Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2cb/hc2cb2_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:54:24 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hc2cb2_16 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 196 FP additions, 134 FP multiplications,
32
 * (or, 104 additions, 42 multiplications, 92 fused multiply/add),
33
 * 93 stack variables, 3 constants, and 64 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cb2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
41
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
42
     {
43
    INT m;
44
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
45
         E Tv, Tw, T2z, T2C, TB, TF, Ty, Tz, T1V, TA, T2G, T3Q, T3C, T3g, T3L;
46
         E T30, T3m, T3z, T3w, T3s, T1X, T1Y, T2u, T2c, T2p, TE, TG, T1G, T1o, T1D;
47
         {
48
        E T3f, T3l, T2F, T3r, T2Z, T3v, TD, Tx;
49
        Tv = W[0];
50
        Tw = W[2];
51
        Tx = Tv * Tw;
52
        T2z = W[6];
53
        T3f = Tv * T2z;
54
        T2C = W[7];
55
        T3l = Tv * T2C;
56
        TB = W[4];
57
        T2F = Tv * TB;
58
        T3r = Tw * TB;
59
        TF = W[5];
60
        T2Z = Tv * TF;
61
        T3v = Tw * TF;
62
        Ty = W[1];
63
        Tz = W[3];
64
        TD = Tv * Tz;
65
        T1V = FMA(Ty, Tz, Tx);
66
        TA = FNMS(Ty, Tz, Tx);
67
        T2G = FNMS(Ty, TF, T2F);
68
        T3Q = FMA(Tz, TB, T3v);
69
        T3C = FNMS(Ty, TB, T2Z);
70
        T3g = FMA(Ty, T2C, T3f);
71
        T3L = FNMS(Tz, TF, T3r);
72
        T30 = FMA(Ty, TB, T2Z);
73
        T3m = FNMS(Ty, T2z, T3l);
74
        T3z = FMA(Ty, TF, T2F);
75
        T3w = FNMS(Tz, TB, T3v);
76
        T3s = FMA(Tz, TF, T3r);
77
        {
78
       E T1W, T2b, TC, T1n;
79
       T1W = T1V * TB;
80
       T2b = T1V * TF;
81
       T1X = FNMS(Ty, Tw, TD);
82
       T1Y = FNMS(T1X, TF, T1W);
83
       T2u = FNMS(T1X, TB, T2b);
84
       T2c = FMA(T1X, TB, T2b);
85
       T2p = FMA(T1X, TF, T1W);
86
       TC = TA * TB;
87
       T1n = TA * TF;
88
       TE = FMA(Ty, Tw, TD);
89
       TG = FNMS(TE, TF, TC);
90
       T1G = FNMS(TE, TB, T1n);
91
       T1o = FMA(TE, TB, T1n);
92
       T1D = FMA(TE, TF, TC);
93
        }
94
         }
95
         {
96
        E TL, T1Z, T2d, T1t, T31, T34, T3n, T3D, T3E, T3R, T1w, T20, Tf, T3M, T2L;
97
        E T3h, TW, T2e, T3G, T3H, T3N, T2Q, T36, T2V, T37, Tu, T3S, T18, T1z, T24;
98
        E T2g, T27, T2h, T1j, T1y;
99
        {
100
       E T3, TH, T1s, T32, T6, T1p, TK, T33, Ta, TM, TP, T2J, Td, TR, TU;
101
       E T2I;
102
       {
103
            E T1, T2, T1q, T1r;
104
            T1 = Rp[0];
105
            T2 = Rm[WS(rs, 7)];
106
            T3 = T1 + T2;
107
            TH = T1 - T2;
108
            T1q = Ip[0];
109
            T1r = Im[WS(rs, 7)];
110
            T1s = T1q + T1r;
111
            T32 = T1q - T1r;
112
       }
113
       {
114
            E T4, T5, TI, TJ;
115
            T4 = Rp[WS(rs, 4)];
116
            T5 = Rm[WS(rs, 3)];
117
            T6 = T4 + T5;
118
            T1p = T4 - T5;
119
            TI = Ip[WS(rs, 4)];
120
            TJ = Im[WS(rs, 3)];
121
            TK = TI + TJ;
122
            T33 = TI - TJ;
123
       }
124
       {
125
            E T8, T9, TN, TO;
126
            T8 = Rp[WS(rs, 2)];
127
            T9 = Rm[WS(rs, 5)];
128
            Ta = T8 + T9;
129
            TM = T8 - T9;
130
            TN = Ip[WS(rs, 2)];
131
            TO = Im[WS(rs, 5)];
132
            TP = TN + TO;
133
            T2J = TN - TO;
134
       }
135
       {
136
            E Tb, Tc, TS, TT;
137
            Tb = Rm[WS(rs, 1)];
138
            Tc = Rp[WS(rs, 6)];
139
            Td = Tb + Tc;
140
            TR = Tb - Tc;
141
            TS = Ip[WS(rs, 6)];
142
            TT = Im[WS(rs, 1)];
143
            TU = TS + TT;
144
            T2I = TS - TT;
145
       }
146
       TL = TH - TK;
147
       T1Z = TH + TK;
148
       T2d = T1s - T1p;
149
       T1t = T1p + T1s;
150
       T31 = Ta - Td;
151
       T34 = T32 - T33;
152
       T3n = T34 - T31;
153
       {
154
            E T1u, T1v, T7, Te;
155
            T3D = T32 + T33;
156
            T3E = T2J + T2I;
157
            T3R = T3D - T3E;
158
            T1u = TM + TP;
159
            T1v = TR + TU;
160
            T1w = T1u - T1v;
161
            T20 = T1u + T1v;
162
            T7 = T3 + T6;
163
            Te = Ta + Td;
164
            Tf = T7 + Te;
165
            T3M = T7 - Te;
166
            {
167
           E T2H, T2K, TQ, TV;
168
           T2H = T3 - T6;
169
           T2K = T2I - T2J;
170
           T2L = T2H + T2K;
171
           T3h = T2H - T2K;
172
           TQ = TM - TP;
173
           TV = TR - TU;
174
           TW = TQ + TV;
175
           T2e = TQ - TV;
176
            }
177
       }
178
        }
179
        {
180
       E Ti, T1e, T1c, T2N, Tl, T19, T1h, T2O, Tp, T13, T11, T2S, Ts, TY, T16;
181
       E T2T, T2M, T2P;
182
       {
183
            E Tg, Th, T1a, T1b;
184
            Tg = Rp[WS(rs, 1)];
185
            Th = Rm[WS(rs, 6)];
186
            Ti = Tg + Th;
187
            T1e = Tg - Th;
188
            T1a = Ip[WS(rs, 1)];
189
            T1b = Im[WS(rs, 6)];
190
            T1c = T1a + T1b;
191
            T2N = T1a - T1b;
192
       }
193
       {
194
            E Tj, Tk, T1f, T1g;
195
            Tj = Rp[WS(rs, 5)];
196
            Tk = Rm[WS(rs, 2)];
197
            Tl = Tj + Tk;
198
            T19 = Tj - Tk;
199
            T1f = Ip[WS(rs, 5)];
200
            T1g = Im[WS(rs, 2)];
201
            T1h = T1f + T1g;
202
            T2O = T1f - T1g;
203
       }
204
       {
205
            E Tn, To, TZ, T10;
206
            Tn = Rm[0];
207
            To = Rp[WS(rs, 7)];
208
            Tp = Tn + To;
209
            T13 = Tn - To;
210
            TZ = Ip[WS(rs, 7)];
211
            T10 = Im[0];
212
            T11 = TZ + T10;
213
            T2S = TZ - T10;
214
       }
215
       {
216
            E Tq, Tr, T14, T15;
217
            Tq = Rp[WS(rs, 3)];
218
            Tr = Rm[WS(rs, 4)];
219
            Ts = Tq + Tr;
220
            TY = Tq - Tr;
221
            T14 = Ip[WS(rs, 3)];
222
            T15 = Im[WS(rs, 4)];
223
            T16 = T14 + T15;
224
            T2T = T14 - T15;
225
       }
226
       T3G = T2N + T2O;
227
       T3H = T2S + T2T;
228
       T3N = T3H - T3G;
229
       T2M = Ti - Tl;
230
       T2P = T2N - T2O;
231
       T2Q = T2M - T2P;
232
       T36 = T2M + T2P;
233
       {
234
            E T2R, T2U, Tm, Tt;
235
            T2R = Tp - Ts;
236
            T2U = T2S - T2T;
237
            T2V = T2R + T2U;
238
            T37 = T2U - T2R;
239
            Tm = Ti + Tl;
240
            Tt = Tp + Ts;
241
            Tu = Tm + Tt;
242
            T3S = Tm - Tt;
243
       }
244
       {
245
            E T12, T17, T22, T23;
246
            T12 = TY - T11;
247
            T17 = T13 - T16;
248
            T18 = FNMS(KP414213562, T17, T12);
249
            T1z = FMA(KP414213562, T12, T17);
250
            T22 = T1c - T19;
251
            T23 = T1e + T1h;
252
            T24 = FNMS(KP414213562, T23, T22);
253
            T2g = FMA(KP414213562, T22, T23);
254
       }
255
       {
256
            E T25, T26, T1d, T1i;
257
            T25 = TY + T11;
258
            T26 = T13 + T16;
259
            T27 = FNMS(KP414213562, T26, T25);
260
            T2h = FMA(KP414213562, T25, T26);
261
            T1d = T19 + T1c;
262
            T1i = T1e - T1h;
263
            T1j = FMA(KP414213562, T1i, T1d);
264
            T1y = FNMS(KP414213562, T1d, T1i);
265
       }
266
        }
267
        Rp[0] = Tf + Tu;
268
        {
269
       E T3B, T3K, T3F, T3I, T3J, T3A;
270
       T3A = Tf - Tu;
271
       T3B = T3z * T3A;
272
       T3K = T3C * T3A;
273
       T3F = T3D + T3E;
274
       T3I = T3G + T3H;
275
       T3J = T3F - T3I;
276
       Rm[0] = T3F + T3I;
277
       Rm[WS(rs, 4)] = FMA(T3z, T3J, T3K);
278
       Rp[WS(rs, 4)] = FNMS(T3C, T3J, T3B);
279
        }
280
        {
281
       E T3O, T3P, T3T, T3U;
282
       T3O = T3M - T3N;
283
       T3P = T3L * T3O;
284
       T3T = T3R - T3S;
285
       T3U = T3L * T3T;
286
       Rp[WS(rs, 6)] = FNMS(T3Q, T3T, T3P);
287
       Rm[WS(rs, 6)] = FMA(T3Q, T3O, T3U);
288
        }
289
        {
290
       E T3V, T3W, T3X, T3Y;
291
       T3V = T3M + T3N;
292
       T3W = TA * T3V;
293
       T3X = T3S + T3R;
294
       T3Y = TA * T3X;
295
       Rp[WS(rs, 2)] = FNMS(TE, T3X, T3W);
296
       Rm[WS(rs, 2)] = FMA(TE, T3V, T3Y);
297
        }
298
        {
299
       E T3j, T3t, T3p, T3x, T3i, T3o;
300
       T3i = T37 - T36;
301
       T3j = FNMS(KP707106781, T3i, T3h);
302
       T3t = FMA(KP707106781, T3i, T3h);
303
       T3o = T2Q - T2V;
304
       T3p = FNMS(KP707106781, T3o, T3n);
305
       T3x = FMA(KP707106781, T3o, T3n);
306
       {
307
            E T3k, T3q, T3u, T3y;
308
            T3k = T3g * T3j;
309
            Rp[WS(rs, 7)] = FNMS(T3m, T3p, T3k);
310
            T3q = T3g * T3p;
311
            Rm[WS(rs, 7)] = FMA(T3m, T3j, T3q);
312
            T3u = T3s * T3t;
313
            Rp[WS(rs, 3)] = FNMS(T3w, T3x, T3u);
314
            T3y = T3s * T3x;
315
            Rm[WS(rs, 3)] = FMA(T3w, T3t, T3y);
316
       }
317
        }
318
        {
319
       E T2X, T3b, T39, T3d, T2W, T35, T38;
320
       T2W = T2Q + T2V;
321
       T2X = FNMS(KP707106781, T2W, T2L);
322
       T3b = FMA(KP707106781, T2W, T2L);
323
       T35 = T31 + T34;
324
       T38 = T36 + T37;
325
       T39 = FNMS(KP707106781, T38, T35);
326
       T3d = FMA(KP707106781, T38, T35);
327
       {
328
            E T2Y, T3a, T3c, T3e;
329
            T2Y = T2G * T2X;
330
            Rp[WS(rs, 5)] = FNMS(T30, T39, T2Y);
331
            T3a = T30 * T2X;
332
            Rm[WS(rs, 5)] = FMA(T2G, T39, T3a);
333
            T3c = T1V * T3b;
334
            Rp[WS(rs, 1)] = FNMS(T1X, T3d, T3c);
335
            T3e = T1X * T3b;
336
            Rm[WS(rs, 1)] = FMA(T1V, T3d, T3e);
337
       }
338
        }
339
        {
340
       E T29, T2l, T2j, T2n;
341
       {
342
            E T21, T28, T2f, T2i;
343
            T21 = FNMS(KP707106781, T20, T1Z);
344
            T28 = T24 + T27;
345
            T29 = FMA(KP923879532, T28, T21);
346
            T2l = FNMS(KP923879532, T28, T21);
347
            T2f = FMA(KP707106781, T2e, T2d);
348
            T2i = T2g - T2h;
349
            T2j = FNMS(KP923879532, T2i, T2f);
350
            T2n = FMA(KP923879532, T2i, T2f);
351
       }
352
       {
353
            E T2a, T2k, T2m, T2o;
354
            T2a = T1Y * T29;
355
            Ip[WS(rs, 5)] = FNMS(T2c, T2j, T2a);
356
            T2k = T2c * T29;
357
            Im[WS(rs, 5)] = FMA(T1Y, T2j, T2k);
358
            T2m = Tw * T2l;
359
            Ip[WS(rs, 1)] = FNMS(Tz, T2n, T2m);
360
            T2o = Tz * T2l;
361
            Im[WS(rs, 1)] = FMA(Tw, T2n, T2o);
362
       }
363
        }
364
        {
365
       E T1l, T1E, T1B, T1H;
366
       {
367
            E TX, T1k, T1x, T1A;
368
            TX = FNMS(KP707106781, TW, TL);
369
            T1k = T18 - T1j;
370
            T1l = FNMS(KP923879532, T1k, TX);
371
            T1E = FMA(KP923879532, T1k, TX);
372
            T1x = FNMS(KP707106781, T1w, T1t);
373
            T1A = T1y - T1z;
374
            T1B = FNMS(KP923879532, T1A, T1x);
375
            T1H = FMA(KP923879532, T1A, T1x);
376
       }
377
       {
378
            E T1m, T1C, T1F, T1I;
379
            T1m = TG * T1l;
380
            Ip[WS(rs, 6)] = FNMS(T1o, T1B, T1m);
381
            T1C = T1o * T1l;
382
            Im[WS(rs, 6)] = FMA(TG, T1B, T1C);
383
            T1F = T1D * T1E;
384
            Ip[WS(rs, 2)] = FNMS(T1G, T1H, T1F);
385
            T1I = T1G * T1E;
386
            Im[WS(rs, 2)] = FMA(T1D, T1H, T1I);
387
       }
388
        }
389
        {
390
       E T2s, T2A, T2x, T2D;
391
       {
392
            E T2q, T2r, T2v, T2w;
393
            T2q = FMA(KP707106781, T20, T1Z);
394
            T2r = T2g + T2h;
395
            T2s = FNMS(KP923879532, T2r, T2q);
396
            T2A = FMA(KP923879532, T2r, T2q);
397
            T2v = FNMS(KP707106781, T2e, T2d);
398
            T2w = T27 - T24;
399
            T2x = FMA(KP923879532, T2w, T2v);
400
            T2D = FNMS(KP923879532, T2w, T2v);
401
       }
402
       {
403
            E T2t, T2y, T2B, T2E;
404
            T2t = T2p * T2s;
405
            Ip[WS(rs, 3)] = FNMS(T2u, T2x, T2t);
406
            T2y = T2p * T2x;
407
            Im[WS(rs, 3)] = FMA(T2u, T2s, T2y);
408
            T2B = T2z * T2A;
409
            Ip[WS(rs, 7)] = FNMS(T2C, T2D, T2B);
410
            T2E = T2z * T2D;
411
            Im[WS(rs, 7)] = FMA(T2C, T2A, T2E);
412
       }
413
        }
414
        {
415
       E T1L, T1R, T1P, T1T;
416
       {
417
            E T1J, T1K, T1N, T1O;
418
            T1J = FMA(KP707106781, TW, TL);
419
            T1K = T1y + T1z;
420
            T1L = FNMS(KP923879532, T1K, T1J);
421
            T1R = FMA(KP923879532, T1K, T1J);
422
            T1N = FMA(KP707106781, T1w, T1t);
423
            T1O = T1j + T18;
424
            T1P = FNMS(KP923879532, T1O, T1N);
425
            T1T = FMA(KP923879532, T1O, T1N);
426
       }
427
       {
428
            E T1M, T1Q, T1S, T1U;
429
            T1M = TB * T1L;
430
            Ip[WS(rs, 4)] = FNMS(TF, T1P, T1M);
431
            T1Q = TB * T1P;
432
            Im[WS(rs, 4)] = FMA(TF, T1L, T1Q);
433
            T1S = Tv * T1R;
434
            Ip[0] = FNMS(Ty, T1T, T1S);
435
            T1U = Tv * T1T;
436
            Im[0] = FMA(Ty, T1R, T1U);
437
       }
438
        }
439
         }
440
    }
441
     }
442
}
443
444
static const tw_instr twinstr[] = {
445
     { TW_CEXP, 1, 1 },
446
     { TW_CEXP, 1, 3 },
447
     { TW_CEXP, 1, 9 },
448
     { TW_CEXP, 1, 15 },
449
     { TW_NEXT, 1, 0 }
450
};
451
452
static const hc2c_desc desc = { 16, "hc2cb2_16", twinstr, &GENUS, { 104, 42, 92, 0 } };
453
454
void X(codelet_hc2cb2_16) (planner *p) {
455
     X(khc2c_register) (p, hc2cb2_16, &desc, HC2C_VIA_RDFT);
456
}
457
#else
458
459
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 16 -dif -name hc2cb2_16 -include rdft/scalar/hc2cb.h */
460
461
/*
462
 * This function contains 196 FP additions, 108 FP multiplications,
463
 * (or, 156 additions, 68 multiplications, 40 fused multiply/add),
464
 * 80 stack variables, 3 constants, and 64 memory accesses
465
 */
466
#include "rdft/scalar/hc2cb.h"
467
468
static void hc2cb2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
469
0
{
470
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
471
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
472
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
473
0
     {
474
0
    INT m;
475
0
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
476
0
         E Tv, Ty, T1l, T1n, T1p, T1t, T27, T25, Tz, Tw, TB, T21, T1P, T1H, T1X;
477
0
         E T17, T1L, T1N, T1v, T1w, T1x, T1B, T2F, T2T, T2b, T2R, T3j, T3x, T35, T3t;
478
0
         {
479
0
        E TA, T1J, T15, T1G, Tx, T1K, T16, T1F;
480
0
        {
481
0
       E T1m, T1s, T1o, T1r;
482
0
       Tv = W[0];
483
0
       Ty = W[1];
484
0
       T1l = W[2];
485
0
       T1n = W[3];
486
0
       T1m = Tv * T1l;
487
0
       T1s = Ty * T1l;
488
0
       T1o = Ty * T1n;
489
0
       T1r = Tv * T1n;
490
0
       T1p = T1m + T1o;
491
0
       T1t = T1r - T1s;
492
0
       T27 = T1r + T1s;
493
0
       T25 = T1m - T1o;
494
0
       Tz = W[5];
495
0
       TA = Ty * Tz;
496
0
       T1J = T1l * Tz;
497
0
       T15 = Tv * Tz;
498
0
       T1G = T1n * Tz;
499
0
       Tw = W[4];
500
0
       Tx = Tv * Tw;
501
0
       T1K = T1n * Tw;
502
0
       T16 = Ty * Tw;
503
0
       T1F = T1l * Tw;
504
0
        }
505
0
        TB = Tx - TA;
506
0
        T21 = T1J + T1K;
507
0
        T1P = T15 - T16;
508
0
        T1H = T1F + T1G;
509
0
        T1X = T1F - T1G;
510
0
        T17 = T15 + T16;
511
0
        T1L = T1J - T1K;
512
0
        T1N = Tx + TA;
513
0
        T1v = W[6];
514
0
        T1w = W[7];
515
0
        T1x = FMA(Tv, T1v, Ty * T1w);
516
0
        T1B = FNMS(Ty, T1v, Tv * T1w);
517
0
        {
518
0
       E T2D, T2E, T29, T2a;
519
0
       T2D = T25 * Tz;
520
0
       T2E = T27 * Tw;
521
0
       T2F = T2D + T2E;
522
0
       T2T = T2D - T2E;
523
0
       T29 = T25 * Tw;
524
0
       T2a = T27 * Tz;
525
0
       T2b = T29 - T2a;
526
0
       T2R = T29 + T2a;
527
0
        }
528
0
        {
529
0
       E T3h, T3i, T33, T34;
530
0
       T3h = T1p * Tz;
531
0
       T3i = T1t * Tw;
532
0
       T3j = T3h + T3i;
533
0
       T3x = T3h - T3i;
534
0
       T33 = T1p * Tw;
535
0
       T34 = T1t * Tz;
536
0
       T35 = T33 - T34;
537
0
       T3t = T33 + T34;
538
0
        }
539
0
         }
540
0
         {
541
0
        E T7, T36, T3k, TC, T1f, T2e, T2I, T1Q, Te, TJ, T1R, T18, T2L, T37, T2l;
542
0
        E T3l, Tm, T1T, TT, T1h, T2A, T2N, T3b, T3n, Tt, T1U, T12, T1i, T2t, T2O;
543
0
        E T3e, T3o;
544
0
        {
545
0
       E T3, T2c, T1b, T2H, T6, T2G, T1e, T2d;
546
0
       {
547
0
            E T1, T2, T19, T1a;
548
0
            T1 = Rp[0];
549
0
            T2 = Rm[WS(rs, 7)];
550
0
            T3 = T1 + T2;
551
0
            T2c = T1 - T2;
552
0
            T19 = Ip[0];
553
0
            T1a = Im[WS(rs, 7)];
554
0
            T1b = T19 - T1a;
555
0
            T2H = T19 + T1a;
556
0
       }
557
0
       {
558
0
            E T4, T5, T1c, T1d;
559
0
            T4 = Rp[WS(rs, 4)];
560
0
            T5 = Rm[WS(rs, 3)];
561
0
            T6 = T4 + T5;
562
0
            T2G = T4 - T5;
563
0
            T1c = Ip[WS(rs, 4)];
564
0
            T1d = Im[WS(rs, 3)];
565
0
            T1e = T1c - T1d;
566
0
            T2d = T1c + T1d;
567
0
       }
568
0
       T7 = T3 + T6;
569
0
       T36 = T2c + T2d;
570
0
       T3k = T2H - T2G;
571
0
       TC = T3 - T6;
572
0
       T1f = T1b - T1e;
573
0
       T2e = T2c - T2d;
574
0
       T2I = T2G + T2H;
575
0
       T1Q = T1b + T1e;
576
0
        }
577
0
        {
578
0
       E Ta, T2f, TI, T2g, Td, T2i, TF, T2j;
579
0
       {
580
0
            E T8, T9, TG, TH;
581
0
            T8 = Rp[WS(rs, 2)];
582
0
            T9 = Rm[WS(rs, 5)];
583
0
            Ta = T8 + T9;
584
0
            T2f = T8 - T9;
585
0
            TG = Ip[WS(rs, 2)];
586
0
            TH = Im[WS(rs, 5)];
587
0
            TI = TG - TH;
588
0
            T2g = TG + TH;
589
0
       }
590
0
       {
591
0
            E Tb, Tc, TD, TE;
592
0
            Tb = Rm[WS(rs, 1)];
593
0
            Tc = Rp[WS(rs, 6)];
594
0
            Td = Tb + Tc;
595
0
            T2i = Tb - Tc;
596
0
            TD = Ip[WS(rs, 6)];
597
0
            TE = Im[WS(rs, 1)];
598
0
            TF = TD - TE;
599
0
            T2j = TD + TE;
600
0
       }
601
0
       Te = Ta + Td;
602
0
       TJ = TF - TI;
603
0
       T1R = TI + TF;
604
0
       T18 = Ta - Td;
605
0
       {
606
0
            E T2J, T2K, T2h, T2k;
607
0
            T2J = T2f + T2g;
608
0
            T2K = T2i + T2j;
609
0
            T2L = KP707106781 * (T2J - T2K);
610
0
            T37 = KP707106781 * (T2J + T2K);
611
0
            T2h = T2f - T2g;
612
0
            T2k = T2i - T2j;
613
0
            T2l = KP707106781 * (T2h + T2k);
614
0
            T3l = KP707106781 * (T2h - T2k);
615
0
       }
616
0
        }
617
0
        {
618
0
       E Ti, T2x, TO, T2v, Tl, T2u, TR, T2y, TL, TS;
619
0
       {
620
0
            E Tg, Th, TM, TN;
621
0
            Tg = Rp[WS(rs, 1)];
622
0
            Th = Rm[WS(rs, 6)];
623
0
            Ti = Tg + Th;
624
0
            T2x = Tg - Th;
625
0
            TM = Ip[WS(rs, 1)];
626
0
            TN = Im[WS(rs, 6)];
627
0
            TO = TM - TN;
628
0
            T2v = TM + TN;
629
0
       }
630
0
       {
631
0
            E Tj, Tk, TP, TQ;
632
0
            Tj = Rp[WS(rs, 5)];
633
0
            Tk = Rm[WS(rs, 2)];
634
0
            Tl = Tj + Tk;
635
0
            T2u = Tj - Tk;
636
0
            TP = Ip[WS(rs, 5)];
637
0
            TQ = Im[WS(rs, 2)];
638
0
            TR = TP - TQ;
639
0
            T2y = TP + TQ;
640
0
       }
641
0
       Tm = Ti + Tl;
642
0
       T1T = TO + TR;
643
0
       TL = Ti - Tl;
644
0
       TS = TO - TR;
645
0
       TT = TL - TS;
646
0
       T1h = TL + TS;
647
0
       {
648
0
            E T2w, T2z, T39, T3a;
649
0
            T2w = T2u + T2v;
650
0
            T2z = T2x - T2y;
651
0
            T2A = FMA(KP923879532, T2w, KP382683432 * T2z);
652
0
            T2N = FNMS(KP382683432, T2w, KP923879532 * T2z);
653
0
            T39 = T2x + T2y;
654
0
            T3a = T2v - T2u;
655
0
            T3b = FNMS(KP923879532, T3a, KP382683432 * T39);
656
0
            T3n = FMA(KP382683432, T3a, KP923879532 * T39);
657
0
       }
658
0
        }
659
0
        {
660
0
       E Tp, T2q, TX, T2o, Ts, T2n, T10, T2r, TU, T11;
661
0
       {
662
0
            E Tn, To, TV, TW;
663
0
            Tn = Rm[0];
664
0
            To = Rp[WS(rs, 7)];
665
0
            Tp = Tn + To;
666
0
            T2q = Tn - To;
667
0
            TV = Ip[WS(rs, 7)];
668
0
            TW = Im[0];
669
0
            TX = TV - TW;
670
0
            T2o = TV + TW;
671
0
       }
672
0
       {
673
0
            E Tq, Tr, TY, TZ;
674
0
            Tq = Rp[WS(rs, 3)];
675
0
            Tr = Rm[WS(rs, 4)];
676
0
            Ts = Tq + Tr;
677
0
            T2n = Tq - Tr;
678
0
            TY = Ip[WS(rs, 3)];
679
0
            TZ = Im[WS(rs, 4)];
680
0
            T10 = TY - TZ;
681
0
            T2r = TY + TZ;
682
0
       }
683
0
       Tt = Tp + Ts;
684
0
       T1U = TX + T10;
685
0
       TU = Tp - Ts;
686
0
       T11 = TX - T10;
687
0
       T12 = TU + T11;
688
0
       T1i = T11 - TU;
689
0
       {
690
0
            E T2p, T2s, T3c, T3d;
691
0
            T2p = T2n - T2o;
692
0
            T2s = T2q - T2r;
693
0
            T2t = FNMS(KP382683432, T2s, KP923879532 * T2p);
694
0
            T2O = FMA(KP382683432, T2p, KP923879532 * T2s);
695
0
            T3c = T2q + T2r;
696
0
            T3d = T2n + T2o;
697
0
            T3e = FNMS(KP923879532, T3d, KP382683432 * T3c);
698
0
            T3o = FMA(KP382683432, T3d, KP923879532 * T3c);
699
0
       }
700
0
        }
701
0
        {
702
0
       E Tf, Tu, T1O, T1S, T1V, T1W;
703
0
       Tf = T7 + Te;
704
0
       Tu = Tm + Tt;
705
0
       T1O = Tf - Tu;
706
0
       T1S = T1Q + T1R;
707
0
       T1V = T1T + T1U;
708
0
       T1W = T1S - T1V;
709
0
       Rp[0] = Tf + Tu;
710
0
       Rm[0] = T1S + T1V;
711
0
       Rp[WS(rs, 4)] = FNMS(T1P, T1W, T1N * T1O);
712
0
       Rm[WS(rs, 4)] = FMA(T1P, T1O, T1N * T1W);
713
0
        }
714
0
        {
715
0
       E T3g, T3r, T3q, T3s;
716
0
       {
717
0
            E T38, T3f, T3m, T3p;
718
0
            T38 = T36 - T37;
719
0
            T3f = T3b + T3e;
720
0
            T3g = T38 - T3f;
721
0
            T3r = T38 + T3f;
722
0
            T3m = T3k + T3l;
723
0
            T3p = T3n - T3o;
724
0
            T3q = T3m - T3p;
725
0
            T3s = T3m + T3p;
726
0
       }
727
0
       Ip[WS(rs, 5)] = FNMS(T3j, T3q, T35 * T3g);
728
0
       Im[WS(rs, 5)] = FMA(T3j, T3g, T35 * T3q);
729
0
       Ip[WS(rs, 1)] = FNMS(T1n, T3s, T1l * T3r);
730
0
       Im[WS(rs, 1)] = FMA(T1n, T3r, T1l * T3s);
731
0
        }
732
0
        {
733
0
       E T3w, T3B, T3A, T3C;
734
0
       {
735
0
            E T3u, T3v, T3y, T3z;
736
0
            T3u = T36 + T37;
737
0
            T3v = T3n + T3o;
738
0
            T3w = T3u - T3v;
739
0
            T3B = T3u + T3v;
740
0
            T3y = T3k - T3l;
741
0
            T3z = T3b - T3e;
742
0
            T3A = T3y + T3z;
743
0
            T3C = T3y - T3z;
744
0
       }
745
0
       Ip[WS(rs, 3)] = FNMS(T3x, T3A, T3t * T3w);
746
0
       Im[WS(rs, 3)] = FMA(T3t, T3A, T3x * T3w);
747
0
       Ip[WS(rs, 7)] = FNMS(T1w, T3C, T1v * T3B);
748
0
       Im[WS(rs, 7)] = FMA(T1v, T3C, T1w * T3B);
749
0
        }
750
0
        {
751
0
       E T14, T1q, T1k, T1u;
752
0
       {
753
0
            E TK, T13, T1g, T1j;
754
0
            TK = TC + TJ;
755
0
            T13 = KP707106781 * (TT + T12);
756
0
            T14 = TK - T13;
757
0
            T1q = TK + T13;
758
0
            T1g = T18 + T1f;
759
0
            T1j = KP707106781 * (T1h + T1i);
760
0
            T1k = T1g - T1j;
761
0
            T1u = T1g + T1j;
762
0
       }
763
0
       Rp[WS(rs, 5)] = FNMS(T17, T1k, TB * T14);
764
0
       Rm[WS(rs, 5)] = FMA(T17, T14, TB * T1k);
765
0
       Rp[WS(rs, 1)] = FNMS(T1t, T1u, T1p * T1q);
766
0
       Rm[WS(rs, 1)] = FMA(T1t, T1q, T1p * T1u);
767
0
        }
768
0
        {
769
0
       E T1A, T1I, T1E, T1M;
770
0
       {
771
0
            E T1y, T1z, T1C, T1D;
772
0
            T1y = TC - TJ;
773
0
            T1z = KP707106781 * (T1i - T1h);
774
0
            T1A = T1y - T1z;
775
0
            T1I = T1y + T1z;
776
0
            T1C = T1f - T18;
777
0
            T1D = KP707106781 * (TT - T12);
778
0
            T1E = T1C - T1D;
779
0
            T1M = T1C + T1D;
780
0
       }
781
0
       Rp[WS(rs, 7)] = FNMS(T1B, T1E, T1x * T1A);
782
0
       Rm[WS(rs, 7)] = FMA(T1x, T1E, T1B * T1A);
783
0
       Rp[WS(rs, 3)] = FNMS(T1L, T1M, T1H * T1I);
784
0
       Rm[WS(rs, 3)] = FMA(T1H, T1M, T1L * T1I);
785
0
        }
786
0
        {
787
0
       E T2C, T2S, T2Q, T2U;
788
0
       {
789
0
            E T2m, T2B, T2M, T2P;
790
0
            T2m = T2e - T2l;
791
0
            T2B = T2t - T2A;
792
0
            T2C = T2m - T2B;
793
0
            T2S = T2m + T2B;
794
0
            T2M = T2I - T2L;
795
0
            T2P = T2N - T2O;
796
0
            T2Q = T2M - T2P;
797
0
            T2U = T2M + T2P;
798
0
       }
799
0
       Ip[WS(rs, 6)] = FNMS(T2F, T2Q, T2b * T2C);
800
0
       Im[WS(rs, 6)] = FMA(T2F, T2C, T2b * T2Q);
801
0
       Ip[WS(rs, 2)] = FNMS(T2T, T2U, T2R * T2S);
802
0
       Im[WS(rs, 2)] = FMA(T2T, T2S, T2R * T2U);
803
0
        }
804
0
        {
805
0
       E T2X, T31, T30, T32;
806
0
       {
807
0
            E T2V, T2W, T2Y, T2Z;
808
0
            T2V = T2e + T2l;
809
0
            T2W = T2N + T2O;
810
0
            T2X = T2V - T2W;
811
0
            T31 = T2V + T2W;
812
0
            T2Y = T2I + T2L;
813
0
            T2Z = T2A + T2t;
814
0
            T30 = T2Y - T2Z;
815
0
            T32 = T2Y + T2Z;
816
0
       }
817
0
       Ip[WS(rs, 4)] = FNMS(Tz, T30, Tw * T2X);
818
0
       Im[WS(rs, 4)] = FMA(Tw, T30, Tz * T2X);
819
0
       Ip[0] = FNMS(Ty, T32, Tv * T31);
820
0
       Im[0] = FMA(Tv, T32, Ty * T31);
821
0
        }
822
0
        {
823
0
       E T20, T26, T24, T28;
824
0
       {
825
0
            E T1Y, T1Z, T22, T23;
826
0
            T1Y = T7 - Te;
827
0
            T1Z = T1U - T1T;
828
0
            T20 = T1Y - T1Z;
829
0
            T26 = T1Y + T1Z;
830
0
            T22 = T1Q - T1R;
831
0
            T23 = Tm - Tt;
832
0
            T24 = T22 - T23;
833
0
            T28 = T23 + T22;
834
0
       }
835
0
       Rp[WS(rs, 6)] = FNMS(T21, T24, T1X * T20);
836
0
       Rm[WS(rs, 6)] = FMA(T1X, T24, T21 * T20);
837
0
       Rp[WS(rs, 2)] = FNMS(T27, T28, T25 * T26);
838
0
       Rm[WS(rs, 2)] = FMA(T25, T28, T27 * T26);
839
0
        }
840
0
         }
841
0
    }
842
0
     }
843
0
}
844
845
static const tw_instr twinstr[] = {
846
     { TW_CEXP, 1, 1 },
847
     { TW_CEXP, 1, 3 },
848
     { TW_CEXP, 1, 9 },
849
     { TW_CEXP, 1, 15 },
850
     { TW_NEXT, 1, 0 }
851
};
852
853
static const hc2c_desc desc = { 16, "hc2cb2_16", twinstr, &GENUS, { 156, 68, 40, 0 } };
854
855
1
void X(codelet_hc2cb2_16) (planner *p) {
856
1
     X(khc2c_register) (p, hc2cb2_16, &desc, HC2C_VIA_RDFT);
857
1
}
858
#endif