WS(rs, 7)];
384
442
       To = W[12];
385
442
       Tq = W[13];
386
442
       Ts = FMA(To, Tp, Tq * Tr);
387
442
       TU = FNMS(Tq, Tp, To * Tr);
388
442
        }
389
442
        Tt = Tn + Ts;
390
442
        TZ = TT + TU;
391
442
        Tu = Ti + Tt;
392
442
        T1w = TY + TZ;
393
442
        {
394
442
       E TS, TV, TX, T10;
395
442
       TS = FNMS(KP500000000, Tt, Ti);
396
442
       TV = KP866025403 * (TT - TU);
397
442
       TW = TS + TV;
398
442
       T1k = TS - TV;
399
442
       TX = KP866025403 * (Ts - Tn);
400
442
       T10 = FNMS(KP500000000, TZ, TY);
401
442
       T11 = TX + T10;
402
442
       T1l = T10 - TX;
403
442
        }
404
442
         }
405
442
         {
406
442
        E T1y, Td, TM, T1v;
407
442
        T1y = KP866025403 * (T1w - T1x);
408
442
        Td = T1 + Tc;
409
442
        TM = Tu + TL;
410
442
        T1v = FNMS(KP500000000, TM, Td);
411
442
        ri[0] = Td + TM;
412
442
        ri[WS(rs, 3)] = T1v + T1y;
413
442
        ri[WS(rs, 6)] = T1v - T1y;
414
442
         }
415
442
         {
416
442
        E T1D, T1z, T1C, T1E;
417
442
        T1D = KP866025403 * (TL - Tu);
418
442
        T1z = T1w + T1x;
419
442
        T1C = T1A + T1B;
420
442
        T1E = FNMS(KP500000000, T1z, T1C);
421
442
        ii[0] = T1z + T1C;
422
442
        ii[WS(rs, 6)] = T1E - T1D;
423
442
        ii[WS(rs, 3)] = T1D + T1E;
424
442
         }
425
442
         {
426
442
        E TR, T1I, T1e, T1J, T1i, T1F, T1f, T1K;
427
442
        TR = TN + TQ;
428
442
        T1I = T1G + T1H;
429
442
        {
430
442
       E T12, T1d, T1g, T1h;
431
442
       T12 = FMA(KP766044443, TW, KP642787609 * T11);
432
442
       T1d = FMA(KP173648177, T17, KP984807753 * T1c);
433
442
       T1e = T12 + T1d;
434
442
       T1J = KP866025403 * (T1d - T12);
435
442
       T1g = FNMS(KP642787609, TW, KP766044443 * T11);
436
442
       T1h = FNMS(KP984807753, T17, KP173648177 * T1c);
437
442
       T1i = KP866025403 * (T1g - T1h);
438
442
       T1F = T1g + T1h;
439
442
        }
440
442
        ri[WS(rs, 1)] = TR + T1e;
441
442
        ii[WS(rs, 1)] = T1F + T1I;
442
442
        T1f = FNMS(KP500000000, T1e, TR);
443
442
        ri[WS(rs, 7)] = T1f - T1i;
444
442
        ri[WS(rs, 4)] = T1f + T1i;
445
442
        T1K = FNMS(KP500000000, T1F, T1I);
446
442
        ii[WS(rs, 4)] = T1J + T1K;
447
442
        ii[WS(rs, 7)] = T1K - T1J;
448
442
         }
449
442
         {
450
442
        E T1j, T1M, T1q, T1N, T1u, T1L, T1r, T1O;
451
442
        T1j = TN - TQ;
452
442
        T1M = T1H - T1G;
453
442
        {
454
442
       E T1m, T1p, T1s, T1t;
455
442
       T1m = FMA(KP173648177, T1k, KP984807753 * T1l);
456
442
       T1p = FNMS(KP939692620, T1o, KP342020143 * T1n);
457
442
       T1q = T1m + T1p;
458
442
       T1N = KP866025403 * (T1p - T1m);
459
442
       T1s = FNMS(KP984807753, T1k, KP173648177 * T1l);
460
442
       T1t = FMA(KP342020143, T1o, KP939692620 * T1n);
461
442
       T1u = KP866025403 * (T1s + T1t);
462
442
       T1L = T1s - T1t;
463
442
        }
464
442
        ri[WS(rs, 2)] = T1j + T1q;
465
442
        ii[WS(rs, 2)] = T1L + T1M;
466
442
        T1r = FNMS(KP500000000, T1q, T1j);
467
442
        ri[WS(rs, 8)] = T1r - T1u;
468
442
        ri[WS(rs, 5)] = T1r + T1u;
469
442
        T1O = FNMS(KP500000000, T1L, T1M);
470
442
        ii[WS(rs, 5)] = T1N + T1O;
471
442
        ii[WS(rs, 8)] = T1O - T1N;
472
442
         }
473
442
    }
474
29
     }
475
29
}
476
477
static const tw_instr twinstr[] = {
478
     { TW_FULL, 0, 9 },
479
     { TW_NEXT, 1, 0 }
480
};
481
482
static const ct_desc desc = { 9, "t1_9", twinstr, &GENUS, { 60, 36, 36, 0 }, 0, 0, 0 };
483
484
1
void X(codelet_t1_9) (planner *p) {
485
1
     X(kdft_dit_register) (p, t1_9, &desc);
486
1
}
487
#endif