/src/fftw3/rdft/scalar/r2cb/hb_9.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:54:02 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 96 FP additions, 88 FP multiplications, |
32 | | * (or, 24 additions, 16 multiplications, 72 fused multiply/add), |
33 | | * 53 stack variables, 10 constants, and 36 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP954188894, +0.954188894138671133499268364187245676532219158); |
40 | | DK(KP852868531, +0.852868531952443209628250963940074071936020296); |
41 | | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
42 | | DK(KP492403876, +0.492403876506104029683371512294761506835321626); |
43 | | DK(KP777861913, +0.777861913430206160028177977318626690410586096); |
44 | | DK(KP839099631, +0.839099631177280011763127298123181364687434283); |
45 | | DK(KP176326980, +0.176326980708464973471090386868618986121633062); |
46 | | DK(KP363970234, +0.363970234266202361351047882776834043890471784); |
47 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
48 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
49 | | { |
50 | | INT m; |
51 | | for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { |
52 | | E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, Tw, Tz, T1E, T1L, T1B, T1K, T14; |
53 | | E T1d, TX, T1c; |
54 | | { |
55 | | E T1, Th, T4, T1a, Tk, TP, TO, T19; |
56 | | T1 = cr[0]; |
57 | | Th = ci[WS(rs, 8)]; |
58 | | { |
59 | | E T2, T3, Ti, Tj; |
60 | | T2 = cr[WS(rs, 3)]; |
61 | | T3 = ci[WS(rs, 2)]; |
62 | | T4 = T2 + T3; |
63 | | T1a = T2 - T3; |
64 | | Ti = ci[WS(rs, 5)]; |
65 | | Tj = cr[WS(rs, 6)]; |
66 | | Tk = Ti - Tj; |
67 | | TP = Ti + Tj; |
68 | | } |
69 | | T5 = T1 + T4; |
70 | | Tl = Th + Tk; |
71 | | TO = FNMS(KP500000000, T4, T1); |
72 | | TQ = FNMS(KP866025403, TP, TO); |
73 | | T1y = FMA(KP866025403, TP, TO); |
74 | | T19 = FNMS(KP500000000, Tk, Th); |
75 | | T1b = FMA(KP866025403, T1a, T19); |
76 | | T1J = FNMS(KP866025403, T1a, T19); |
77 | | } |
78 | | { |
79 | | E T6, T9, TY, T12, Tm, Tp, TZ, T11, Tb, Te, TS, TU, Tr, Tu, TR; |
80 | | E TV; |
81 | | { |
82 | | E T7, T8, Tn, To; |
83 | | T6 = cr[WS(rs, 1)]; |
84 | | T7 = cr[WS(rs, 4)]; |
85 | | T8 = ci[WS(rs, 1)]; |
86 | | T9 = T7 + T8; |
87 | | TY = FNMS(KP500000000, T9, T6); |
88 | | T12 = T7 - T8; |
89 | | Tm = ci[WS(rs, 7)]; |
90 | | Tn = ci[WS(rs, 4)]; |
91 | | To = cr[WS(rs, 7)]; |
92 | | Tp = Tn - To; |
93 | | TZ = Tn + To; |
94 | | T11 = FMS(KP500000000, Tp, Tm); |
95 | | } |
96 | | { |
97 | | E Tc, Td, Ts, Tt; |
98 | | Tb = cr[WS(rs, 2)]; |
99 | | Tc = ci[WS(rs, 3)]; |
100 | | Td = ci[0]; |
101 | | Te = Tc + Td; |
102 | | TS = Td - Tc; |
103 | | TU = FNMS(KP500000000, Te, Tb); |
104 | | Tr = ci[WS(rs, 6)]; |
105 | | Ts = cr[WS(rs, 5)]; |
106 | | Tt = cr[WS(rs, 8)]; |
107 | | Tu = Ts + Tt; |
108 | | TR = FMA(KP500000000, Tu, Tr); |
109 | | TV = Ts - Tt; |
110 | | } |
111 | | { |
112 | | E Ta, Tf, T1z, T1A; |
113 | | Ta = T6 + T9; |
114 | | Tf = Tb + Te; |
115 | | Tg = Ta + Tf; |
116 | | TE = Ta - Tf; |
117 | | { |
118 | | E Tq, Tv, T1C, T1D; |
119 | | Tq = Tm + Tp; |
120 | | Tv = Tr - Tu; |
121 | | Tw = Tq + Tv; |
122 | | Tz = Tv - Tq; |
123 | | T1C = FNMS(KP866025403, TV, TU); |
124 | | T1D = FMA(KP866025403, TS, TR); |
125 | | T1E = FMA(KP363970234, T1D, T1C); |
126 | | T1L = FNMS(KP363970234, T1C, T1D); |
127 | | } |
128 | | T1z = FMA(KP866025403, T12, T11); |
129 | | T1A = FMA(KP866025403, TZ, TY); |
130 | | T1B = FMA(KP176326980, T1A, T1z); |
131 | | T1K = FNMS(KP176326980, T1z, T1A); |
132 | | { |
133 | | E T10, T13, TT, TW; |
134 | | T10 = FNMS(KP866025403, TZ, TY); |
135 | | T13 = FNMS(KP866025403, T12, T11); |
136 | | T14 = FMA(KP839099631, T13, T10); |
137 | | T1d = FNMS(KP839099631, T10, T13); |
138 | | TT = FNMS(KP866025403, TS, TR); |
139 | | TW = FMA(KP866025403, TV, TU); |
140 | | TX = FNMS(KP176326980, TW, TT); |
141 | | T1c = FMA(KP176326980, TT, TW); |
142 | | } |
143 | | } |
144 | | } |
145 | | cr[0] = T5 + Tg; |
146 | | ci[0] = Tl + Tw; |
147 | | { |
148 | | E TA, TI, TF, TL, Ty, TD; |
149 | | Ty = FNMS(KP500000000, Tg, T5); |
150 | | TA = FNMS(KP866025403, Tz, Ty); |
151 | | TI = FMA(KP866025403, Tz, Ty); |
152 | | TD = FNMS(KP500000000, Tw, Tl); |
153 | | TF = FNMS(KP866025403, TE, TD); |
154 | | TL = FMA(KP866025403, TE, TD); |
155 | | { |
156 | | E TB, TG, Tx, TC; |
157 | | Tx = W[10]; |
158 | | TB = Tx * TA; |
159 | | TG = Tx * TF; |
160 | | TC = W[11]; |
161 | | cr[WS(rs, 6)] = FNMS(TC, TF, TB); |
162 | | ci[WS(rs, 6)] = FMA(TC, TA, TG); |
163 | | } |
164 | | { |
165 | | E TJ, TM, TH, TK; |
166 | | TH = W[4]; |
167 | | TJ = TH * TI; |
168 | | TM = TH * TL; |
169 | | TK = W[5]; |
170 | | cr[WS(rs, 3)] = FNMS(TK, TL, TJ); |
171 | | ci[WS(rs, 3)] = FMA(TK, TI, TM); |
172 | | } |
173 | | } |
174 | | { |
175 | | E T16, T1s, T1k, T1f, T1v, T1p; |
176 | | { |
177 | | E T1j, T15, T1i, T1o, T1e, T1n; |
178 | | T1j = FMA(KP777861913, T1d, T1c); |
179 | | T15 = FNMS(KP777861913, T14, TX); |
180 | | T1i = FMA(KP492403876, T15, TQ); |
181 | | T16 = FNMS(KP984807753, T15, TQ); |
182 | | T1s = FMA(KP852868531, T1j, T1i); |
183 | | T1k = FNMS(KP852868531, T1j, T1i); |
184 | | T1o = FMA(KP777861913, T14, TX); |
185 | | T1e = FNMS(KP777861913, T1d, T1c); |
186 | | T1n = FNMS(KP492403876, T1e, T1b); |
187 | | T1f = FMA(KP984807753, T1e, T1b); |
188 | | T1v = FMA(KP852868531, T1o, T1n); |
189 | | T1p = FNMS(KP852868531, T1o, T1n); |
190 | | } |
191 | | { |
192 | | E TN, T17, T18, T1g; |
193 | | TN = W[0]; |
194 | | T17 = TN * T16; |
195 | | T18 = W[1]; |
196 | | T1g = T18 * T16; |
197 | | cr[WS(rs, 1)] = FNMS(T18, T1f, T17); |
198 | | ci[WS(rs, 1)] = FMA(TN, T1f, T1g); |
199 | | } |
200 | | { |
201 | | E T1t, T1w, T1r, T1u; |
202 | | T1r = W[6]; |
203 | | T1t = T1r * T1s; |
204 | | T1w = T1r * T1v; |
205 | | T1u = W[7]; |
206 | | cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t); |
207 | | ci[WS(rs, 4)] = FMA(T1u, T1s, T1w); |
208 | | } |
209 | | { |
210 | | E T1l, T1q, T1h, T1m; |
211 | | T1h = W[12]; |
212 | | T1l = T1h * T1k; |
213 | | T1q = T1h * T1p; |
214 | | T1m = W[13]; |
215 | | cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l); |
216 | | ci[WS(rs, 7)] = FMA(T1m, T1k, T1q); |
217 | | } |
218 | | } |
219 | | { |
220 | | E T1W, T1N, T1V, T1G, T20, T1S; |
221 | | T1W = FMA(KP954188894, T1E, T1B); |
222 | | { |
223 | | E T1M, T1R, T1F, T1Q; |
224 | | T1M = FNMS(KP954188894, T1L, T1K); |
225 | | T1N = FMA(KP984807753, T1M, T1J); |
226 | | T1V = FNMS(KP492403876, T1M, T1J); |
227 | | T1R = FMA(KP954188894, T1L, T1K); |
228 | | T1F = FNMS(KP954188894, T1E, T1B); |
229 | | T1Q = FNMS(KP492403876, T1F, T1y); |
230 | | T1G = FMA(KP984807753, T1F, T1y); |
231 | | T20 = FMA(KP852868531, T1R, T1Q); |
232 | | T1S = FNMS(KP852868531, T1R, T1Q); |
233 | | } |
234 | | { |
235 | | E T1H, T1O, T1x, T1I; |
236 | | T1x = W[2]; |
237 | | T1H = T1x * T1G; |
238 | | T1O = T1x * T1N; |
239 | | T1I = W[3]; |
240 | | cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H); |
241 | | ci[WS(rs, 2)] = FMA(T1I, T1G, T1O); |
242 | | } |
243 | | { |
244 | | E T23, T22, T24, T1Z, T21; |
245 | | T23 = FNMS(KP852868531, T1W, T1V); |
246 | | T22 = W[15]; |
247 | | T24 = T22 * T20; |
248 | | T1Z = W[14]; |
249 | | T21 = T1Z * T20; |
250 | | cr[WS(rs, 8)] = FNMS(T22, T23, T21); |
251 | | ci[WS(rs, 8)] = FMA(T1Z, T23, T24); |
252 | | } |
253 | | { |
254 | | E T1X, T1U, T1Y, T1P, T1T; |
255 | | T1X = FMA(KP852868531, T1W, T1V); |
256 | | T1U = W[9]; |
257 | | T1Y = T1U * T1S; |
258 | | T1P = W[8]; |
259 | | T1T = T1P * T1S; |
260 | | cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T); |
261 | | ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y); |
262 | | } |
263 | | } |
264 | | } |
265 | | } |
266 | | } |
267 | | |
268 | | static const tw_instr twinstr[] = { |
269 | | { TW_FULL, 1, 9 }, |
270 | | { TW_NEXT, 1, 0 } |
271 | | }; |
272 | | |
273 | | static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, { 24, 16, 72, 0 } }; |
274 | | |
275 | | void X(codelet_hb_9) (planner *p) { |
276 | | X(khc2hc_register) (p, hb_9, &desc); |
277 | | } |
278 | | #else |
279 | | |
280 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */ |
281 | | |
282 | | /* |
283 | | * This function contains 96 FP additions, 72 FP multiplications, |
284 | | * (or, 60 additions, 36 multiplications, 36 fused multiply/add), |
285 | | * 53 stack variables, 8 constants, and 36 memory accesses |
286 | | */ |
287 | | #include "rdft/scalar/hb.h" |
288 | | |
289 | | static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
290 | 0 | { |
291 | 0 | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
292 | 0 | DK(KP173648177, +0.173648177666930348851716626769314796000375677); |
293 | 0 | DK(KP342020143, +0.342020143325668733044099614682259580763083368); |
294 | 0 | DK(KP939692620, +0.939692620785908384054109277324731469936208134); |
295 | 0 | DK(KP642787609, +0.642787609686539326322643409907263432907559884); |
296 | 0 | DK(KP766044443, +0.766044443118978035202392650555416673935832457); |
297 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
298 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
299 | 0 | { |
300 | 0 | INT m; |
301 | 0 | for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) { |
302 | 0 | E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u; |
303 | 0 | E T1A, T1r, T1z, T10, T18; |
304 | 0 | { |
305 | 0 | E T1, Th, T4, T14, Tk, TL, TK, T15; |
306 | 0 | T1 = cr[0]; |
307 | 0 | Th = ci[WS(rs, 8)]; |
308 | 0 | { |
309 | 0 | E T2, T3, Ti, Tj; |
310 | 0 | T2 = cr[WS(rs, 3)]; |
311 | 0 | T3 = ci[WS(rs, 2)]; |
312 | 0 | T4 = T2 + T3; |
313 | 0 | T14 = KP866025403 * (T2 - T3); |
314 | 0 | Ti = ci[WS(rs, 5)]; |
315 | 0 | Tj = cr[WS(rs, 6)]; |
316 | 0 | Tk = Ti - Tj; |
317 | 0 | TL = KP866025403 * (Ti + Tj); |
318 | 0 | } |
319 | 0 | T5 = T1 + T4; |
320 | 0 | Tl = Th + Tk; |
321 | 0 | TK = FNMS(KP500000000, T4, T1); |
322 | 0 | TM = TK - TL; |
323 | 0 | T1o = TK + TL; |
324 | 0 | T15 = FNMS(KP500000000, Tk, Th); |
325 | 0 | T16 = T14 + T15; |
326 | 0 | T1y = T15 - T14; |
327 | 0 | } |
328 | 0 | { |
329 | 0 | E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV; |
330 | 0 | E TY; |
331 | 0 | { |
332 | 0 | E T7, T8, Tn, To; |
333 | 0 | T6 = cr[WS(rs, 1)]; |
334 | 0 | T7 = cr[WS(rs, 4)]; |
335 | 0 | T8 = ci[WS(rs, 1)]; |
336 | 0 | T9 = T7 + T8; |
337 | 0 | TN = FNMS(KP500000000, T9, T6); |
338 | 0 | TQ = KP866025403 * (T7 - T8); |
339 | 0 | Tm = ci[WS(rs, 7)]; |
340 | 0 | Tn = ci[WS(rs, 4)]; |
341 | 0 | To = cr[WS(rs, 7)]; |
342 | 0 | Tp = Tn - To; |
343 | 0 | TO = KP866025403 * (Tn + To); |
344 | 0 | TR = FNMS(KP500000000, Tp, Tm); |
345 | 0 | } |
346 | 0 | { |
347 | 0 | E Tc, Td, Ts, Tt; |
348 | 0 | Tb = cr[WS(rs, 2)]; |
349 | 0 | Tc = ci[WS(rs, 3)]; |
350 | 0 | Td = ci[0]; |
351 | 0 | Te = Tc + Td; |
352 | 0 | TU = FNMS(KP500000000, Te, Tb); |
353 | 0 | TX = KP866025403 * (Tc - Td); |
354 | 0 | Tr = ci[WS(rs, 6)]; |
355 | 0 | Ts = cr[WS(rs, 5)]; |
356 | 0 | Tt = cr[WS(rs, 8)]; |
357 | 0 | Tu = Ts + Tt; |
358 | 0 | TV = KP866025403 * (Ts - Tt); |
359 | 0 | TY = FMA(KP500000000, Tu, Tr); |
360 | 0 | } |
361 | 0 | { |
362 | 0 | E TP, TS, T1s, T1t; |
363 | 0 | Ta = T6 + T9; |
364 | 0 | Tf = Tb + Te; |
365 | 0 | Tg = Ta + Tf; |
366 | 0 | Tq = Tm + Tp; |
367 | 0 | Tv = Tr - Tu; |
368 | 0 | Tw = Tq + Tv; |
369 | 0 | TP = TN - TO; |
370 | 0 | TS = TQ + TR; |
371 | 0 | TT = FNMS(KP642787609, TS, KP766044443 * TP); |
372 | 0 | T17 = FMA(KP766044443, TS, KP642787609 * TP); |
373 | 0 | T1s = TU - TV; |
374 | 0 | T1t = TY - TX; |
375 | 0 | T1u = FMA(KP939692620, T1s, KP342020143 * T1t); |
376 | 0 | T1A = FNMS(KP939692620, T1t, KP342020143 * T1s); |
377 | 0 | { |
378 | 0 | E T1p, T1q, TW, TZ; |
379 | 0 | T1p = TN + TO; |
380 | 0 | T1q = TR - TQ; |
381 | 0 | T1r = FNMS(KP984807753, T1q, KP173648177 * T1p); |
382 | 0 | T1z = FMA(KP173648177, T1q, KP984807753 * T1p); |
383 | 0 | TW = TU + TV; |
384 | 0 | TZ = TX + TY; |
385 | 0 | T10 = FNMS(KP984807753, TZ, KP173648177 * TW); |
386 | 0 | T18 = FMA(KP984807753, TW, KP173648177 * TZ); |
387 | 0 | } |
388 | 0 | } |
389 | 0 | } |
390 | 0 | cr[0] = T5 + Tg; |
391 | 0 | ci[0] = Tl + Tw; |
392 | 0 | { |
393 | 0 | E TA, TG, TE, TI; |
394 | 0 | { |
395 | 0 | E Ty, Tz, TC, TD; |
396 | 0 | Ty = FNMS(KP500000000, Tg, T5); |
397 | 0 | Tz = KP866025403 * (Tv - Tq); |
398 | 0 | TA = Ty - Tz; |
399 | 0 | TG = Ty + Tz; |
400 | 0 | TC = FNMS(KP500000000, Tw, Tl); |
401 | 0 | TD = KP866025403 * (Ta - Tf); |
402 | 0 | TE = TC - TD; |
403 | 0 | TI = TD + TC; |
404 | 0 | } |
405 | 0 | { |
406 | 0 | E Tx, TB, TF, TH; |
407 | 0 | Tx = W[10]; |
408 | 0 | TB = W[11]; |
409 | 0 | cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA); |
410 | 0 | ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA); |
411 | 0 | TF = W[4]; |
412 | 0 | TH = W[5]; |
413 | 0 | cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG); |
414 | 0 | ci[WS(rs, 3)] = FMA(TF, TI, TH * TG); |
415 | 0 | } |
416 | 0 | } |
417 | 0 | { |
418 | 0 | E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13; |
419 | 0 | T1d = KP866025403 * (T18 - T17); |
420 | 0 | T1h = KP866025403 * (TT - T10); |
421 | 0 | T11 = TT + T10; |
422 | 0 | T12 = TM + T11; |
423 | 0 | T1c = FNMS(KP500000000, T11, TM); |
424 | 0 | T19 = T17 + T18; |
425 | 0 | T1a = T16 + T19; |
426 | 0 | T1g = FNMS(KP500000000, T19, T16); |
427 | 0 | TJ = W[0]; |
428 | 0 | T13 = W[1]; |
429 | 0 | cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12); |
430 | 0 | ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a); |
431 | 0 | { |
432 | 0 | E T1k, T1m, T1j, T1l; |
433 | 0 | T1k = T1c + T1d; |
434 | 0 | T1m = T1h + T1g; |
435 | 0 | T1j = W[6]; |
436 | 0 | T1l = W[7]; |
437 | 0 | cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k); |
438 | 0 | ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k); |
439 | 0 | } |
440 | 0 | { |
441 | 0 | E T1e, T1i, T1b, T1f; |
442 | 0 | T1e = T1c - T1d; |
443 | 0 | T1i = T1g - T1h; |
444 | 0 | T1b = W[12]; |
445 | 0 | T1f = W[13]; |
446 | 0 | cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e); |
447 | 0 | ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e); |
448 | 0 | } |
449 | 0 | } |
450 | 0 | { |
451 | 0 | E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x; |
452 | 0 | T1F = KP866025403 * (T1A - T1z); |
453 | 0 | T1J = KP866025403 * (T1r + T1u); |
454 | 0 | T1v = T1r - T1u; |
455 | 0 | T1w = T1o + T1v; |
456 | 0 | T1E = FNMS(KP500000000, T1v, T1o); |
457 | 0 | T1B = T1z + T1A; |
458 | 0 | T1C = T1y + T1B; |
459 | 0 | T1I = FNMS(KP500000000, T1B, T1y); |
460 | 0 | T1n = W[2]; |
461 | 0 | T1x = W[3]; |
462 | 0 | cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w); |
463 | 0 | ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w); |
464 | 0 | { |
465 | 0 | E T1M, T1O, T1L, T1N; |
466 | 0 | T1M = T1F + T1E; |
467 | 0 | T1O = T1I + T1J; |
468 | 0 | T1L = W[8]; |
469 | 0 | T1N = W[9]; |
470 | 0 | cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M); |
471 | 0 | ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O); |
472 | 0 | } |
473 | 0 | { |
474 | 0 | E T1G, T1K, T1D, T1H; |
475 | 0 | T1G = T1E - T1F; |
476 | 0 | T1K = T1I - T1J; |
477 | 0 | T1D = W[14]; |
478 | 0 | T1H = W[15]; |
479 | 0 | cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G); |
480 | 0 | ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K); |
481 | 0 | } |
482 | 0 | } |
483 | 0 | } |
484 | 0 | } |
485 | 0 | } |
486 | | |
487 | | static const tw_instr twinstr[] = { |
488 | | { TW_FULL, 1, 9 }, |
489 | | { TW_NEXT, 1, 0 } |
490 | | }; |
491 | | |
492 | | static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, { 60, 36, 36, 0 } }; |
493 | | |
494 | 1 | void X(codelet_hb_9) (planner *p) { |
495 | 1 | X(khc2hc_register) (p, hb_9, &desc); |
496 | 1 | } |
497 | | #endif |