Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2cb/hb_9.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:54:02 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 96 FP additions, 88 FP multiplications,
32
 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
33
 * 53 stack variables, 10 constants, and 36 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP954188894, +0.954188894138671133499268364187245676532219158);
40
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
41
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
42
     DK(KP492403876, +0.492403876506104029683371512294761506835321626);
43
     DK(KP777861913, +0.777861913430206160028177977318626690410586096);
44
     DK(KP839099631, +0.839099631177280011763127298123181364687434283);
45
     DK(KP176326980, +0.176326980708464973471090386868618986121633062);
46
     DK(KP363970234, +0.363970234266202361351047882776834043890471784);
47
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49
     {
50
    INT m;
51
    for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
52
         E T5, Tl, TQ, T1y, T1b, T1J, Tg, TE, Tw, Tz, T1E, T1L, T1B, T1K, T14;
53
         E T1d, TX, T1c;
54
         {
55
        E T1, Th, T4, T1a, Tk, TP, TO, T19;
56
        T1 = cr[0];
57
        Th = ci[WS(rs, 8)];
58
        {
59
       E T2, T3, Ti, Tj;
60
       T2 = cr[WS(rs, 3)];
61
       T3 = ci[WS(rs, 2)];
62
       T4 = T2 + T3;
63
       T1a = T2 - T3;
64
       Ti = ci[WS(rs, 5)];
65
       Tj = cr[WS(rs, 6)];
66
       Tk = Ti - Tj;
67
       TP = Ti + Tj;
68
        }
69
        T5 = T1 + T4;
70
        Tl = Th + Tk;
71
        TO = FNMS(KP500000000, T4, T1);
72
        TQ = FNMS(KP866025403, TP, TO);
73
        T1y = FMA(KP866025403, TP, TO);
74
        T19 = FNMS(KP500000000, Tk, Th);
75
        T1b = FMA(KP866025403, T1a, T19);
76
        T1J = FNMS(KP866025403, T1a, T19);
77
         }
78
         {
79
        E T6, T9, TY, T12, Tm, Tp, TZ, T11, Tb, Te, TS, TU, Tr, Tu, TR;
80
        E TV;
81
        {
82
       E T7, T8, Tn, To;
83
       T6 = cr[WS(rs, 1)];
84
       T7 = cr[WS(rs, 4)];
85
       T8 = ci[WS(rs, 1)];
86
       T9 = T7 + T8;
87
       TY = FNMS(KP500000000, T9, T6);
88
       T12 = T7 - T8;
89
       Tm = ci[WS(rs, 7)];
90
       Tn = ci[WS(rs, 4)];
91
       To = cr[WS(rs, 7)];
92
       Tp = Tn - To;
93
       TZ = Tn + To;
94
       T11 = FMS(KP500000000, Tp, Tm);
95
        }
96
        {
97
       E Tc, Td, Ts, Tt;
98
       Tb = cr[WS(rs, 2)];
99
       Tc = ci[WS(rs, 3)];
100
       Td = ci[0];
101
       Te = Tc + Td;
102
       TS = Td - Tc;
103
       TU = FNMS(KP500000000, Te, Tb);
104
       Tr = ci[WS(rs, 6)];
105
       Ts = cr[WS(rs, 5)];
106
       Tt = cr[WS(rs, 8)];
107
       Tu = Ts + Tt;
108
       TR = FMA(KP500000000, Tu, Tr);
109
       TV = Ts - Tt;
110
        }
111
        {
112
       E Ta, Tf, T1z, T1A;
113
       Ta = T6 + T9;
114
       Tf = Tb + Te;
115
       Tg = Ta + Tf;
116
       TE = Ta - Tf;
117
       {
118
            E Tq, Tv, T1C, T1D;
119
            Tq = Tm + Tp;
120
            Tv = Tr - Tu;
121
            Tw = Tq + Tv;
122
            Tz = Tv - Tq;
123
            T1C = FNMS(KP866025403, TV, TU);
124
            T1D = FMA(KP866025403, TS, TR);
125
            T1E = FMA(KP363970234, T1D, T1C);
126
            T1L = FNMS(KP363970234, T1C, T1D);
127
       }
128
       T1z = FMA(KP866025403, T12, T11);
129
       T1A = FMA(KP866025403, TZ, TY);
130
       T1B = FMA(KP176326980, T1A, T1z);
131
       T1K = FNMS(KP176326980, T1z, T1A);
132
       {
133
            E T10, T13, TT, TW;
134
            T10 = FNMS(KP866025403, TZ, TY);
135
            T13 = FNMS(KP866025403, T12, T11);
136
            T14 = FMA(KP839099631, T13, T10);
137
            T1d = FNMS(KP839099631, T10, T13);
138
            TT = FNMS(KP866025403, TS, TR);
139
            TW = FMA(KP866025403, TV, TU);
140
            TX = FNMS(KP176326980, TW, TT);
141
            T1c = FMA(KP176326980, TT, TW);
142
       }
143
        }
144
         }
145
         cr[0] = T5 + Tg;
146
         ci[0] = Tl + Tw;
147
         {
148
        E TA, TI, TF, TL, Ty, TD;
149
        Ty = FNMS(KP500000000, Tg, T5);
150
        TA = FNMS(KP866025403, Tz, Ty);
151
        TI = FMA(KP866025403, Tz, Ty);
152
        TD = FNMS(KP500000000, Tw, Tl);
153
        TF = FNMS(KP866025403, TE, TD);
154
        TL = FMA(KP866025403, TE, TD);
155
        {
156
       E TB, TG, Tx, TC;
157
       Tx = W[10];
158
       TB = Tx * TA;
159
       TG = Tx * TF;
160
       TC = W[11];
161
       cr[WS(rs, 6)] = FNMS(TC, TF, TB);
162
       ci[WS(rs, 6)] = FMA(TC, TA, TG);
163
        }
164
        {
165
       E TJ, TM, TH, TK;
166
       TH = W[4];
167
       TJ = TH * TI;
168
       TM = TH * TL;
169
       TK = W[5];
170
       cr[WS(rs, 3)] = FNMS(TK, TL, TJ);
171
       ci[WS(rs, 3)] = FMA(TK, TI, TM);
172
        }
173
         }
174
         {
175
        E T16, T1s, T1k, T1f, T1v, T1p;
176
        {
177
       E T1j, T15, T1i, T1o, T1e, T1n;
178
       T1j = FMA(KP777861913, T1d, T1c);
179
       T15 = FNMS(KP777861913, T14, TX);
180
       T1i = FMA(KP492403876, T15, TQ);
181
       T16 = FNMS(KP984807753, T15, TQ);
182
       T1s = FMA(KP852868531, T1j, T1i);
183
       T1k = FNMS(KP852868531, T1j, T1i);
184
       T1o = FMA(KP777861913, T14, TX);
185
       T1e = FNMS(KP777861913, T1d, T1c);
186
       T1n = FNMS(KP492403876, T1e, T1b);
187
       T1f = FMA(KP984807753, T1e, T1b);
188
       T1v = FMA(KP852868531, T1o, T1n);
189
       T1p = FNMS(KP852868531, T1o, T1n);
190
        }
191
        {
192
       E TN, T17, T18, T1g;
193
       TN = W[0];
194
       T17 = TN * T16;
195
       T18 = W[1];
196
       T1g = T18 * T16;
197
       cr[WS(rs, 1)] = FNMS(T18, T1f, T17);
198
       ci[WS(rs, 1)] = FMA(TN, T1f, T1g);
199
        }
200
        {
201
       E T1t, T1w, T1r, T1u;
202
       T1r = W[6];
203
       T1t = T1r * T1s;
204
       T1w = T1r * T1v;
205
       T1u = W[7];
206
       cr[WS(rs, 4)] = FNMS(T1u, T1v, T1t);
207
       ci[WS(rs, 4)] = FMA(T1u, T1s, T1w);
208
        }
209
        {
210
       E T1l, T1q, T1h, T1m;
211
       T1h = W[12];
212
       T1l = T1h * T1k;
213
       T1q = T1h * T1p;
214
       T1m = W[13];
215
       cr[WS(rs, 7)] = FNMS(T1m, T1p, T1l);
216
       ci[WS(rs, 7)] = FMA(T1m, T1k, T1q);
217
        }
218
         }
219
         {
220
        E T1W, T1N, T1V, T1G, T20, T1S;
221
        T1W = FMA(KP954188894, T1E, T1B);
222
        {
223
       E T1M, T1R, T1F, T1Q;
224
       T1M = FNMS(KP954188894, T1L, T1K);
225
       T1N = FMA(KP984807753, T1M, T1J);
226
       T1V = FNMS(KP492403876, T1M, T1J);
227
       T1R = FMA(KP954188894, T1L, T1K);
228
       T1F = FNMS(KP954188894, T1E, T1B);
229
       T1Q = FNMS(KP492403876, T1F, T1y);
230
       T1G = FMA(KP984807753, T1F, T1y);
231
       T20 = FMA(KP852868531, T1R, T1Q);
232
       T1S = FNMS(KP852868531, T1R, T1Q);
233
        }
234
        {
235
       E T1H, T1O, T1x, T1I;
236
       T1x = W[2];
237
       T1H = T1x * T1G;
238
       T1O = T1x * T1N;
239
       T1I = W[3];
240
       cr[WS(rs, 2)] = FNMS(T1I, T1N, T1H);
241
       ci[WS(rs, 2)] = FMA(T1I, T1G, T1O);
242
        }
243
        {
244
       E T23, T22, T24, T1Z, T21;
245
       T23 = FNMS(KP852868531, T1W, T1V);
246
       T22 = W[15];
247
       T24 = T22 * T20;
248
       T1Z = W[14];
249
       T21 = T1Z * T20;
250
       cr[WS(rs, 8)] = FNMS(T22, T23, T21);
251
       ci[WS(rs, 8)] = FMA(T1Z, T23, T24);
252
        }
253
        {
254
       E T1X, T1U, T1Y, T1P, T1T;
255
       T1X = FMA(KP852868531, T1W, T1V);
256
       T1U = W[9];
257
       T1Y = T1U * T1S;
258
       T1P = W[8];
259
       T1T = T1P * T1S;
260
       cr[WS(rs, 5)] = FNMS(T1U, T1X, T1T);
261
       ci[WS(rs, 5)] = FMA(T1P, T1X, T1Y);
262
        }
263
         }
264
    }
265
     }
266
}
267
268
static const tw_instr twinstr[] = {
269
     { TW_FULL, 1, 9 },
270
     { TW_NEXT, 1, 0 }
271
};
272
273
static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, { 24, 16, 72, 0 } };
274
275
void X(codelet_hb_9) (planner *p) {
276
     X(khc2hc_register) (p, hb_9, &desc);
277
}
278
#else
279
280
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -dif -name hb_9 -include rdft/scalar/hb.h */
281
282
/*
283
 * This function contains 96 FP additions, 72 FP multiplications,
284
 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
285
 * 53 stack variables, 8 constants, and 36 memory accesses
286
 */
287
#include "rdft/scalar/hb.h"
288
289
static void hb_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
290
0
{
291
0
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
292
0
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
293
0
     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
294
0
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
295
0
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
296
0
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
297
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
298
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
299
0
     {
300
0
    INT m;
301
0
    for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
302
0
         E T5, Tl, TM, T1o, T16, T1y, Ta, Tf, Tg, Tq, Tv, Tw, TT, T17, T1u;
303
0
         E T1A, T1r, T1z, T10, T18;
304
0
         {
305
0
        E T1, Th, T4, T14, Tk, TL, TK, T15;
306
0
        T1 = cr[0];
307
0
        Th = ci[WS(rs, 8)];
308
0
        {
309
0
       E T2, T3, Ti, Tj;
310
0
       T2 = cr[WS(rs, 3)];
311
0
       T3 = ci[WS(rs, 2)];
312
0
       T4 = T2 + T3;
313
0
       T14 = KP866025403 * (T2 - T3);
314
0
       Ti = ci[WS(rs, 5)];
315
0
       Tj = cr[WS(rs, 6)];
316
0
       Tk = Ti - Tj;
317
0
       TL = KP866025403 * (Ti + Tj);
318
0
        }
319
0
        T5 = T1 + T4;
320
0
        Tl = Th + Tk;
321
0
        TK = FNMS(KP500000000, T4, T1);
322
0
        TM = TK - TL;
323
0
        T1o = TK + TL;
324
0
        T15 = FNMS(KP500000000, Tk, Th);
325
0
        T16 = T14 + T15;
326
0
        T1y = T15 - T14;
327
0
         }
328
0
         {
329
0
        E T6, T9, TN, TQ, Tm, Tp, TO, TR, Tb, Te, TU, TX, Tr, Tu, TV;
330
0
        E TY;
331
0
        {
332
0
       E T7, T8, Tn, To;
333
0
       T6 = cr[WS(rs, 1)];
334
0
       T7 = cr[WS(rs, 4)];
335
0
       T8 = ci[WS(rs, 1)];
336
0
       T9 = T7 + T8;
337
0
       TN = FNMS(KP500000000, T9, T6);
338
0
       TQ = KP866025403 * (T7 - T8);
339
0
       Tm = ci[WS(rs, 7)];
340
0
       Tn = ci[WS(rs, 4)];
341
0
       To = cr[WS(rs, 7)];
342
0
       Tp = Tn - To;
343
0
       TO = KP866025403 * (Tn + To);
344
0
       TR = FNMS(KP500000000, Tp, Tm);
345
0
        }
346
0
        {
347
0
       E Tc, Td, Ts, Tt;
348
0
       Tb = cr[WS(rs, 2)];
349
0
       Tc = ci[WS(rs, 3)];
350
0
       Td = ci[0];
351
0
       Te = Tc + Td;
352
0
       TU = FNMS(KP500000000, Te, Tb);
353
0
       TX = KP866025403 * (Tc - Td);
354
0
       Tr = ci[WS(rs, 6)];
355
0
       Ts = cr[WS(rs, 5)];
356
0
       Tt = cr[WS(rs, 8)];
357
0
       Tu = Ts + Tt;
358
0
       TV = KP866025403 * (Ts - Tt);
359
0
       TY = FMA(KP500000000, Tu, Tr);
360
0
        }
361
0
        {
362
0
       E TP, TS, T1s, T1t;
363
0
       Ta = T6 + T9;
364
0
       Tf = Tb + Te;
365
0
       Tg = Ta + Tf;
366
0
       Tq = Tm + Tp;
367
0
       Tv = Tr - Tu;
368
0
       Tw = Tq + Tv;
369
0
       TP = TN - TO;
370
0
       TS = TQ + TR;
371
0
       TT = FNMS(KP642787609, TS, KP766044443 * TP);
372
0
       T17 = FMA(KP766044443, TS, KP642787609 * TP);
373
0
       T1s = TU - TV;
374
0
       T1t = TY - TX;
375
0
       T1u = FMA(KP939692620, T1s, KP342020143 * T1t);
376
0
       T1A = FNMS(KP939692620, T1t, KP342020143 * T1s);
377
0
       {
378
0
            E T1p, T1q, TW, TZ;
379
0
            T1p = TN + TO;
380
0
            T1q = TR - TQ;
381
0
            T1r = FNMS(KP984807753, T1q, KP173648177 * T1p);
382
0
            T1z = FMA(KP173648177, T1q, KP984807753 * T1p);
383
0
            TW = TU + TV;
384
0
            TZ = TX + TY;
385
0
            T10 = FNMS(KP984807753, TZ, KP173648177 * TW);
386
0
            T18 = FMA(KP984807753, TW, KP173648177 * TZ);
387
0
       }
388
0
        }
389
0
         }
390
0
         cr[0] = T5 + Tg;
391
0
         ci[0] = Tl + Tw;
392
0
         {
393
0
        E TA, TG, TE, TI;
394
0
        {
395
0
       E Ty, Tz, TC, TD;
396
0
       Ty = FNMS(KP500000000, Tg, T5);
397
0
       Tz = KP866025403 * (Tv - Tq);
398
0
       TA = Ty - Tz;
399
0
       TG = Ty + Tz;
400
0
       TC = FNMS(KP500000000, Tw, Tl);
401
0
       TD = KP866025403 * (Ta - Tf);
402
0
       TE = TC - TD;
403
0
       TI = TD + TC;
404
0
        }
405
0
        {
406
0
       E Tx, TB, TF, TH;
407
0
       Tx = W[10];
408
0
       TB = W[11];
409
0
       cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
410
0
       ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
411
0
       TF = W[4];
412
0
       TH = W[5];
413
0
       cr[WS(rs, 3)] = FNMS(TH, TI, TF * TG);
414
0
       ci[WS(rs, 3)] = FMA(TF, TI, TH * TG);
415
0
        }
416
0
         }
417
0
         {
418
0
        E T1d, T1h, T12, T1c, T1a, T1g, T11, T19, TJ, T13;
419
0
        T1d = KP866025403 * (T18 - T17);
420
0
        T1h = KP866025403 * (TT - T10);
421
0
        T11 = TT + T10;
422
0
        T12 = TM + T11;
423
0
        T1c = FNMS(KP500000000, T11, TM);
424
0
        T19 = T17 + T18;
425
0
        T1a = T16 + T19;
426
0
        T1g = FNMS(KP500000000, T19, T16);
427
0
        TJ = W[0];
428
0
        T13 = W[1];
429
0
        cr[WS(rs, 1)] = FNMS(T13, T1a, TJ * T12);
430
0
        ci[WS(rs, 1)] = FMA(T13, T12, TJ * T1a);
431
0
        {
432
0
       E T1k, T1m, T1j, T1l;
433
0
       T1k = T1c + T1d;
434
0
       T1m = T1h + T1g;
435
0
       T1j = W[6];
436
0
       T1l = W[7];
437
0
       cr[WS(rs, 4)] = FNMS(T1l, T1m, T1j * T1k);
438
0
       ci[WS(rs, 4)] = FMA(T1j, T1m, T1l * T1k);
439
0
        }
440
0
        {
441
0
       E T1e, T1i, T1b, T1f;
442
0
       T1e = T1c - T1d;
443
0
       T1i = T1g - T1h;
444
0
       T1b = W[12];
445
0
       T1f = W[13];
446
0
       cr[WS(rs, 7)] = FNMS(T1f, T1i, T1b * T1e);
447
0
       ci[WS(rs, 7)] = FMA(T1b, T1i, T1f * T1e);
448
0
        }
449
0
         }
450
0
         {
451
0
        E T1F, T1J, T1w, T1E, T1C, T1I, T1v, T1B, T1n, T1x;
452
0
        T1F = KP866025403 * (T1A - T1z);
453
0
        T1J = KP866025403 * (T1r + T1u);
454
0
        T1v = T1r - T1u;
455
0
        T1w = T1o + T1v;
456
0
        T1E = FNMS(KP500000000, T1v, T1o);
457
0
        T1B = T1z + T1A;
458
0
        T1C = T1y + T1B;
459
0
        T1I = FNMS(KP500000000, T1B, T1y);
460
0
        T1n = W[2];
461
0
        T1x = W[3];
462
0
        cr[WS(rs, 2)] = FNMS(T1x, T1C, T1n * T1w);
463
0
        ci[WS(rs, 2)] = FMA(T1n, T1C, T1x * T1w);
464
0
        {
465
0
       E T1M, T1O, T1L, T1N;
466
0
       T1M = T1F + T1E;
467
0
       T1O = T1I + T1J;
468
0
       T1L = W[8];
469
0
       T1N = W[9];
470
0
       cr[WS(rs, 5)] = FNMS(T1N, T1O, T1L * T1M);
471
0
       ci[WS(rs, 5)] = FMA(T1N, T1M, T1L * T1O);
472
0
        }
473
0
        {
474
0
       E T1G, T1K, T1D, T1H;
475
0
       T1G = T1E - T1F;
476
0
       T1K = T1I - T1J;
477
0
       T1D = W[14];
478
0
       T1H = W[15];
479
0
       cr[WS(rs, 8)] = FNMS(T1H, T1K, T1D * T1G);
480
0
       ci[WS(rs, 8)] = FMA(T1H, T1G, T1D * T1K);
481
0
        }
482
0
         }
483
0
    }
484
0
     }
485
0
}
486
487
static const tw_instr twinstr[] = {
488
     { TW_FULL, 1, 9 },
489
     { TW_NEXT, 1, 0 }
490
};
491
492
static const hc2hc_desc desc = { 9, "hb_9", twinstr, &GENUS, { 60, 36, 36, 0 } };
493
494
1
void X(codelet_hb_9) (planner *p) {
495
1
     X(khc2hc_register) (p, hb_9, &desc);
496
1
}
497
#endif