Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/rank0.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
/* plans for rank-0 RDFTs (copy operations) */
23
24
#include "rdft/rdft.h"
25
26
#ifdef HAVE_STRING_H
27
#include <string.h>   /* for memcpy() */
28
#endif
29
30
5.22k
#define MAXRNK 32 /* FIXME: should malloc() */
31
32
typedef struct {
33
     plan_rdft super;
34
     INT vl;
35
     int rnk;
36
     iodim d[MAXRNK];
37
     const char *nam;
38
} P;
39
40
typedef struct {
41
     solver super;
42
     rdftapply apply;
43
     int (*applicable)(const P *pln, const problem_rdft *p);
44
     const char *nam;
45
} S;
46
47
/* copy up to MAXRNK dimensions from problem into plan.  If a
48
   contiguous dimension exists, save its length in pln->vl */
49
static int fill_iodim(P *pln, const problem_rdft *p)
50
3.54k
{
51
3.54k
     int i;
52
3.54k
     const tensor *vecsz = p->vecsz;
53
54
3.54k
     pln->vl = 1;
55
3.54k
     pln->rnk = 0;
56
12.3k
     for (i = 0; i < vecsz->rnk; ++i) {
57
    /* extract contiguous dimensions */
58
8.76k
    if (pln->vl == 1 &&
59
8.76k
        vecsz->dims[i].is == 1 && vecsz->dims[i].os == 1) 
60
3.54k
         pln->vl = vecsz->dims[i].n;
61
5.22k
    else if (pln->rnk == MAXRNK) 
62
0
         return 0;
63
5.22k
    else 
64
5.22k
         pln->d[pln->rnk++] = vecsz->dims[i];
65
8.76k
     }
66
67
3.54k
     return 1;
68
3.54k
}
69
70
/* generic higher-rank copy routine, calls cpy2d() to do the real work */
71
static void copy(const iodim *d, int rnk, INT vl,
72
     R *I, R *O,
73
     cpy2d_func cpy2d)
74
0
{
75
0
     A(rnk >= 2);
76
0
     if (rnk == 2)
77
0
    cpy2d(I, O, d[0].n, d[0].is, d[0].os, d[1].n, d[1].is, d[1].os, vl);
78
0
     else {
79
0
    INT i;
80
0
    for (i = 0; i < d[0].n; ++i, I += d[0].is, O += d[0].os)
81
0
         copy(d + 1, rnk - 1, vl, I, O, cpy2d);
82
0
     }
83
0
}
84
85
/* FIXME: should be more general */
86
static int transposep(const P *pln)
87
515
{
88
515
     int i;
89
90
559
     for (i = 0; i < pln->rnk - 2; ++i) 
91
44
    if (pln->d[i].is != pln->d[i].os)
92
0
         return 0;
93
     
94
515
     return (pln->d[i].n == pln->d[i+1].n &&
95
515
       pln->d[i].is == pln->d[i+1].os &&
96
515
       pln->d[i].os == pln->d[i+1].is);
97
515
}
98
99
/* generic higher-rank transpose routine, calls transpose2d() to do
100
 * the real work */
101
static void transpose(const iodim *d, int rnk, INT vl,
102
          R *I,
103
          transpose_func transpose2d)
104
0
{
105
0
     A(rnk >= 2);
106
0
     if (rnk == 2)
107
0
    transpose2d(I, d[0].n, d[0].is, d[0].os, vl);
108
0
     else {
109
0
    INT i;
110
0
    for (i = 0; i < d[0].n; ++i, I += d[0].is)
111
0
         transpose(d + 1, rnk - 1, vl, I, transpose2d);
112
0
     }
113
0
}
114
115
/**************************************************************/
116
/* rank 0,1,2, out of place, iterative */
117
static void apply_iter(const plan *ego_, R *I, R *O)
118
81
{
119
81
     const P *ego = (const P *) ego_;
120
121
81
     switch (ego->rnk) {
122
15
   case 0: 
123
15
        X(cpy1d)(I, O, ego->vl, 1, 1, 1);
124
15
        break;
125
66
   case 1:
126
66
        X(cpy1d)(I, O, 
127
66
           ego->d[0].n, ego->d[0].is, ego->d[0].os, 
128
66
           ego->vl);
129
66
        break;
130
0
   default:
131
0
        copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_ci));
132
0
        break;
133
81
     }
134
81
}
135
136
static int applicable_iter(const P *pln, const problem_rdft *p)
137
396
{
138
396
     UNUSED(pln);
139
396
     return (p->I != p->O);
140
396
}
141
142
/**************************************************************/
143
/* out of place, write contiguous output */
144
static void apply_cpy2dco(const plan *ego_, R *I, R *O)
145
0
{
146
0
     const P *ego = (const P *) ego_;
147
0
     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_co));
148
0
}
149
150
static int applicable_cpy2dco(const P *pln, const problem_rdft *p)
151
326
{
152
326
     int rnk = pln->rnk;
153
326
     return (1
154
326
       && p->I != p->O
155
326
       && rnk >= 2
156
157
       /* must not duplicate apply_iter */
158
326
       && (X(iabs)(pln->d[rnk - 2].is) <= X(iabs)(pln->d[rnk - 1].is)
159
11
     ||
160
11
     X(iabs)(pln->d[rnk - 2].os) <= X(iabs)(pln->d[rnk - 1].os))
161
326
    );
162
326
}
163
164
/**************************************************************/
165
/* out of place, tiled, no buffering */
166
static void apply_tiled(const plan *ego_, R *I, R *O)
167
0
{
168
0
     const P *ego = (const P *) ego_;
169
0
     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiled));
170
0
}
171
172
static int applicable_tiled(const P *pln, const problem_rdft *p)
173
652
{
174
652
     return (1
175
652
       && p->I != p->O
176
652
       && pln->rnk >= 2
177
178
       /* somewhat arbitrary */
179
652
       && X(compute_tilesz)(pln->vl, 1) > 4
180
652
    );
181
652
}
182
183
/**************************************************************/
184
/* out of place, tiled, with buffer */
185
static void apply_tiledbuf(const plan *ego_, R *I, R *O)
186
0
{
187
0
     const P *ego = (const P *) ego_;
188
0
     copy(ego->d, ego->rnk, ego->vl, I, O, X(cpy2d_tiledbuf));
189
0
}
190
191
1
#define applicable_tiledbuf applicable_tiled
192
193
/**************************************************************/
194
/* rank 0, out of place, using memcpy */
195
static void apply_memcpy(const plan *ego_, R *I, R *O)
196
0
{
197
0
     const P *ego = (const P *) ego_;
198
199
0
     A(ego->rnk == 0);
200
0
     memcpy(O, I, ego->vl * sizeof(R));
201
0
}
202
203
static int applicable_memcpy(const P *pln, const problem_rdft *p)
204
326
{
205
326
     return (1
206
326
       && p->I != p->O 
207
326
       && pln->rnk == 0
208
326
       && pln->vl > 2 /* do not bother memcpy-ing complex numbers */
209
326
       );
210
326
}
211
212
/**************************************************************/
213
/* rank > 0 vecloop, out of place, using memcpy (e.g. out-of-place
214
   transposes of vl-tuples ... for large vl it should be more
215
   efficient to use memcpy than the tiled stuff). */
216
217
static void memcpy_loop(size_t cpysz, int rnk, const iodim *d, R *I, R *O)
218
0
{
219
0
     INT i, n = d->n, is = d->is, os = d->os;
220
0
     if (rnk == 1)
221
0
    for (i = 0; i < n; ++i, I += is, O += os)
222
0
         memcpy(O, I, cpysz);
223
0
     else {
224
0
    --rnk; ++d;
225
0
    for (i = 0; i < n; ++i, I += is, O += os)
226
0
         memcpy_loop(cpysz, rnk, d, I, O);
227
0
     }
228
0
}
229
230
static void apply_memcpy_loop(const plan *ego_, R *I, R *O)
231
0
{
232
0
     const P *ego = (const P *) ego_;
233
0
     memcpy_loop(ego->vl * sizeof(R), ego->rnk, ego->d, I, O);
234
0
}
235
236
static int applicable_memcpy_loop(const P *pln, const problem_rdft *p)
237
326
{
238
326
     return (p->I != p->O
239
326
       && pln->rnk > 0
240
326
             && pln->vl > 2 /* do not bother memcpy-ing complex numbers */);
241
326
}
242
243
/**************************************************************/
244
/* rank 2, in place, square transpose, iterative */
245
static void apply_ip_sq(const plan *ego_, R *I, R *O)
246
0
{
247
0
     const P *ego = (const P *) ego_;
248
0
     UNUSED(O);
249
0
     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose));
250
0
}
251
252
253
static int applicable_ip_sq(const P *pln, const problem_rdft *p)
254
989
{
255
989
     return (1
256
989
       && p->I == p->O
257
989
       && pln->rnk >= 2
258
989
       && transposep(pln));
259
989
}
260
261
/**************************************************************/
262
/* rank 2, in place, square transpose, tiled */
263
static void apply_ip_sq_tiled(const plan *ego_, R *I, R *O)
264
0
{
265
0
     const P *ego = (const P *) ego_;
266
0
     UNUSED(O);
267
0
     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiled));
268
0
}
269
270
static int applicable_ip_sq_tiled(const P *pln, const problem_rdft *p)
271
663
{
272
663
     return (1
273
663
       && applicable_ip_sq(pln, p)
274
275
       /* somewhat arbitrary */
276
663
       && X(compute_tilesz)(pln->vl, 2) > 4
277
663
    );
278
663
}
279
280
/**************************************************************/
281
/* rank 2, in place, square transpose, tiled, buffered */
282
static void apply_ip_sq_tiledbuf(const plan *ego_, R *I, R *O)
283
0
{
284
0
     const P *ego = (const P *) ego_;
285
0
     UNUSED(O);
286
0
     transpose(ego->d, ego->rnk, ego->vl, I, X(transpose_tiledbuf));
287
0
}
288
289
1
#define applicable_ip_sq_tiledbuf applicable_ip_sq_tiled
290
291
/**************************************************************/
292
static int applicable(const S *ego, const problem *p_)
293
3.01k
{
294
3.01k
     const problem_rdft *p = (const problem_rdft *) p_;
295
3.01k
     P pln;
296
3.01k
     return (1
297
3.01k
       && p->sz->rnk == 0
298
3.01k
       && FINITE_RNK(p->vecsz->rnk)
299
3.01k
       && fill_iodim(&pln, p)
300
3.01k
       && ego->applicable(&pln, p)
301
3.01k
    );
302
3.01k
}
303
304
static void print(const plan *ego_, printer *p)
305
0
{
306
0
     const P *ego = (const P *) ego_;
307
0
     int i;
308
0
     p->print(p, "(%s/%D", ego->nam, ego->vl);
309
0
     for (i = 0; i < ego->rnk; ++i)
310
0
    p->print(p, "%v", ego->d[i].n);
311
0
     p->print(p, ")");
312
0
}
313
314
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
315
3.01k
{
316
3.01k
     const problem_rdft *p;
317
3.01k
     const S *ego = (const S *) ego_;
318
3.01k
     P *pln;
319
3.01k
     int retval;
320
321
3.01k
     static const plan_adt padt = {
322
3.01k
    X(rdft_solve), X(null_awake), print, X(plan_null_destroy)
323
3.01k
     };
324
325
3.01k
     UNUSED(plnr);
326
327
3.01k
     if (!applicable(ego, p_))
328
2.48k
          return (plan *) 0;
329
330
526
     p = (const problem_rdft *) p_;
331
526
     pln = MKPLAN_RDFT(P, &padt, ego->apply);
332
333
526
     retval = fill_iodim(pln, p);
334
526
     (void)retval; /* UNUSED unless DEBUG */
335
526
     A(retval);
336
526
     A(pln->vl > 0); /* because FINITE_RNK(p->vecsz->rnk) holds */
337
526
     pln->nam = ego->nam;
338
339
     /* X(tensor_sz)(p->vecsz) loads, X(tensor_sz)(p->vecsz) stores */
340
526
     X(ops_other)(2 * X(tensor_sz)(p->vecsz), &pln->super.super.ops);
341
526
     return &(pln->super.super);
342
3.01k
}
343
344
345
void X(rdft_rank0_register)(planner *p)
346
1
{
347
1
     unsigned i;
348
1
     static struct {
349
1
    rdftapply apply;
350
1
    int (*applicable)(const P *, const problem_rdft *);
351
1
    const char *nam;
352
1
     } tab[] = {
353
1
    { apply_memcpy,   applicable_memcpy,   "rdft-rank0-memcpy" },
354
1
    { apply_memcpy_loop,   applicable_memcpy_loop,  
355
1
      "rdft-rank0-memcpy-loop" },
356
1
    { apply_iter,     applicable_iter,     "rdft-rank0-iter-ci" },
357
1
    { apply_cpy2dco,  applicable_cpy2dco,  "rdft-rank0-iter-co" },
358
1
    { apply_tiled,    applicable_tiled,    "rdft-rank0-tiled" },
359
1
    { apply_tiledbuf, applicable_tiledbuf, "rdft-rank0-tiledbuf" },
360
1
    { apply_ip_sq,    applicable_ip_sq,    "rdft-rank0-ip-sq" },
361
1
    { 
362
1
         apply_ip_sq_tiled,
363
1
         applicable_ip_sq_tiled,
364
1
         "rdft-rank0-ip-sq-tiled" 
365
1
    },
366
1
    { 
367
1
         apply_ip_sq_tiledbuf,
368
1
         applicable_ip_sq_tiledbuf,
369
1
         "rdft-rank0-ip-sq-tiledbuf" 
370
1
    },
371
1
     };
372
373
10
     for (i = 0; i < sizeof(tab) / sizeof(tab[0]); ++i) {
374
9
    static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
375
9
    S *slv = MKSOLVER(S, &sadt);
376
9
    slv->apply = tab[i].apply;
377
9
    slv->applicable = tab[i].applicable;
378
9
    slv->nam = tab[i].nam;
379
9
    REGISTER_SOLVER(p, &(slv->super));
380
9
     }
381
1
}