/src/fftw3/rdft/scalar/r2cb/hc2cb2_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:54:25 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 32 -dif -name hc2cb2_32 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 488 FP additions, 350 FP multiplications, |
32 | | * (or, 236 additions, 98 multiplications, 252 fused multiply/add), |
33 | | * 164 stack variables, 7 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cb2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
40 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
41 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
42 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
43 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
44 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
45 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
46 | | { |
47 | | INT m; |
48 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { |
49 | | E T11, T14, T12, T37, T17, T1b, T39, T3a, T3v, T3d, T3x, T15, T16, T5X, T4p; |
50 | | E T3G, T78, T7e, T8S, T9s, T8P, T8V, T98, T9m, T7I, T7C, T3y, T4b, T3C, T4g; |
51 | | E T5u, T6b, T5I, T6e, T1a, T1c, T2O, T4r, T4s, T4W, T3J, T3K, T3Y, T5Z, T60; |
52 | | E T66, T3i, T3q, T3l, T3e, T7S, T8K, T8m, T8E, T5k, T5U, T5R, T5e, T6i, T7s; |
53 | | E T6O, T7o; |
54 | | { |
55 | | E T77, T9l, T7B, T7d, T9r, T7H, T3b, T5d, T19, T3I; |
56 | | { |
57 | | E T13, T3F, T38, T3c; |
58 | | T11 = W[2]; |
59 | | T14 = W[3]; |
60 | | T12 = W[4]; |
61 | | T37 = W[0]; |
62 | | T13 = T11 * T12; |
63 | | T3F = T37 * T12; |
64 | | T38 = T37 * T11; |
65 | | T3c = T37 * T14; |
66 | | T17 = W[6]; |
67 | | T77 = T37 * T17; |
68 | | T9l = T12 * T17; |
69 | | T7B = T11 * T17; |
70 | | T1b = W[7]; |
71 | | T7d = T37 * T1b; |
72 | | T9r = T12 * T1b; |
73 | | T7H = T11 * T1b; |
74 | | T39 = W[1]; |
75 | | T3a = FNMS(T39, T14, T38); |
76 | | T3v = FMA(T39, T14, T38); |
77 | | T3b = T3a * T12; |
78 | | T5d = T3v * T12; |
79 | | T3d = FMA(T39, T11, T3c); |
80 | | T3x = FNMS(T39, T11, T3c); |
81 | | T15 = W[5]; |
82 | | T19 = T11 * T15; |
83 | | T3I = T37 * T15; |
84 | | T16 = FMA(T14, T15, T13); |
85 | | T5X = FNMS(T14, T15, T13); |
86 | | T4p = FMA(T39, T15, T3F); |
87 | | T3G = FNMS(T39, T15, T3F); |
88 | | } |
89 | | T78 = FNMS(T39, T1b, T77); |
90 | | T7e = FMA(T39, T17, T7d); |
91 | | T8S = FMA(T14, T17, T7H); |
92 | | T9s = FNMS(T15, T17, T9r); |
93 | | T8P = FNMS(T14, T1b, T7B); |
94 | | T8V = FMA(T39, T1b, T77); |
95 | | T98 = FNMS(T39, T17, T7d); |
96 | | T9m = FMA(T15, T1b, T9l); |
97 | | T7I = FNMS(T14, T17, T7H); |
98 | | T7C = FMA(T14, T1b, T7B); |
99 | | { |
100 | | E T3w, T3B, T5Y, T65; |
101 | | T3w = T3v * T17; |
102 | | T3y = FNMS(T3x, T1b, T3w); |
103 | | T4b = FMA(T3x, T1b, T3w); |
104 | | T3B = T3v * T1b; |
105 | | T3C = FMA(T3x, T17, T3B); |
106 | | T4g = FNMS(T3x, T17, T3B); |
107 | | { |
108 | | E T5t, T5H, T18, T2N; |
109 | | T5t = T3a * T17; |
110 | | T5u = FMA(T3d, T1b, T5t); |
111 | | T6b = FNMS(T3d, T1b, T5t); |
112 | | T5H = T3a * T1b; |
113 | | T5I = FNMS(T3d, T17, T5H); |
114 | | T6e = FMA(T3d, T17, T5H); |
115 | | T18 = T16 * T17; |
116 | | T2N = T16 * T1b; |
117 | | T1a = FNMS(T14, T12, T19); |
118 | | T1c = FMA(T1a, T1b, T18); |
119 | | T2O = FNMS(T1a, T17, T2N); |
120 | | } |
121 | | { |
122 | | E T4q, T4V, T3H, T3X; |
123 | | T4q = T4p * T17; |
124 | | T4V = T4p * T1b; |
125 | | T4r = FNMS(T39, T12, T3I); |
126 | | T4s = FMA(T4r, T1b, T4q); |
127 | | T4W = FNMS(T4r, T17, T4V); |
128 | | T3H = T3G * T17; |
129 | | T3X = T3G * T1b; |
130 | | T3J = FMA(T39, T12, T3I); |
131 | | T3K = FMA(T3J, T1b, T3H); |
132 | | T3Y = FNMS(T3J, T17, T3X); |
133 | | } |
134 | | T5Y = T5X * T17; |
135 | | T65 = T5X * T1b; |
136 | | T5Z = FMA(T14, T12, T19); |
137 | | T60 = FMA(T5Z, T1b, T5Y); |
138 | | T66 = FNMS(T5Z, T17, T65); |
139 | | { |
140 | | E T8D, T8J, T7R, T8l, T3h; |
141 | | T3h = T3a * T15; |
142 | | T3i = FNMS(T3d, T12, T3h); |
143 | | T3q = FMA(T3d, T12, T3h); |
144 | | T3l = FNMS(T3d, T15, T3b); |
145 | | T8D = T3l * T17; |
146 | | T8J = T3l * T1b; |
147 | | T3e = FMA(T3d, T15, T3b); |
148 | | T7R = T3e * T17; |
149 | | T8l = T3e * T1b; |
150 | | T7S = FMA(T3i, T1b, T7R); |
151 | | T8K = FNMS(T3q, T17, T8J); |
152 | | T8m = FNMS(T3i, T17, T8l); |
153 | | T8E = FMA(T3q, T1b, T8D); |
154 | | } |
155 | | { |
156 | | E T6h, T6N, T7n, T7r, T5j; |
157 | | T5j = T3v * T15; |
158 | | T5k = FMA(T3x, T12, T5j); |
159 | | T5U = FNMS(T3x, T12, T5j); |
160 | | T5R = FMA(T3x, T15, T5d); |
161 | | T6h = T5R * T17; |
162 | | T6N = T5R * T1b; |
163 | | T5e = FNMS(T3x, T15, T5d); |
164 | | T7n = T5e * T17; |
165 | | T7r = T5e * T1b; |
166 | | T6i = FMA(T5U, T1b, T6h); |
167 | | T7s = FNMS(T5k, T17, T7r); |
168 | | T6O = FNMS(T5U, T17, T6N); |
169 | | T7o = FMA(T5k, T1b, T7n); |
170 | | } |
171 | | } |
172 | | } |
173 | | { |
174 | | E Tf, T6j, T7V, T8W, T8p, T99, T1t, T3L, T2X, T3Z, T4Z, T5J, T6W, T7t, T4v; |
175 | | E T5v, TZ, T7x, T28, T3S, T91, T9d, T2h, T3R, T4Q, T5B, T8a, T8v, T4N, T5C; |
176 | | E T6J, T6Z, TK, T7w, T2z, T3P, T94, T9c, T2I, T3O, T4J, T5y, T8h, T8u, T4G; |
177 | | E T5z, T6A, T6Y, Tu, T6P, T82, T9a, T8s, T8X, T1Q, T40, T30, T3M, T52, T5w; |
178 | | E T6q, T7u, T4C, T5K; |
179 | | { |
180 | | E T3, T1d, T2S, T6Q, T6, T2P, T1g, T6R, Td, T6U, T1r, T2V, Ta, T6T, T1m; |
181 | | E T2U; |
182 | | { |
183 | | E T1, T2, T1e, T1f; |
184 | | T1 = Rp[0]; |
185 | | T2 = Rm[WS(rs, 15)]; |
186 | | T3 = T1 + T2; |
187 | | T1d = T1 - T2; |
188 | | { |
189 | | E T2Q, T2R, T4, T5; |
190 | | T2Q = Ip[0]; |
191 | | T2R = Im[WS(rs, 15)]; |
192 | | T2S = T2Q + T2R; |
193 | | T6Q = T2Q - T2R; |
194 | | T4 = Rp[WS(rs, 8)]; |
195 | | T5 = Rm[WS(rs, 7)]; |
196 | | T6 = T4 + T5; |
197 | | T2P = T4 - T5; |
198 | | } |
199 | | T1e = Ip[WS(rs, 8)]; |
200 | | T1f = Im[WS(rs, 7)]; |
201 | | T1g = T1e + T1f; |
202 | | T6R = T1e - T1f; |
203 | | { |
204 | | E Tb, Tc, T1n, T1o, T1p, T1q; |
205 | | Tb = Rm[WS(rs, 3)]; |
206 | | Tc = Rp[WS(rs, 12)]; |
207 | | T1n = Tb - Tc; |
208 | | T1o = Ip[WS(rs, 12)]; |
209 | | T1p = Im[WS(rs, 3)]; |
210 | | T1q = T1o + T1p; |
211 | | Td = Tb + Tc; |
212 | | T6U = T1o - T1p; |
213 | | T1r = T1n - T1q; |
214 | | T2V = T1n + T1q; |
215 | | } |
216 | | { |
217 | | E T8, T9, T1i, T1j, T1k, T1l; |
218 | | T8 = Rp[WS(rs, 4)]; |
219 | | T9 = Rm[WS(rs, 11)]; |
220 | | T1i = T8 - T9; |
221 | | T1j = Ip[WS(rs, 4)]; |
222 | | T1k = Im[WS(rs, 11)]; |
223 | | T1l = T1j + T1k; |
224 | | Ta = T8 + T9; |
225 | | T6T = T1j - T1k; |
226 | | T1m = T1i - T1l; |
227 | | T2U = T1i + T1l; |
228 | | } |
229 | | } |
230 | | { |
231 | | E T7, Te, T7T, T7U; |
232 | | T7 = T3 + T6; |
233 | | Te = Ta + Td; |
234 | | Tf = T7 + Te; |
235 | | T6j = T7 - Te; |
236 | | T7T = T3 - T6; |
237 | | T7U = T6U - T6T; |
238 | | T7V = T7T - T7U; |
239 | | T8W = T7T + T7U; |
240 | | } |
241 | | { |
242 | | E T8n, T8o, T1h, T1s; |
243 | | T8n = T6Q - T6R; |
244 | | T8o = Ta - Td; |
245 | | T8p = T8n - T8o; |
246 | | T99 = T8o + T8n; |
247 | | T1h = T1d - T1g; |
248 | | T1s = T1m + T1r; |
249 | | T1t = FNMS(KP707106781, T1s, T1h); |
250 | | T3L = FMA(KP707106781, T1s, T1h); |
251 | | } |
252 | | { |
253 | | E T2T, T2W, T4X, T4Y; |
254 | | T2T = T2P + T2S; |
255 | | T2W = T2U - T2V; |
256 | | T2X = FNMS(KP707106781, T2W, T2T); |
257 | | T3Z = FMA(KP707106781, T2W, T2T); |
258 | | T4X = T2S - T2P; |
259 | | T4Y = T1m - T1r; |
260 | | T4Z = FMA(KP707106781, T4Y, T4X); |
261 | | T5J = FNMS(KP707106781, T4Y, T4X); |
262 | | } |
263 | | { |
264 | | E T6S, T6V, T4t, T4u; |
265 | | T6S = T6Q + T6R; |
266 | | T6V = T6T + T6U; |
267 | | T6W = T6S - T6V; |
268 | | T7t = T6S + T6V; |
269 | | T4t = T1d + T1g; |
270 | | T4u = T2U + T2V; |
271 | | T4v = FNMS(KP707106781, T4u, T4t); |
272 | | T5v = FMA(KP707106781, T4u, T4t); |
273 | | } |
274 | | } |
275 | | { |
276 | | E TR, T87, T1S, T29, T1V, T84, T2c, T6E, TY, T85, T88, T21, T26, T2f, T6H; |
277 | | E T2e, T86, T89; |
278 | | { |
279 | | E TL, TM, TN, TO, TP, TQ; |
280 | | TL = Rm[0]; |
281 | | TM = Rp[WS(rs, 15)]; |
282 | | TN = TL + TM; |
283 | | TO = Rp[WS(rs, 7)]; |
284 | | TP = Rm[WS(rs, 8)]; |
285 | | TQ = TO + TP; |
286 | | TR = TN + TQ; |
287 | | T87 = TN - TQ; |
288 | | T1S = TO - TP; |
289 | | T29 = TL - TM; |
290 | | } |
291 | | { |
292 | | E T1T, T1U, T6C, T2a, T2b, T6D; |
293 | | T1T = Ip[WS(rs, 15)]; |
294 | | T1U = Im[0]; |
295 | | T6C = T1T - T1U; |
296 | | T2a = Ip[WS(rs, 7)]; |
297 | | T2b = Im[WS(rs, 8)]; |
298 | | T6D = T2a - T2b; |
299 | | T1V = T1T + T1U; |
300 | | T84 = T6C - T6D; |
301 | | T2c = T2a + T2b; |
302 | | T6E = T6C + T6D; |
303 | | } |
304 | | { |
305 | | E TU, T1X, T20, T6F, TX, T22, T25, T6G; |
306 | | { |
307 | | E TS, TT, T1Y, T1Z; |
308 | | TS = Rp[WS(rs, 3)]; |
309 | | TT = Rm[WS(rs, 12)]; |
310 | | TU = TS + TT; |
311 | | T1X = TS - TT; |
312 | | T1Y = Ip[WS(rs, 3)]; |
313 | | T1Z = Im[WS(rs, 12)]; |
314 | | T20 = T1Y + T1Z; |
315 | | T6F = T1Y - T1Z; |
316 | | } |
317 | | { |
318 | | E TV, TW, T23, T24; |
319 | | TV = Rm[WS(rs, 4)]; |
320 | | TW = Rp[WS(rs, 11)]; |
321 | | TX = TV + TW; |
322 | | T22 = TV - TW; |
323 | | T23 = Ip[WS(rs, 11)]; |
324 | | T24 = Im[WS(rs, 4)]; |
325 | | T25 = T23 + T24; |
326 | | T6G = T23 - T24; |
327 | | } |
328 | | TY = TU + TX; |
329 | | T85 = TU - TX; |
330 | | T88 = T6G - T6F; |
331 | | T21 = T1X + T20; |
332 | | T26 = T22 + T25; |
333 | | T2f = T22 - T25; |
334 | | T6H = T6F + T6G; |
335 | | T2e = T1X - T20; |
336 | | } |
337 | | TZ = TR + TY; |
338 | | T7x = T6E + T6H; |
339 | | { |
340 | | E T1W, T27, T8Z, T90; |
341 | | T1W = T1S - T1V; |
342 | | T27 = T21 - T26; |
343 | | T28 = FNMS(KP707106781, T27, T1W); |
344 | | T3S = FMA(KP707106781, T27, T1W); |
345 | | T8Z = T85 + T84; |
346 | | T90 = T87 + T88; |
347 | | T91 = FNMS(KP414213562, T90, T8Z); |
348 | | T9d = FMA(KP414213562, T8Z, T90); |
349 | | } |
350 | | { |
351 | | E T2d, T2g, T4O, T4P; |
352 | | T2d = T29 - T2c; |
353 | | T2g = T2e + T2f; |
354 | | T2h = FNMS(KP707106781, T2g, T2d); |
355 | | T3R = FMA(KP707106781, T2g, T2d); |
356 | | T4O = T1S + T1V; |
357 | | T4P = T2e - T2f; |
358 | | T4Q = FNMS(KP707106781, T4P, T4O); |
359 | | T5B = FMA(KP707106781, T4P, T4O); |
360 | | } |
361 | | T86 = T84 - T85; |
362 | | T89 = T87 - T88; |
363 | | T8a = FMA(KP414213562, T89, T86); |
364 | | T8v = FNMS(KP414213562, T86, T89); |
365 | | { |
366 | | E T4L, T4M, T6B, T6I; |
367 | | T4L = T29 + T2c; |
368 | | T4M = T21 + T26; |
369 | | T4N = FNMS(KP707106781, T4M, T4L); |
370 | | T5C = FMA(KP707106781, T4M, T4L); |
371 | | T6B = TR - TY; |
372 | | T6I = T6E - T6H; |
373 | | T6J = T6B + T6I; |
374 | | T6Z = T6I - T6B; |
375 | | } |
376 | | } |
377 | | { |
378 | | E TC, T8e, T2j, T2A, T2m, T8b, T2D, T6v, TJ, T8c, T8f, T2s, T2x, T2G, T6y; |
379 | | E T2F, T8d, T8g; |
380 | | { |
381 | | E Tw, Tx, Ty, Tz, TA, TB; |
382 | | Tw = Rp[WS(rs, 1)]; |
383 | | Tx = Rm[WS(rs, 14)]; |
384 | | Ty = Tw + Tx; |
385 | | Tz = Rp[WS(rs, 9)]; |
386 | | TA = Rm[WS(rs, 6)]; |
387 | | TB = Tz + TA; |
388 | | TC = Ty + TB; |
389 | | T8e = Ty - TB; |
390 | | T2j = Tz - TA; |
391 | | T2A = Tw - Tx; |
392 | | } |
393 | | { |
394 | | E T2k, T2l, T6t, T2B, T2C, T6u; |
395 | | T2k = Ip[WS(rs, 1)]; |
396 | | T2l = Im[WS(rs, 14)]; |
397 | | T6t = T2k - T2l; |
398 | | T2B = Ip[WS(rs, 9)]; |
399 | | T2C = Im[WS(rs, 6)]; |
400 | | T6u = T2B - T2C; |
401 | | T2m = T2k + T2l; |
402 | | T8b = T6t - T6u; |
403 | | T2D = T2B + T2C; |
404 | | T6v = T6t + T6u; |
405 | | } |
406 | | { |
407 | | E TF, T2o, T2r, T6w, TI, T2t, T2w, T6x; |
408 | | { |
409 | | E TD, TE, T2p, T2q; |
410 | | TD = Rp[WS(rs, 5)]; |
411 | | TE = Rm[WS(rs, 10)]; |
412 | | TF = TD + TE; |
413 | | T2o = TD - TE; |
414 | | T2p = Ip[WS(rs, 5)]; |
415 | | T2q = Im[WS(rs, 10)]; |
416 | | T2r = T2p + T2q; |
417 | | T6w = T2p - T2q; |
418 | | } |
419 | | { |
420 | | E TG, TH, T2u, T2v; |
421 | | TG = Rm[WS(rs, 2)]; |
422 | | TH = Rp[WS(rs, 13)]; |
423 | | TI = TG + TH; |
424 | | T2t = TG - TH; |
425 | | T2u = Ip[WS(rs, 13)]; |
426 | | T2v = Im[WS(rs, 2)]; |
427 | | T2w = T2u + T2v; |
428 | | T6x = T2u - T2v; |
429 | | } |
430 | | TJ = TF + TI; |
431 | | T8c = TF - TI; |
432 | | T8f = T6x - T6w; |
433 | | T2s = T2o + T2r; |
434 | | T2x = T2t + T2w; |
435 | | T2G = T2t - T2w; |
436 | | T6y = T6w + T6x; |
437 | | T2F = T2o - T2r; |
438 | | } |
439 | | TK = TC + TJ; |
440 | | T7w = T6v + T6y; |
441 | | { |
442 | | E T2n, T2y, T92, T93; |
443 | | T2n = T2j + T2m; |
444 | | T2y = T2s - T2x; |
445 | | T2z = FNMS(KP707106781, T2y, T2n); |
446 | | T3P = FMA(KP707106781, T2y, T2n); |
447 | | T92 = T8c + T8b; |
448 | | T93 = T8e + T8f; |
449 | | T94 = FMA(KP414213562, T93, T92); |
450 | | T9c = FNMS(KP414213562, T92, T93); |
451 | | } |
452 | | { |
453 | | E T2E, T2H, T4H, T4I; |
454 | | T2E = T2A - T2D; |
455 | | T2H = T2F + T2G; |
456 | | T2I = FNMS(KP707106781, T2H, T2E); |
457 | | T3O = FMA(KP707106781, T2H, T2E); |
458 | | T4H = T2m - T2j; |
459 | | T4I = T2G - T2F; |
460 | | T4J = FNMS(KP707106781, T4I, T4H); |
461 | | T5y = FMA(KP707106781, T4I, T4H); |
462 | | } |
463 | | T8d = T8b - T8c; |
464 | | T8g = T8e - T8f; |
465 | | T8h = FNMS(KP414213562, T8g, T8d); |
466 | | T8u = FMA(KP414213562, T8d, T8g); |
467 | | { |
468 | | E T4E, T4F, T6s, T6z; |
469 | | T4E = T2A + T2D; |
470 | | T4F = T2s + T2x; |
471 | | T4G = FNMS(KP707106781, T4F, T4E); |
472 | | T5z = FMA(KP707106781, T4F, T4E); |
473 | | T6s = TC - TJ; |
474 | | T6z = T6v - T6y; |
475 | | T6A = T6s - T6z; |
476 | | T6Y = T6s + T6z; |
477 | | } |
478 | | } |
479 | | { |
480 | | E Ti, T6n, Tl, T6o, T1J, T1O, T80, T7Z, T4x, T4w, Tp, T6k, Ts, T6l, T1y; |
481 | | E T1D, T7X, T7W, T4A, T4z; |
482 | | { |
483 | | E T1K, T1I, T1F, T1N; |
484 | | { |
485 | | E Tg, Th, T1G, T1H; |
486 | | Tg = Rp[WS(rs, 2)]; |
487 | | Th = Rm[WS(rs, 13)]; |
488 | | Ti = Tg + Th; |
489 | | T1K = Tg - Th; |
490 | | T1G = Ip[WS(rs, 2)]; |
491 | | T1H = Im[WS(rs, 13)]; |
492 | | T1I = T1G + T1H; |
493 | | T6n = T1G - T1H; |
494 | | } |
495 | | { |
496 | | E Tj, Tk, T1L, T1M; |
497 | | Tj = Rp[WS(rs, 10)]; |
498 | | Tk = Rm[WS(rs, 5)]; |
499 | | Tl = Tj + Tk; |
500 | | T1F = Tj - Tk; |
501 | | T1L = Ip[WS(rs, 10)]; |
502 | | T1M = Im[WS(rs, 5)]; |
503 | | T1N = T1L + T1M; |
504 | | T6o = T1L - T1M; |
505 | | } |
506 | | T1J = T1F + T1I; |
507 | | T1O = T1K - T1N; |
508 | | T80 = T6n - T6o; |
509 | | T7Z = Ti - Tl; |
510 | | T4x = T1K + T1N; |
511 | | T4w = T1I - T1F; |
512 | | } |
513 | | { |
514 | | E T1z, T1x, T1u, T1C; |
515 | | { |
516 | | E Tn, To, T1v, T1w; |
517 | | Tn = Rm[WS(rs, 1)]; |
518 | | To = Rp[WS(rs, 14)]; |
519 | | Tp = Tn + To; |
520 | | T1z = Tn - To; |
521 | | T1v = Ip[WS(rs, 14)]; |
522 | | T1w = Im[WS(rs, 1)]; |
523 | | T1x = T1v + T1w; |
524 | | T6k = T1v - T1w; |
525 | | } |
526 | | { |
527 | | E Tq, Tr, T1A, T1B; |
528 | | Tq = Rp[WS(rs, 6)]; |
529 | | Tr = Rm[WS(rs, 9)]; |
530 | | Ts = Tq + Tr; |
531 | | T1u = Tq - Tr; |
532 | | T1A = Ip[WS(rs, 6)]; |
533 | | T1B = Im[WS(rs, 9)]; |
534 | | T1C = T1A + T1B; |
535 | | T6l = T1A - T1B; |
536 | | } |
537 | | T1y = T1u - T1x; |
538 | | T1D = T1z - T1C; |
539 | | T7X = Tp - Ts; |
540 | | T7W = T6k - T6l; |
541 | | T4A = T1z + T1C; |
542 | | T4z = T1u + T1x; |
543 | | } |
544 | | { |
545 | | E Tm, Tt, T7Y, T81; |
546 | | Tm = Ti + Tl; |
547 | | Tt = Tp + Ts; |
548 | | Tu = Tm + Tt; |
549 | | T6P = Tm - Tt; |
550 | | T7Y = T7W - T7X; |
551 | | T81 = T7Z + T80; |
552 | | T82 = T7Y - T81; |
553 | | T9a = T81 + T7Y; |
554 | | } |
555 | | { |
556 | | E T8q, T8r, T1E, T1P; |
557 | | T8q = T7Z - T80; |
558 | | T8r = T7X + T7W; |
559 | | T8s = T8q - T8r; |
560 | | T8X = T8q + T8r; |
561 | | T1E = FNMS(KP414213562, T1D, T1y); |
562 | | T1P = FMA(KP414213562, T1O, T1J); |
563 | | T1Q = T1E - T1P; |
564 | | T40 = T1P + T1E; |
565 | | } |
566 | | { |
567 | | E T2Y, T2Z, T50, T51; |
568 | | T2Y = FNMS(KP414213562, T1J, T1O); |
569 | | T2Z = FMA(KP414213562, T1y, T1D); |
570 | | T30 = T2Y - T2Z; |
571 | | T3M = T2Y + T2Z; |
572 | | T50 = FMA(KP414213562, T4w, T4x); |
573 | | T51 = FMA(KP414213562, T4z, T4A); |
574 | | T52 = T50 - T51; |
575 | | T5w = T50 + T51; |
576 | | } |
577 | | { |
578 | | E T6m, T6p, T4y, T4B; |
579 | | T6m = T6k + T6l; |
580 | | T6p = T6n + T6o; |
581 | | T6q = T6m - T6p; |
582 | | T7u = T6p + T6m; |
583 | | T4y = FNMS(KP414213562, T4x, T4w); |
584 | | T4B = FNMS(KP414213562, T4A, T4z); |
585 | | T4C = T4y + T4B; |
586 | | T5K = T4B - T4y; |
587 | | } |
588 | | } |
589 | | { |
590 | | E Tv, T10, T7p, T7v, T7y, T7z, T7q, T7A; |
591 | | Tv = Tf + Tu; |
592 | | T10 = TK + TZ; |
593 | | T7p = Tv - T10; |
594 | | T7v = T7t + T7u; |
595 | | T7y = T7w + T7x; |
596 | | T7z = T7v - T7y; |
597 | | Rp[0] = Tv + T10; |
598 | | Rm[0] = T7v + T7y; |
599 | | T7q = T7o * T7p; |
600 | | Rp[WS(rs, 8)] = FNMS(T7s, T7z, T7q); |
601 | | T7A = T7s * T7p; |
602 | | Rm[WS(rs, 8)] = FMA(T7o, T7z, T7A); |
603 | | } |
604 | | { |
605 | | E T9p, T9x, T9v, T9z; |
606 | | { |
607 | | E T9n, T9o, T9t, T9u; |
608 | | T9n = FMA(KP707106781, T8X, T8W); |
609 | | T9o = T9c + T9d; |
610 | | T9p = FNMS(KP923879532, T9o, T9n); |
611 | | T9x = FMA(KP923879532, T9o, T9n); |
612 | | T9t = FMA(KP707106781, T9a, T99); |
613 | | T9u = T94 + T91; |
614 | | T9v = FNMS(KP923879532, T9u, T9t); |
615 | | T9z = FMA(KP923879532, T9u, T9t); |
616 | | } |
617 | | { |
618 | | E T9q, T9w, T9y, T9A; |
619 | | T9q = T9m * T9p; |
620 | | Rp[WS(rs, 9)] = FNMS(T9s, T9v, T9q); |
621 | | T9w = T9m * T9v; |
622 | | Rm[WS(rs, 9)] = FMA(T9s, T9p, T9w); |
623 | | T9y = T3v * T9x; |
624 | | Rp[WS(rs, 1)] = FNMS(T3x, T9z, T9y); |
625 | | T9A = T3v * T9z; |
626 | | Rm[WS(rs, 1)] = FMA(T3x, T9x, T9A); |
627 | | } |
628 | | } |
629 | | { |
630 | | E T8H, T8Q, T8N, T8T; |
631 | | { |
632 | | E T8F, T8G, T8L, T8M; |
633 | | T8F = FNMS(KP707106781, T82, T7V); |
634 | | T8G = T8u + T8v; |
635 | | T8H = FNMS(KP923879532, T8G, T8F); |
636 | | T8Q = FMA(KP923879532, T8G, T8F); |
637 | | T8L = FNMS(KP707106781, T8s, T8p); |
638 | | T8M = T8h + T8a; |
639 | | T8N = FNMS(KP923879532, T8M, T8L); |
640 | | T8T = FMA(KP923879532, T8M, T8L); |
641 | | } |
642 | | { |
643 | | E T8I, T8O, T8R, T8U; |
644 | | T8I = T8E * T8H; |
645 | | Rp[WS(rs, 7)] = FNMS(T8K, T8N, T8I); |
646 | | T8O = T8E * T8N; |
647 | | Rm[WS(rs, 7)] = FMA(T8K, T8H, T8O); |
648 | | T8R = T8P * T8Q; |
649 | | Rp[WS(rs, 15)] = FNMS(T8S, T8T, T8R); |
650 | | T8U = T8P * T8T; |
651 | | Rm[WS(rs, 15)] = FMA(T8S, T8Q, T8U); |
652 | | } |
653 | | } |
654 | | { |
655 | | E T7b, T7j, T7h, T7l; |
656 | | { |
657 | | E T79, T7a, T7f, T7g; |
658 | | T79 = T6j - T6q; |
659 | | T7a = T6Z - T6Y; |
660 | | T7b = FNMS(KP707106781, T7a, T79); |
661 | | T7j = FMA(KP707106781, T7a, T79); |
662 | | T7f = T6W - T6P; |
663 | | T7g = T6A - T6J; |
664 | | T7h = FNMS(KP707106781, T7g, T7f); |
665 | | T7l = FMA(KP707106781, T7g, T7f); |
666 | | } |
667 | | { |
668 | | E T7c, T7i, T7k, T7m; |
669 | | T7c = T78 * T7b; |
670 | | Rp[WS(rs, 14)] = FNMS(T7e, T7h, T7c); |
671 | | T7i = T78 * T7h; |
672 | | Rm[WS(rs, 14)] = FMA(T7e, T7b, T7i); |
673 | | T7k = T5X * T7j; |
674 | | Rp[WS(rs, 6)] = FNMS(T5Z, T7l, T7k); |
675 | | T7m = T5X * T7l; |
676 | | Rm[WS(rs, 6)] = FMA(T5Z, T7j, T7m); |
677 | | } |
678 | | } |
679 | | { |
680 | | E T96, T9h, T9f, T9j; |
681 | | { |
682 | | E T8Y, T95, T9b, T9e; |
683 | | T8Y = FNMS(KP707106781, T8X, T8W); |
684 | | T95 = T91 - T94; |
685 | | T96 = FNMS(KP923879532, T95, T8Y); |
686 | | T9h = FMA(KP923879532, T95, T8Y); |
687 | | T9b = FNMS(KP707106781, T9a, T99); |
688 | | T9e = T9c - T9d; |
689 | | T9f = FNMS(KP923879532, T9e, T9b); |
690 | | T9j = FMA(KP923879532, T9e, T9b); |
691 | | } |
692 | | { |
693 | | E T97, T9g, T9i, T9k; |
694 | | T97 = T8V * T96; |
695 | | Rp[WS(rs, 13)] = FNMS(T98, T9f, T97); |
696 | | T9g = T98 * T96; |
697 | | Rm[WS(rs, 13)] = FMA(T8V, T9f, T9g); |
698 | | T9i = T3G * T9h; |
699 | | Rp[WS(rs, 5)] = FNMS(T3J, T9j, T9i); |
700 | | T9k = T3J * T9h; |
701 | | Rm[WS(rs, 5)] = FMA(T3G, T9j, T9k); |
702 | | } |
703 | | } |
704 | | { |
705 | | E T6L, T73, T71, T75; |
706 | | { |
707 | | E T6r, T6K, T6X, T70; |
708 | | T6r = T6j + T6q; |
709 | | T6K = T6A + T6J; |
710 | | T6L = FNMS(KP707106781, T6K, T6r); |
711 | | T73 = FMA(KP707106781, T6K, T6r); |
712 | | T6X = T6P + T6W; |
713 | | T70 = T6Y + T6Z; |
714 | | T71 = FNMS(KP707106781, T70, T6X); |
715 | | T75 = FMA(KP707106781, T70, T6X); |
716 | | } |
717 | | { |
718 | | E T6M, T72, T74, T76; |
719 | | T6M = T6i * T6L; |
720 | | Rp[WS(rs, 10)] = FNMS(T6O, T71, T6M); |
721 | | T72 = T6O * T6L; |
722 | | Rm[WS(rs, 10)] = FMA(T6i, T71, T72); |
723 | | T74 = T3a * T73; |
724 | | Rp[WS(rs, 2)] = FNMS(T3d, T75, T74); |
725 | | T76 = T3d * T73; |
726 | | Rm[WS(rs, 2)] = FMA(T3a, T75, T76); |
727 | | } |
728 | | } |
729 | | { |
730 | | E T7F, T7N, T7L, T7P; |
731 | | { |
732 | | E T7D, T7E, T7J, T7K; |
733 | | T7D = Tf - Tu; |
734 | | T7E = T7x - T7w; |
735 | | T7F = T7D - T7E; |
736 | | T7N = T7D + T7E; |
737 | | T7J = T7t - T7u; |
738 | | T7K = TK - TZ; |
739 | | T7L = T7J - T7K; |
740 | | T7P = T7K + T7J; |
741 | | } |
742 | | { |
743 | | E T7G, T7M, T7O, T7Q; |
744 | | T7G = T7C * T7F; |
745 | | Rp[WS(rs, 12)] = FNMS(T7I, T7L, T7G); |
746 | | T7M = T7C * T7L; |
747 | | Rm[WS(rs, 12)] = FMA(T7I, T7F, T7M); |
748 | | T7O = T4p * T7N; |
749 | | Rp[WS(rs, 4)] = FNMS(T4r, T7P, T7O); |
750 | | T7Q = T4p * T7P; |
751 | | Rm[WS(rs, 4)] = FMA(T4r, T7N, T7Q); |
752 | | } |
753 | | } |
754 | | { |
755 | | E T8j, T8z, T8x, T8B; |
756 | | { |
757 | | E T83, T8i, T8t, T8w; |
758 | | T83 = FMA(KP707106781, T82, T7V); |
759 | | T8i = T8a - T8h; |
760 | | T8j = FNMS(KP923879532, T8i, T83); |
761 | | T8z = FMA(KP923879532, T8i, T83); |
762 | | T8t = FMA(KP707106781, T8s, T8p); |
763 | | T8w = T8u - T8v; |
764 | | T8x = FNMS(KP923879532, T8w, T8t); |
765 | | T8B = FMA(KP923879532, T8w, T8t); |
766 | | } |
767 | | { |
768 | | E T8k, T8y, T8A, T8C; |
769 | | T8k = T7S * T8j; |
770 | | Rp[WS(rs, 11)] = FNMS(T8m, T8x, T8k); |
771 | | T8y = T8m * T8j; |
772 | | Rm[WS(rs, 11)] = FMA(T7S, T8x, T8y); |
773 | | T8A = T16 * T8z; |
774 | | Rp[WS(rs, 3)] = FNMS(T1a, T8B, T8A); |
775 | | T8C = T1a * T8z; |
776 | | Rm[WS(rs, 3)] = FMA(T16, T8B, T8C); |
777 | | } |
778 | | } |
779 | | { |
780 | | E T3r, T2L, T3s, T3f, T35, T3z, T3j, T3o; |
781 | | T3r = FNMS(KP923879532, T30, T2X); |
782 | | { |
783 | | E T1R, T2i, T2J, T2K; |
784 | | T1R = FMA(KP923879532, T1Q, T1t); |
785 | | T2i = FMA(KP668178637, T2h, T28); |
786 | | T2J = FNMS(KP668178637, T2I, T2z); |
787 | | T2K = T2i - T2J; |
788 | | T2L = FNMS(KP831469612, T2K, T1R); |
789 | | T3s = T2J + T2i; |
790 | | T3f = FMA(KP831469612, T2K, T1R); |
791 | | } |
792 | | { |
793 | | E T31, T3m, T34, T3n, T32, T33; |
794 | | T31 = FMA(KP923879532, T30, T2X); |
795 | | T3m = FNMS(KP923879532, T1Q, T1t); |
796 | | T32 = FMA(KP668178637, T2z, T2I); |
797 | | T33 = FNMS(KP668178637, T28, T2h); |
798 | | T34 = T32 - T33; |
799 | | T3n = T32 + T33; |
800 | | T35 = FNMS(KP831469612, T34, T31); |
801 | | T3z = FMA(KP831469612, T3n, T3m); |
802 | | T3j = FMA(KP831469612, T34, T31); |
803 | | T3o = FNMS(KP831469612, T3n, T3m); |
804 | | } |
805 | | { |
806 | | E T2M, T36, T3g, T3k; |
807 | | T2M = T1c * T2L; |
808 | | Ip[WS(rs, 10)] = FNMS(T2O, T35, T2M); |
809 | | T36 = T1c * T35; |
810 | | Im[WS(rs, 10)] = FMA(T2O, T2L, T36); |
811 | | T3g = T3e * T3f; |
812 | | Ip[WS(rs, 2)] = FNMS(T3i, T3j, T3g); |
813 | | T3k = T3e * T3j; |
814 | | Im[WS(rs, 2)] = FMA(T3i, T3f, T3k); |
815 | | { |
816 | | E T3A, T3E, T3D, T3p, T3u, T3t; |
817 | | T3A = T3y * T3z; |
818 | | T3E = T3C * T3z; |
819 | | T3D = FMA(KP831469612, T3s, T3r); |
820 | | Ip[WS(rs, 14)] = FNMS(T3C, T3D, T3A); |
821 | | Im[WS(rs, 14)] = FMA(T3y, T3D, T3E); |
822 | | T3p = T3l * T3o; |
823 | | T3u = T3q * T3o; |
824 | | T3t = FNMS(KP831469612, T3s, T3r); |
825 | | Ip[WS(rs, 6)] = FNMS(T3q, T3t, T3p); |
826 | | Im[WS(rs, 6)] = FMA(T3l, T3t, T3u); |
827 | | } |
828 | | } |
829 | | } |
830 | | { |
831 | | E T53, T56, T5p, T5h, T4T, T5r, T59, T5n; |
832 | | T53 = FMA(KP923879532, T52, T4Z); |
833 | | { |
834 | | E T5f, T54, T55, T5g; |
835 | | T5f = FMA(KP923879532, T4C, T4v); |
836 | | T54 = FMA(KP668178637, T4G, T4J); |
837 | | T55 = FMA(KP668178637, T4N, T4Q); |
838 | | T5g = T54 + T55; |
839 | | T56 = T54 - T55; |
840 | | T5p = FMA(KP831469612, T5g, T5f); |
841 | | T5h = FNMS(KP831469612, T5g, T5f); |
842 | | } |
843 | | { |
844 | | E T4D, T5l, T4S, T5m, T4K, T4R; |
845 | | T4D = FNMS(KP923879532, T4C, T4v); |
846 | | T5l = FNMS(KP923879532, T52, T4Z); |
847 | | T4K = FNMS(KP668178637, T4J, T4G); |
848 | | T4R = FNMS(KP668178637, T4Q, T4N); |
849 | | T4S = T4K + T4R; |
850 | | T5m = T4K - T4R; |
851 | | T4T = FNMS(KP831469612, T4S, T4D); |
852 | | T5r = FNMS(KP831469612, T5m, T5l); |
853 | | T59 = FMA(KP831469612, T4S, T4D); |
854 | | T5n = FMA(KP831469612, T5m, T5l); |
855 | | } |
856 | | { |
857 | | E T5i, T5o, T5q, T5s; |
858 | | T5i = T5e * T5h; |
859 | | Ip[WS(rs, 5)] = FNMS(T5k, T5n, T5i); |
860 | | T5o = T5e * T5n; |
861 | | Im[WS(rs, 5)] = FMA(T5k, T5h, T5o); |
862 | | T5q = T17 * T5p; |
863 | | Ip[WS(rs, 13)] = FNMS(T1b, T5r, T5q); |
864 | | T5s = T17 * T5r; |
865 | | Im[WS(rs, 13)] = FMA(T1b, T5p, T5s); |
866 | | { |
867 | | E T5a, T5c, T5b, T4U, T58, T57; |
868 | | T5a = T11 * T59; |
869 | | T5c = T14 * T59; |
870 | | T5b = FMA(KP831469612, T56, T53); |
871 | | Ip[WS(rs, 1)] = FNMS(T14, T5b, T5a); |
872 | | Im[WS(rs, 1)] = FMA(T11, T5b, T5c); |
873 | | T4U = T4s * T4T; |
874 | | T58 = T4W * T4T; |
875 | | T57 = FNMS(KP831469612, T56, T53); |
876 | | Ip[WS(rs, 9)] = FNMS(T4W, T57, T4U); |
877 | | Im[WS(rs, 9)] = FMA(T4s, T57, T58); |
878 | | } |
879 | | } |
880 | | } |
881 | | { |
882 | | E T41, T44, T4l, T4e, T3V, T4n, T47, T4j; |
883 | | T41 = FMA(KP923879532, T40, T3Z); |
884 | | { |
885 | | E T4c, T42, T43, T4d; |
886 | | T4c = FNMS(KP923879532, T3M, T3L); |
887 | | T42 = FMA(KP198912367, T3O, T3P); |
888 | | T43 = FNMS(KP198912367, T3R, T3S); |
889 | | T4d = T43 - T42; |
890 | | T44 = T42 + T43; |
891 | | T4l = FMA(KP980785280, T4d, T4c); |
892 | | T4e = FNMS(KP980785280, T4d, T4c); |
893 | | } |
894 | | { |
895 | | E T3N, T4h, T3U, T4i, T3Q, T3T; |
896 | | T3N = FMA(KP923879532, T3M, T3L); |
897 | | T4h = FNMS(KP923879532, T40, T3Z); |
898 | | T3Q = FNMS(KP198912367, T3P, T3O); |
899 | | T3T = FMA(KP198912367, T3S, T3R); |
900 | | T3U = T3Q + T3T; |
901 | | T4i = T3Q - T3T; |
902 | | T3V = FNMS(KP980785280, T3U, T3N); |
903 | | T4n = FMA(KP980785280, T4i, T4h); |
904 | | T47 = FMA(KP980785280, T3U, T3N); |
905 | | T4j = FNMS(KP980785280, T4i, T4h); |
906 | | } |
907 | | { |
908 | | E T4f, T4k, T4m, T4o; |
909 | | T4f = T4b * T4e; |
910 | | Ip[WS(rs, 12)] = FNMS(T4g, T4j, T4f); |
911 | | T4k = T4b * T4j; |
912 | | Im[WS(rs, 12)] = FMA(T4g, T4e, T4k); |
913 | | T4m = T12 * T4l; |
914 | | Ip[WS(rs, 4)] = FNMS(T15, T4n, T4m); |
915 | | T4o = T12 * T4n; |
916 | | Im[WS(rs, 4)] = FMA(T15, T4l, T4o); |
917 | | { |
918 | | E T48, T4a, T49, T3W, T46, T45; |
919 | | T48 = T37 * T47; |
920 | | T4a = T39 * T47; |
921 | | T49 = FMA(KP980785280, T44, T41); |
922 | | Ip[0] = FNMS(T39, T49, T48); |
923 | | Im[0] = FMA(T37, T49, T4a); |
924 | | T3W = T3K * T3V; |
925 | | T46 = T3Y * T3V; |
926 | | T45 = FNMS(KP980785280, T44, T41); |
927 | | Ip[WS(rs, 8)] = FNMS(T3Y, T45, T3W); |
928 | | Im[WS(rs, 8)] = FMA(T3K, T45, T46); |
929 | | } |
930 | | } |
931 | | } |
932 | | { |
933 | | E T5L, T5O, T6c, T63, T5F, T6f, T5S, T69; |
934 | | T5L = FMA(KP923879532, T5K, T5J); |
935 | | { |
936 | | E T61, T5M, T5N, T62; |
937 | | T61 = FMA(KP923879532, T5w, T5v); |
938 | | T5M = FMA(KP198912367, T5y, T5z); |
939 | | T5N = FMA(KP198912367, T5B, T5C); |
940 | | T62 = T5M + T5N; |
941 | | T5O = T5M - T5N; |
942 | | T6c = FMA(KP980785280, T62, T61); |
943 | | T63 = FNMS(KP980785280, T62, T61); |
944 | | } |
945 | | { |
946 | | E T5x, T67, T5E, T68, T5A, T5D; |
947 | | T5x = FNMS(KP923879532, T5w, T5v); |
948 | | T67 = FNMS(KP923879532, T5K, T5J); |
949 | | T5A = FNMS(KP198912367, T5z, T5y); |
950 | | T5D = FNMS(KP198912367, T5C, T5B); |
951 | | T5E = T5A + T5D; |
952 | | T68 = T5D - T5A; |
953 | | T5F = FMA(KP980785280, T5E, T5x); |
954 | | T6f = FNMS(KP980785280, T68, T67); |
955 | | T5S = FNMS(KP980785280, T5E, T5x); |
956 | | T69 = FMA(KP980785280, T68, T67); |
957 | | } |
958 | | { |
959 | | E T64, T6a, T6d, T6g; |
960 | | T64 = T60 * T63; |
961 | | Ip[WS(rs, 7)] = FNMS(T66, T69, T64); |
962 | | T6a = T60 * T69; |
963 | | Im[WS(rs, 7)] = FMA(T66, T63, T6a); |
964 | | T6d = T6b * T6c; |
965 | | Ip[WS(rs, 15)] = FNMS(T6e, T6f, T6d); |
966 | | T6g = T6b * T6f; |
967 | | Im[WS(rs, 15)] = FMA(T6e, T6c, T6g); |
968 | | { |
969 | | E T5T, T5W, T5V, T5G, T5Q, T5P; |
970 | | T5T = T5R * T5S; |
971 | | T5W = T5U * T5S; |
972 | | T5V = FMA(KP980785280, T5O, T5L); |
973 | | Ip[WS(rs, 3)] = FNMS(T5U, T5V, T5T); |
974 | | Im[WS(rs, 3)] = FMA(T5R, T5V, T5W); |
975 | | T5G = T5u * T5F; |
976 | | T5Q = T5I * T5F; |
977 | | T5P = FNMS(KP980785280, T5O, T5L); |
978 | | Ip[WS(rs, 11)] = FNMS(T5I, T5P, T5G); |
979 | | Im[WS(rs, 11)] = FMA(T5u, T5P, T5Q); |
980 | | } |
981 | | } |
982 | | } |
983 | | } |
984 | | } |
985 | | } |
986 | | } |
987 | | |
988 | | static const tw_instr twinstr[] = { |
989 | | { TW_CEXP, 1, 1 }, |
990 | | { TW_CEXP, 1, 3 }, |
991 | | { TW_CEXP, 1, 9 }, |
992 | | { TW_CEXP, 1, 27 }, |
993 | | { TW_NEXT, 1, 0 } |
994 | | }; |
995 | | |
996 | | static const hc2c_desc desc = { 32, "hc2cb2_32", twinstr, &GENUS, { 236, 98, 252, 0 } }; |
997 | | |
998 | | void X(codelet_hc2cb2_32) (planner *p) { |
999 | | X(khc2c_register) (p, hc2cb2_32, &desc, HC2C_VIA_RDFT); |
1000 | | } |
1001 | | #else |
1002 | | |
1003 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 32 -dif -name hc2cb2_32 -include rdft/scalar/hc2cb.h */ |
1004 | | |
1005 | | /* |
1006 | | * This function contains 488 FP additions, 280 FP multiplications, |
1007 | | * (or, 376 additions, 168 multiplications, 112 fused multiply/add), |
1008 | | * 160 stack variables, 7 constants, and 128 memory accesses |
1009 | | */ |
1010 | | #include "rdft/scalar/hc2cb.h" |
1011 | | |
1012 | | static void hc2cb2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
1013 | 0 | { |
1014 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
1015 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
1016 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
1017 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
1018 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
1019 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
1020 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1021 | 0 | { |
1022 | 0 | INT m; |
1023 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { |
1024 | 0 | E T11, T14, T12, T15, T17, T2z, T2B, T1c, T18, T1d, T1g, T1k, T2F, T2L, T3t; |
1025 | 0 | E T4H, T3h, T3V, T3b, T4v, T4T, T4X, T6t, T71, T6z, T75, T81, T8x, T8f, T8z; |
1026 | 0 | E T2R, T2V, T8p, T8t, T4r, T4t, T53, T69, T3n, T3r, T7P, T7T, T4P, T4R, T6F; |
1027 | 0 | E T6R, T1f, T2X, T1j, T2Y, T1l, T31, T2d, T2Z, T49, T4h, T4c, T4i, T4d, T4n; |
1028 | 0 | E T4f, T4j; |
1029 | 0 | { |
1030 | 0 | E T2P, T3q, T2U, T3l, T2Q, T3p, T2T, T3m, T2D, T3g, T2K, T39, T2E, T3f, T2J; |
1031 | 0 | E T3a; |
1032 | 0 | { |
1033 | 0 | E T13, T1b, T16, T1a; |
1034 | 0 | T11 = W[0]; |
1035 | 0 | T14 = W[1]; |
1036 | 0 | T12 = W[2]; |
1037 | 0 | T15 = W[3]; |
1038 | 0 | T13 = T11 * T12; |
1039 | 0 | T1b = T14 * T12; |
1040 | 0 | T16 = T14 * T15; |
1041 | 0 | T1a = T11 * T15; |
1042 | 0 | T17 = T13 + T16; |
1043 | 0 | T2z = T13 - T16; |
1044 | 0 | T2B = T1a + T1b; |
1045 | 0 | T1c = T1a - T1b; |
1046 | 0 | T18 = W[4]; |
1047 | 0 | T2P = T12 * T18; |
1048 | 0 | T3q = T14 * T18; |
1049 | 0 | T2U = T15 * T18; |
1050 | 0 | T3l = T11 * T18; |
1051 | 0 | T1d = W[5]; |
1052 | 0 | T2Q = T15 * T1d; |
1053 | 0 | T3p = T11 * T1d; |
1054 | 0 | T2T = T12 * T1d; |
1055 | 0 | T3m = T14 * T1d; |
1056 | 0 | T1g = W[6]; |
1057 | 0 | T2D = T11 * T1g; |
1058 | 0 | T3g = T15 * T1g; |
1059 | 0 | T2K = T14 * T1g; |
1060 | 0 | T39 = T12 * T1g; |
1061 | 0 | T1k = W[7]; |
1062 | 0 | T2E = T14 * T1k; |
1063 | 0 | T3f = T12 * T1k; |
1064 | 0 | T2J = T11 * T1k; |
1065 | 0 | T3a = T15 * T1k; |
1066 | 0 | } |
1067 | 0 | T2F = T2D - T2E; |
1068 | 0 | T2L = T2J + T2K; |
1069 | 0 | T3t = T39 - T3a; |
1070 | 0 | T4H = T2J - T2K; |
1071 | 0 | T3h = T3f - T3g; |
1072 | 0 | T3V = T3f + T3g; |
1073 | 0 | T3b = T39 + T3a; |
1074 | 0 | T4v = T2D + T2E; |
1075 | 0 | T4T = FMA(T18, T1g, T1d * T1k); |
1076 | 0 | T4X = FNMS(T1d, T1g, T18 * T1k); |
1077 | 0 | { |
1078 | 0 | E T6r, T6s, T6x, T6y; |
1079 | 0 | T6r = T17 * T1g; |
1080 | 0 | T6s = T1c * T1k; |
1081 | 0 | T6t = T6r - T6s; |
1082 | 0 | T71 = T6r + T6s; |
1083 | 0 | T6x = T17 * T1k; |
1084 | 0 | T6y = T1c * T1g; |
1085 | 0 | T6z = T6x + T6y; |
1086 | 0 | T75 = T6x - T6y; |
1087 | 0 | } |
1088 | 0 | { |
1089 | 0 | E T7Z, T80, T8d, T8e; |
1090 | 0 | T7Z = T2z * T1g; |
1091 | 0 | T80 = T2B * T1k; |
1092 | 0 | T81 = T7Z + T80; |
1093 | 0 | T8x = T7Z - T80; |
1094 | 0 | T8d = T2z * T1k; |
1095 | 0 | T8e = T2B * T1g; |
1096 | 0 | T8f = T8d - T8e; |
1097 | 0 | T8z = T8d + T8e; |
1098 | 0 | T2R = T2P - T2Q; |
1099 | 0 | T2V = T2T + T2U; |
1100 | 0 | T8p = FMA(T2R, T1g, T2V * T1k); |
1101 | 0 | T8t = FNMS(T2V, T1g, T2R * T1k); |
1102 | 0 | } |
1103 | 0 | T4r = T2P + T2Q; |
1104 | 0 | T4t = T2T - T2U; |
1105 | 0 | T53 = FMA(T4r, T1g, T4t * T1k); |
1106 | 0 | T69 = FNMS(T4t, T1g, T4r * T1k); |
1107 | 0 | T3n = T3l + T3m; |
1108 | 0 | T3r = T3p - T3q; |
1109 | 0 | T7P = FMA(T3n, T1g, T3r * T1k); |
1110 | 0 | T7T = FNMS(T3r, T1g, T3n * T1k); |
1111 | 0 | T4P = T3l - T3m; |
1112 | 0 | T4R = T3p + T3q; |
1113 | 0 | T6F = FMA(T4P, T1g, T4R * T1k); |
1114 | 0 | T6R = FNMS(T4R, T1g, T4P * T1k); |
1115 | 0 | { |
1116 | 0 | E T19, T1e, T1h, T1i; |
1117 | 0 | T19 = T17 * T18; |
1118 | 0 | T1e = T1c * T1d; |
1119 | 0 | T1f = T19 + T1e; |
1120 | 0 | T2X = T19 - T1e; |
1121 | 0 | T1h = T17 * T1d; |
1122 | 0 | T1i = T1c * T18; |
1123 | 0 | T1j = T1h - T1i; |
1124 | 0 | T2Y = T1h + T1i; |
1125 | 0 | } |
1126 | 0 | T1l = FMA(T1f, T1g, T1j * T1k); |
1127 | 0 | T31 = FNMS(T2Y, T1g, T2X * T1k); |
1128 | 0 | T2d = FNMS(T1j, T1g, T1f * T1k); |
1129 | 0 | T2Z = FMA(T2X, T1g, T2Y * T1k); |
1130 | 0 | { |
1131 | 0 | E T47, T48, T4a, T4b; |
1132 | 0 | T47 = T2z * T18; |
1133 | 0 | T48 = T2B * T1d; |
1134 | 0 | T49 = T47 - T48; |
1135 | 0 | T4h = T47 + T48; |
1136 | 0 | T4a = T2z * T1d; |
1137 | 0 | T4b = T2B * T18; |
1138 | 0 | T4c = T4a + T4b; |
1139 | 0 | T4i = T4a - T4b; |
1140 | 0 | } |
1141 | 0 | T4d = FMA(T49, T1g, T4c * T1k); |
1142 | 0 | T4n = FNMS(T4i, T1g, T4h * T1k); |
1143 | 0 | T4f = FNMS(T4c, T1g, T49 * T1k); |
1144 | 0 | T4j = FMA(T4h, T1g, T4i * T1k); |
1145 | 0 | } |
1146 | 0 | { |
1147 | 0 | E T56, T7b, T7C, T6c, Tf, T1m, T6f, T7c, T3Y, T4I, T2t, T32, T5d, T7D, T3w; |
1148 | 0 | E T4w, Tu, T2e, T7g, T7F, T7j, T7G, T1B, T33, T3z, T40, T5l, T6i, T5s, T6h; |
1149 | 0 | E T3C, T3Z, TK, T1D, T7v, T86, T7y, T85, T1S, T35, T3O, T4C, T5F, T6J, T5M; |
1150 | 0 | E T6K, T3R, T4D, TZ, T1U, T7o, T89, T7r, T88, T29, T36, T3H, T4z, T5Y, T6M; |
1151 | 0 | E T65, T6N, T3K, T4A; |
1152 | 0 | { |
1153 | 0 | E T3, T54, T2h, T6b, T6, T6a, T2k, T55, Ta, T57, T2o, T58, Td, T5a, T2r; |
1154 | 0 | E T5b; |
1155 | 0 | { |
1156 | 0 | E T1, T2, T2f, T2g; |
1157 | 0 | T1 = Rp[0]; |
1158 | 0 | T2 = Rm[WS(rs, 15)]; |
1159 | 0 | T3 = T1 + T2; |
1160 | 0 | T54 = T1 - T2; |
1161 | 0 | T2f = Ip[0]; |
1162 | 0 | T2g = Im[WS(rs, 15)]; |
1163 | 0 | T2h = T2f - T2g; |
1164 | 0 | T6b = T2f + T2g; |
1165 | 0 | } |
1166 | 0 | { |
1167 | 0 | E T4, T5, T2i, T2j; |
1168 | 0 | T4 = Rp[WS(rs, 8)]; |
1169 | 0 | T5 = Rm[WS(rs, 7)]; |
1170 | 0 | T6 = T4 + T5; |
1171 | 0 | T6a = T4 - T5; |
1172 | 0 | T2i = Ip[WS(rs, 8)]; |
1173 | 0 | T2j = Im[WS(rs, 7)]; |
1174 | 0 | T2k = T2i - T2j; |
1175 | 0 | T55 = T2i + T2j; |
1176 | 0 | } |
1177 | 0 | { |
1178 | 0 | E T8, T9, T2m, T2n; |
1179 | 0 | T8 = Rp[WS(rs, 4)]; |
1180 | 0 | T9 = Rm[WS(rs, 11)]; |
1181 | 0 | Ta = T8 + T9; |
1182 | 0 | T57 = T8 - T9; |
1183 | 0 | T2m = Ip[WS(rs, 4)]; |
1184 | 0 | T2n = Im[WS(rs, 11)]; |
1185 | 0 | T2o = T2m - T2n; |
1186 | 0 | T58 = T2m + T2n; |
1187 | 0 | } |
1188 | 0 | { |
1189 | 0 | E Tb, Tc, T2p, T2q; |
1190 | 0 | Tb = Rm[WS(rs, 3)]; |
1191 | 0 | Tc = Rp[WS(rs, 12)]; |
1192 | 0 | Td = Tb + Tc; |
1193 | 0 | T5a = Tb - Tc; |
1194 | 0 | T2p = Ip[WS(rs, 12)]; |
1195 | 0 | T2q = Im[WS(rs, 3)]; |
1196 | 0 | T2r = T2p - T2q; |
1197 | 0 | T5b = T2p + T2q; |
1198 | 0 | } |
1199 | 0 | { |
1200 | 0 | E T7, Te, T2l, T2s; |
1201 | 0 | T56 = T54 - T55; |
1202 | 0 | T7b = T54 + T55; |
1203 | 0 | T7C = T6b - T6a; |
1204 | 0 | T6c = T6a + T6b; |
1205 | 0 | T7 = T3 + T6; |
1206 | 0 | Te = Ta + Td; |
1207 | 0 | Tf = T7 + Te; |
1208 | 0 | T1m = T7 - Te; |
1209 | 0 | { |
1210 | 0 | E T6d, T6e, T3W, T3X; |
1211 | 0 | T6d = T57 + T58; |
1212 | 0 | T6e = T5a + T5b; |
1213 | 0 | T6f = KP707106781 * (T6d - T6e); |
1214 | 0 | T7c = KP707106781 * (T6d + T6e); |
1215 | 0 | T3W = T2h - T2k; |
1216 | 0 | T3X = Ta - Td; |
1217 | 0 | T3Y = T3W - T3X; |
1218 | 0 | T4I = T3X + T3W; |
1219 | 0 | } |
1220 | 0 | T2l = T2h + T2k; |
1221 | 0 | T2s = T2o + T2r; |
1222 | 0 | T2t = T2l - T2s; |
1223 | 0 | T32 = T2l + T2s; |
1224 | 0 | { |
1225 | 0 | E T59, T5c, T3u, T3v; |
1226 | 0 | T59 = T57 - T58; |
1227 | 0 | T5c = T5a - T5b; |
1228 | 0 | T5d = KP707106781 * (T59 + T5c); |
1229 | 0 | T7D = KP707106781 * (T59 - T5c); |
1230 | 0 | T3u = T3 - T6; |
1231 | 0 | T3v = T2r - T2o; |
1232 | 0 | T3w = T3u - T3v; |
1233 | 0 | T4w = T3u + T3v; |
1234 | 0 | } |
1235 | 0 | } |
1236 | 0 | } |
1237 | 0 | { |
1238 | 0 | E Ti, T5p, T1w, T5n, Tl, T5m, T1z, T5q, Tp, T5i, T1p, T5g, Ts, T5f, T1s; |
1239 | 0 | E T5j; |
1240 | 0 | { |
1241 | 0 | E Tg, Th, T1u, T1v; |
1242 | 0 | Tg = Rp[WS(rs, 2)]; |
1243 | 0 | Th = Rm[WS(rs, 13)]; |
1244 | 0 | Ti = Tg + Th; |
1245 | 0 | T5p = Tg - Th; |
1246 | 0 | T1u = Ip[WS(rs, 2)]; |
1247 | 0 | T1v = Im[WS(rs, 13)]; |
1248 | 0 | T1w = T1u - T1v; |
1249 | 0 | T5n = T1u + T1v; |
1250 | 0 | } |
1251 | 0 | { |
1252 | 0 | E Tj, Tk, T1x, T1y; |
1253 | 0 | Tj = Rp[WS(rs, 10)]; |
1254 | 0 | Tk = Rm[WS(rs, 5)]; |
1255 | 0 | Tl = Tj + Tk; |
1256 | 0 | T5m = Tj - Tk; |
1257 | 0 | T1x = Ip[WS(rs, 10)]; |
1258 | 0 | T1y = Im[WS(rs, 5)]; |
1259 | 0 | T1z = T1x - T1y; |
1260 | 0 | T5q = T1x + T1y; |
1261 | 0 | } |
1262 | 0 | { |
1263 | 0 | E Tn, To, T1n, T1o; |
1264 | 0 | Tn = Rm[WS(rs, 1)]; |
1265 | 0 | To = Rp[WS(rs, 14)]; |
1266 | 0 | Tp = Tn + To; |
1267 | 0 | T5i = Tn - To; |
1268 | 0 | T1n = Ip[WS(rs, 14)]; |
1269 | 0 | T1o = Im[WS(rs, 1)]; |
1270 | 0 | T1p = T1n - T1o; |
1271 | 0 | T5g = T1n + T1o; |
1272 | 0 | } |
1273 | 0 | { |
1274 | 0 | E Tq, Tr, T1q, T1r; |
1275 | 0 | Tq = Rp[WS(rs, 6)]; |
1276 | 0 | Tr = Rm[WS(rs, 9)]; |
1277 | 0 | Ts = Tq + Tr; |
1278 | 0 | T5f = Tq - Tr; |
1279 | 0 | T1q = Ip[WS(rs, 6)]; |
1280 | 0 | T1r = Im[WS(rs, 9)]; |
1281 | 0 | T1s = T1q - T1r; |
1282 | 0 | T5j = T1q + T1r; |
1283 | 0 | } |
1284 | 0 | { |
1285 | 0 | E Tm, Tt, T7e, T7f; |
1286 | 0 | Tm = Ti + Tl; |
1287 | 0 | Tt = Tp + Ts; |
1288 | 0 | Tu = Tm + Tt; |
1289 | 0 | T2e = Tm - Tt; |
1290 | 0 | T7e = T5p + T5q; |
1291 | 0 | T7f = T5n - T5m; |
1292 | 0 | T7g = FNMS(KP923879532, T7f, KP382683432 * T7e); |
1293 | 0 | T7F = FMA(KP382683432, T7f, KP923879532 * T7e); |
1294 | 0 | } |
1295 | 0 | { |
1296 | 0 | E T7h, T7i, T1t, T1A; |
1297 | 0 | T7h = T5i + T5j; |
1298 | 0 | T7i = T5f + T5g; |
1299 | 0 | T7j = FNMS(KP923879532, T7i, KP382683432 * T7h); |
1300 | 0 | T7G = FMA(KP382683432, T7i, KP923879532 * T7h); |
1301 | 0 | T1t = T1p + T1s; |
1302 | 0 | T1A = T1w + T1z; |
1303 | 0 | T1B = T1t - T1A; |
1304 | 0 | T33 = T1A + T1t; |
1305 | 0 | } |
1306 | 0 | { |
1307 | 0 | E T3x, T3y, T5h, T5k; |
1308 | 0 | T3x = T1p - T1s; |
1309 | 0 | T3y = Tp - Ts; |
1310 | 0 | T3z = T3x - T3y; |
1311 | 0 | T40 = T3y + T3x; |
1312 | 0 | T5h = T5f - T5g; |
1313 | 0 | T5k = T5i - T5j; |
1314 | 0 | T5l = FNMS(KP382683432, T5k, KP923879532 * T5h); |
1315 | 0 | T6i = FMA(KP382683432, T5h, KP923879532 * T5k); |
1316 | 0 | } |
1317 | 0 | { |
1318 | 0 | E T5o, T5r, T3A, T3B; |
1319 | 0 | T5o = T5m + T5n; |
1320 | 0 | T5r = T5p - T5q; |
1321 | 0 | T5s = FMA(KP923879532, T5o, KP382683432 * T5r); |
1322 | 0 | T6h = FNMS(KP382683432, T5o, KP923879532 * T5r); |
1323 | 0 | T3A = Ti - Tl; |
1324 | 0 | T3B = T1w - T1z; |
1325 | 0 | T3C = T3A + T3B; |
1326 | 0 | T3Z = T3A - T3B; |
1327 | 0 | } |
1328 | 0 | } |
1329 | 0 | { |
1330 | 0 | E Ty, T5v, T1G, T5H, TB, T5G, T1J, T5w, TI, T5K, T1Q, T5D, TF, T5J, T1N; |
1331 | 0 | E T5A; |
1332 | 0 | { |
1333 | 0 | E Tw, Tx, T1H, T1I; |
1334 | 0 | Tw = Rp[WS(rs, 1)]; |
1335 | 0 | Tx = Rm[WS(rs, 14)]; |
1336 | 0 | Ty = Tw + Tx; |
1337 | 0 | T5v = Tw - Tx; |
1338 | 0 | { |
1339 | 0 | E T1E, T1F, Tz, TA; |
1340 | 0 | T1E = Ip[WS(rs, 1)]; |
1341 | 0 | T1F = Im[WS(rs, 14)]; |
1342 | 0 | T1G = T1E - T1F; |
1343 | 0 | T5H = T1E + T1F; |
1344 | 0 | Tz = Rp[WS(rs, 9)]; |
1345 | 0 | TA = Rm[WS(rs, 6)]; |
1346 | 0 | TB = Tz + TA; |
1347 | 0 | T5G = Tz - TA; |
1348 | 0 | } |
1349 | 0 | T1H = Ip[WS(rs, 9)]; |
1350 | 0 | T1I = Im[WS(rs, 6)]; |
1351 | 0 | T1J = T1H - T1I; |
1352 | 0 | T5w = T1H + T1I; |
1353 | 0 | { |
1354 | 0 | E TG, TH, T5B, T1O, T1P, T5C; |
1355 | 0 | TG = Rm[WS(rs, 2)]; |
1356 | 0 | TH = Rp[WS(rs, 13)]; |
1357 | 0 | T5B = TG - TH; |
1358 | 0 | T1O = Ip[WS(rs, 13)]; |
1359 | 0 | T1P = Im[WS(rs, 2)]; |
1360 | 0 | T5C = T1O + T1P; |
1361 | 0 | TI = TG + TH; |
1362 | 0 | T5K = T5B + T5C; |
1363 | 0 | T1Q = T1O - T1P; |
1364 | 0 | T5D = T5B - T5C; |
1365 | 0 | } |
1366 | 0 | { |
1367 | 0 | E TD, TE, T5y, T1L, T1M, T5z; |
1368 | 0 | TD = Rp[WS(rs, 5)]; |
1369 | 0 | TE = Rm[WS(rs, 10)]; |
1370 | 0 | T5y = TD - TE; |
1371 | 0 | T1L = Ip[WS(rs, 5)]; |
1372 | 0 | T1M = Im[WS(rs, 10)]; |
1373 | 0 | T5z = T1L + T1M; |
1374 | 0 | TF = TD + TE; |
1375 | 0 | T5J = T5y + T5z; |
1376 | 0 | T1N = T1L - T1M; |
1377 | 0 | T5A = T5y - T5z; |
1378 | 0 | } |
1379 | 0 | } |
1380 | 0 | { |
1381 | 0 | E TC, TJ, T7t, T7u; |
1382 | 0 | TC = Ty + TB; |
1383 | 0 | TJ = TF + TI; |
1384 | 0 | TK = TC + TJ; |
1385 | 0 | T1D = TC - TJ; |
1386 | 0 | T7t = T5H - T5G; |
1387 | 0 | T7u = KP707106781 * (T5A - T5D); |
1388 | 0 | T7v = T7t + T7u; |
1389 | 0 | T86 = T7t - T7u; |
1390 | 0 | } |
1391 | 0 | { |
1392 | 0 | E T7w, T7x, T1K, T1R; |
1393 | 0 | T7w = T5v + T5w; |
1394 | 0 | T7x = KP707106781 * (T5J + T5K); |
1395 | 0 | T7y = T7w - T7x; |
1396 | 0 | T85 = T7w + T7x; |
1397 | 0 | T1K = T1G + T1J; |
1398 | 0 | T1R = T1N + T1Q; |
1399 | 0 | T1S = T1K - T1R; |
1400 | 0 | T35 = T1K + T1R; |
1401 | 0 | } |
1402 | 0 | { |
1403 | 0 | E T3M, T3N, T5x, T5E; |
1404 | 0 | T3M = T1G - T1J; |
1405 | 0 | T3N = TF - TI; |
1406 | 0 | T3O = T3M - T3N; |
1407 | 0 | T4C = T3N + T3M; |
1408 | 0 | T5x = T5v - T5w; |
1409 | 0 | T5E = KP707106781 * (T5A + T5D); |
1410 | 0 | T5F = T5x - T5E; |
1411 | 0 | T6J = T5x + T5E; |
1412 | 0 | } |
1413 | 0 | { |
1414 | 0 | E T5I, T5L, T3P, T3Q; |
1415 | 0 | T5I = T5G + T5H; |
1416 | 0 | T5L = KP707106781 * (T5J - T5K); |
1417 | 0 | T5M = T5I - T5L; |
1418 | 0 | T6K = T5I + T5L; |
1419 | 0 | T3P = Ty - TB; |
1420 | 0 | T3Q = T1Q - T1N; |
1421 | 0 | T3R = T3P - T3Q; |
1422 | 0 | T4D = T3P + T3Q; |
1423 | 0 | } |
1424 | 0 | } |
1425 | 0 | { |
1426 | 0 | E TN, T5O, T1X, T60, TQ, T5Z, T20, T5P, TX, T63, T27, T5W, TU, T62, T24; |
1427 | 0 | E T5T; |
1428 | 0 | { |
1429 | 0 | E TL, TM, T1Y, T1Z; |
1430 | 0 | TL = Rm[0]; |
1431 | 0 | TM = Rp[WS(rs, 15)]; |
1432 | 0 | TN = TL + TM; |
1433 | 0 | T5O = TL - TM; |
1434 | 0 | { |
1435 | 0 | E T1V, T1W, TO, TP; |
1436 | 0 | T1V = Ip[WS(rs, 15)]; |
1437 | 0 | T1W = Im[0]; |
1438 | 0 | T1X = T1V - T1W; |
1439 | 0 | T60 = T1V + T1W; |
1440 | 0 | TO = Rp[WS(rs, 7)]; |
1441 | 0 | TP = Rm[WS(rs, 8)]; |
1442 | 0 | TQ = TO + TP; |
1443 | 0 | T5Z = TO - TP; |
1444 | 0 | } |
1445 | 0 | T1Y = Ip[WS(rs, 7)]; |
1446 | 0 | T1Z = Im[WS(rs, 8)]; |
1447 | 0 | T20 = T1Y - T1Z; |
1448 | 0 | T5P = T1Y + T1Z; |
1449 | 0 | { |
1450 | 0 | E TV, TW, T5U, T25, T26, T5V; |
1451 | 0 | TV = Rm[WS(rs, 4)]; |
1452 | 0 | TW = Rp[WS(rs, 11)]; |
1453 | 0 | T5U = TV - TW; |
1454 | 0 | T25 = Ip[WS(rs, 11)]; |
1455 | 0 | T26 = Im[WS(rs, 4)]; |
1456 | 0 | T5V = T25 + T26; |
1457 | 0 | TX = TV + TW; |
1458 | 0 | T63 = T5U + T5V; |
1459 | 0 | T27 = T25 - T26; |
1460 | 0 | T5W = T5U - T5V; |
1461 | 0 | } |
1462 | 0 | { |
1463 | 0 | E TS, TT, T5R, T22, T23, T5S; |
1464 | 0 | TS = Rp[WS(rs, 3)]; |
1465 | 0 | TT = Rm[WS(rs, 12)]; |
1466 | 0 | T5R = TS - TT; |
1467 | 0 | T22 = Ip[WS(rs, 3)]; |
1468 | 0 | T23 = Im[WS(rs, 12)]; |
1469 | 0 | T5S = T22 + T23; |
1470 | 0 | TU = TS + TT; |
1471 | 0 | T62 = T5R + T5S; |
1472 | 0 | T24 = T22 - T23; |
1473 | 0 | T5T = T5R - T5S; |
1474 | 0 | } |
1475 | 0 | } |
1476 | 0 | { |
1477 | 0 | E TR, TY, T7m, T7n; |
1478 | 0 | TR = TN + TQ; |
1479 | 0 | TY = TU + TX; |
1480 | 0 | TZ = TR + TY; |
1481 | 0 | T1U = TR - TY; |
1482 | 0 | T7m = KP707106781 * (T5T - T5W); |
1483 | 0 | T7n = T5Z + T60; |
1484 | 0 | T7o = T7m - T7n; |
1485 | 0 | T89 = T7n + T7m; |
1486 | 0 | } |
1487 | 0 | { |
1488 | 0 | E T7p, T7q, T21, T28; |
1489 | 0 | T7p = T5O + T5P; |
1490 | 0 | T7q = KP707106781 * (T62 + T63); |
1491 | 0 | T7r = T7p - T7q; |
1492 | 0 | T88 = T7p + T7q; |
1493 | 0 | T21 = T1X + T20; |
1494 | 0 | T28 = T24 + T27; |
1495 | 0 | T29 = T21 - T28; |
1496 | 0 | T36 = T21 + T28; |
1497 | 0 | } |
1498 | 0 | { |
1499 | 0 | E T3F, T3G, T5Q, T5X; |
1500 | 0 | T3F = T1X - T20; |
1501 | 0 | T3G = TU - TX; |
1502 | 0 | T3H = T3F - T3G; |
1503 | 0 | T4z = T3G + T3F; |
1504 | 0 | T5Q = T5O - T5P; |
1505 | 0 | T5X = KP707106781 * (T5T + T5W); |
1506 | 0 | T5Y = T5Q - T5X; |
1507 | 0 | T6M = T5Q + T5X; |
1508 | 0 | } |
1509 | 0 | { |
1510 | 0 | E T61, T64, T3I, T3J; |
1511 | 0 | T61 = T5Z - T60; |
1512 | 0 | T64 = KP707106781 * (T62 - T63); |
1513 | 0 | T65 = T61 - T64; |
1514 | 0 | T6N = T61 + T64; |
1515 | 0 | T3I = TN - TQ; |
1516 | 0 | T3J = T27 - T24; |
1517 | 0 | T3K = T3I - T3J; |
1518 | 0 | T4A = T3I + T3J; |
1519 | 0 | } |
1520 | 0 | } |
1521 | 0 | { |
1522 | 0 | E Tv, T10, T30, T34, T37, T38; |
1523 | 0 | Tv = Tf + Tu; |
1524 | 0 | T10 = TK + TZ; |
1525 | 0 | T30 = Tv - T10; |
1526 | 0 | T34 = T32 + T33; |
1527 | 0 | T37 = T35 + T36; |
1528 | 0 | T38 = T34 - T37; |
1529 | 0 | Rp[0] = Tv + T10; |
1530 | 0 | Rm[0] = T34 + T37; |
1531 | 0 | Rp[WS(rs, 8)] = FNMS(T31, T38, T2Z * T30); |
1532 | 0 | Rm[WS(rs, 8)] = FMA(T31, T30, T2Z * T38); |
1533 | 0 | } |
1534 | 0 | { |
1535 | 0 | E T3e, T3o, T3k, T3s; |
1536 | 0 | { |
1537 | 0 | E T3c, T3d, T3i, T3j; |
1538 | 0 | T3c = Tf - Tu; |
1539 | 0 | T3d = T36 - T35; |
1540 | 0 | T3e = T3c - T3d; |
1541 | 0 | T3o = T3c + T3d; |
1542 | 0 | T3i = T32 - T33; |
1543 | 0 | T3j = TK - TZ; |
1544 | 0 | T3k = T3i - T3j; |
1545 | 0 | T3s = T3j + T3i; |
1546 | 0 | } |
1547 | 0 | Rp[WS(rs, 12)] = FNMS(T3h, T3k, T3b * T3e); |
1548 | 0 | Rm[WS(rs, 12)] = FMA(T3b, T3k, T3h * T3e); |
1549 | 0 | Rp[WS(rs, 4)] = FNMS(T3r, T3s, T3n * T3o); |
1550 | 0 | Rm[WS(rs, 4)] = FMA(T3n, T3s, T3r * T3o); |
1551 | 0 | } |
1552 | 0 | { |
1553 | 0 | E T1C, T2u, T2M, T2G, T2x, T2H, T2b, T2N; |
1554 | 0 | T1C = T1m + T1B; |
1555 | 0 | T2u = T2e + T2t; |
1556 | 0 | T2M = T2t - T2e; |
1557 | 0 | T2G = T1m - T1B; |
1558 | 0 | { |
1559 | 0 | E T2v, T2w, T1T, T2a; |
1560 | 0 | T2v = T1D + T1S; |
1561 | 0 | T2w = T29 - T1U; |
1562 | 0 | T2x = KP707106781 * (T2v + T2w); |
1563 | 0 | T2H = KP707106781 * (T2w - T2v); |
1564 | 0 | T1T = T1D - T1S; |
1565 | 0 | T2a = T1U + T29; |
1566 | 0 | T2b = KP707106781 * (T1T + T2a); |
1567 | 0 | T2N = KP707106781 * (T1T - T2a); |
1568 | 0 | } |
1569 | 0 | { |
1570 | 0 | E T2c, T2y, T2S, T2W; |
1571 | 0 | T2c = T1C - T2b; |
1572 | 0 | T2y = T2u - T2x; |
1573 | 0 | Rp[WS(rs, 10)] = FNMS(T2d, T2y, T1l * T2c); |
1574 | 0 | Rm[WS(rs, 10)] = FMA(T2d, T2c, T1l * T2y); |
1575 | 0 | T2S = T2G + T2H; |
1576 | 0 | T2W = T2M + T2N; |
1577 | 0 | Rp[WS(rs, 6)] = FNMS(T2V, T2W, T2R * T2S); |
1578 | 0 | Rm[WS(rs, 6)] = FMA(T2R, T2W, T2V * T2S); |
1579 | 0 | } |
1580 | 0 | { |
1581 | 0 | E T2A, T2C, T2I, T2O; |
1582 | 0 | T2A = T1C + T2b; |
1583 | 0 | T2C = T2u + T2x; |
1584 | 0 | Rp[WS(rs, 2)] = FNMS(T2B, T2C, T2z * T2A); |
1585 | 0 | Rm[WS(rs, 2)] = FMA(T2B, T2A, T2z * T2C); |
1586 | 0 | T2I = T2G - T2H; |
1587 | 0 | T2O = T2M - T2N; |
1588 | 0 | Rp[WS(rs, 14)] = FNMS(T2L, T2O, T2F * T2I); |
1589 | 0 | Rm[WS(rs, 14)] = FMA(T2F, T2O, T2L * T2I); |
1590 | 0 | } |
1591 | 0 | } |
1592 | 0 | { |
1593 | 0 | E T4y, T4U, T4K, T4Y, T4F, T4Z, T4N, T4V, T4x, T4J; |
1594 | 0 | T4x = KP707106781 * (T3Z + T40); |
1595 | 0 | T4y = T4w - T4x; |
1596 | 0 | T4U = T4w + T4x; |
1597 | 0 | T4J = KP707106781 * (T3C + T3z); |
1598 | 0 | T4K = T4I - T4J; |
1599 | 0 | T4Y = T4I + T4J; |
1600 | 0 | { |
1601 | 0 | E T4B, T4E, T4L, T4M; |
1602 | 0 | T4B = FNMS(KP382683432, T4A, KP923879532 * T4z); |
1603 | 0 | T4E = FMA(KP923879532, T4C, KP382683432 * T4D); |
1604 | 0 | T4F = T4B - T4E; |
1605 | 0 | T4Z = T4E + T4B; |
1606 | 0 | T4L = FNMS(KP382683432, T4C, KP923879532 * T4D); |
1607 | 0 | T4M = FMA(KP382683432, T4z, KP923879532 * T4A); |
1608 | 0 | T4N = T4L - T4M; |
1609 | 0 | T4V = T4L + T4M; |
1610 | 0 | } |
1611 | 0 | { |
1612 | 0 | E T4G, T4O, T51, T52; |
1613 | 0 | T4G = T4y - T4F; |
1614 | 0 | T4O = T4K - T4N; |
1615 | 0 | Rp[WS(rs, 13)] = FNMS(T4H, T4O, T4v * T4G); |
1616 | 0 | Rm[WS(rs, 13)] = FMA(T4H, T4G, T4v * T4O); |
1617 | 0 | T51 = T4U + T4V; |
1618 | 0 | T52 = T4Y + T4Z; |
1619 | 0 | Rp[WS(rs, 1)] = FNMS(T1c, T52, T17 * T51); |
1620 | 0 | Rm[WS(rs, 1)] = FMA(T17, T52, T1c * T51); |
1621 | 0 | } |
1622 | 0 | { |
1623 | 0 | E T4Q, T4S, T4W, T50; |
1624 | 0 | T4Q = T4y + T4F; |
1625 | 0 | T4S = T4K + T4N; |
1626 | 0 | Rp[WS(rs, 5)] = FNMS(T4R, T4S, T4P * T4Q); |
1627 | 0 | Rm[WS(rs, 5)] = FMA(T4R, T4Q, T4P * T4S); |
1628 | 0 | T4W = T4U - T4V; |
1629 | 0 | T50 = T4Y - T4Z; |
1630 | 0 | Rp[WS(rs, 9)] = FNMS(T4X, T50, T4T * T4W); |
1631 | 0 | Rm[WS(rs, 9)] = FMA(T4T, T50, T4X * T4W); |
1632 | 0 | } |
1633 | 0 | } |
1634 | 0 | { |
1635 | 0 | E T3E, T4k, T42, T4o, T3T, T4p, T45, T4l, T3D, T41; |
1636 | 0 | T3D = KP707106781 * (T3z - T3C); |
1637 | 0 | T3E = T3w - T3D; |
1638 | 0 | T4k = T3w + T3D; |
1639 | 0 | T41 = KP707106781 * (T3Z - T40); |
1640 | 0 | T42 = T3Y - T41; |
1641 | 0 | T4o = T3Y + T41; |
1642 | 0 | { |
1643 | 0 | E T3L, T3S, T43, T44; |
1644 | 0 | T3L = FNMS(KP923879532, T3K, KP382683432 * T3H); |
1645 | 0 | T3S = FMA(KP382683432, T3O, KP923879532 * T3R); |
1646 | 0 | T3T = T3L - T3S; |
1647 | 0 | T4p = T3S + T3L; |
1648 | 0 | T43 = FNMS(KP923879532, T3O, KP382683432 * T3R); |
1649 | 0 | T44 = FMA(KP923879532, T3H, KP382683432 * T3K); |
1650 | 0 | T45 = T43 - T44; |
1651 | 0 | T4l = T43 + T44; |
1652 | 0 | } |
1653 | 0 | { |
1654 | 0 | E T3U, T46, T4s, T4u; |
1655 | 0 | T3U = T3E - T3T; |
1656 | 0 | T46 = T42 - T45; |
1657 | 0 | Rp[WS(rs, 15)] = FNMS(T3V, T46, T3t * T3U); |
1658 | 0 | Rm[WS(rs, 15)] = FMA(T3V, T3U, T3t * T46); |
1659 | 0 | T4s = T4k + T4l; |
1660 | 0 | T4u = T4o + T4p; |
1661 | 0 | Rp[WS(rs, 3)] = FNMS(T4t, T4u, T4r * T4s); |
1662 | 0 | Rm[WS(rs, 3)] = FMA(T4r, T4u, T4t * T4s); |
1663 | 0 | } |
1664 | 0 | { |
1665 | 0 | E T4e, T4g, T4m, T4q; |
1666 | 0 | T4e = T3E + T3T; |
1667 | 0 | T4g = T42 + T45; |
1668 | 0 | Rp[WS(rs, 7)] = FNMS(T4f, T4g, T4d * T4e); |
1669 | 0 | Rm[WS(rs, 7)] = FMA(T4f, T4e, T4d * T4g); |
1670 | 0 | T4m = T4k - T4l; |
1671 | 0 | T4q = T4o - T4p; |
1672 | 0 | Rp[WS(rs, 11)] = FNMS(T4n, T4q, T4j * T4m); |
1673 | 0 | Rm[WS(rs, 11)] = FMA(T4j, T4q, T4n * T4m); |
1674 | 0 | } |
1675 | 0 | } |
1676 | 0 | { |
1677 | 0 | E T6I, T72, T6X, T73, T6P, T77, T6U, T76; |
1678 | 0 | { |
1679 | 0 | E T6G, T6H, T6V, T6W; |
1680 | 0 | T6G = T56 + T5d; |
1681 | 0 | T6H = T6h + T6i; |
1682 | 0 | T6I = T6G + T6H; |
1683 | 0 | T72 = T6G - T6H; |
1684 | 0 | T6V = FMA(KP195090322, T6J, KP980785280 * T6K); |
1685 | 0 | T6W = FNMS(KP195090322, T6M, KP980785280 * T6N); |
1686 | 0 | T6X = T6V + T6W; |
1687 | 0 | T73 = T6W - T6V; |
1688 | 0 | } |
1689 | 0 | { |
1690 | 0 | E T6L, T6O, T6S, T6T; |
1691 | 0 | T6L = FNMS(KP195090322, T6K, KP980785280 * T6J); |
1692 | 0 | T6O = FMA(KP980785280, T6M, KP195090322 * T6N); |
1693 | 0 | T6P = T6L + T6O; |
1694 | 0 | T77 = T6L - T6O; |
1695 | 0 | T6S = T6c + T6f; |
1696 | 0 | T6T = T5s + T5l; |
1697 | 0 | T6U = T6S + T6T; |
1698 | 0 | T76 = T6S - T6T; |
1699 | 0 | } |
1700 | 0 | { |
1701 | 0 | E T6Q, T6Y, T79, T7a; |
1702 | 0 | T6Q = T6I - T6P; |
1703 | 0 | T6Y = T6U - T6X; |
1704 | 0 | Ip[WS(rs, 8)] = FNMS(T6R, T6Y, T6F * T6Q); |
1705 | 0 | Im[WS(rs, 8)] = FMA(T6R, T6Q, T6F * T6Y); |
1706 | 0 | T79 = T72 + T73; |
1707 | 0 | T7a = T76 + T77; |
1708 | 0 | Ip[WS(rs, 4)] = FNMS(T1d, T7a, T18 * T79); |
1709 | 0 | Im[WS(rs, 4)] = FMA(T18, T7a, T1d * T79); |
1710 | 0 | } |
1711 | 0 | { |
1712 | 0 | E T6Z, T70, T74, T78; |
1713 | 0 | T6Z = T6I + T6P; |
1714 | 0 | T70 = T6U + T6X; |
1715 | 0 | Ip[0] = FNMS(T14, T70, T11 * T6Z); |
1716 | 0 | Im[0] = FMA(T14, T6Z, T11 * T70); |
1717 | 0 | T74 = T72 - T73; |
1718 | 0 | T78 = T76 - T77; |
1719 | 0 | Ip[WS(rs, 12)] = FNMS(T75, T78, T71 * T74); |
1720 | 0 | Im[WS(rs, 12)] = FMA(T71, T78, T75 * T74); |
1721 | 0 | } |
1722 | 0 | } |
1723 | 0 | { |
1724 | 0 | E T84, T8q, T8l, T8r, T8b, T8v, T8i, T8u; |
1725 | 0 | { |
1726 | 0 | E T82, T83, T8j, T8k; |
1727 | 0 | T82 = T7b + T7c; |
1728 | 0 | T83 = T7F + T7G; |
1729 | 0 | T84 = T82 - T83; |
1730 | 0 | T8q = T82 + T83; |
1731 | 0 | T8j = FMA(KP195090322, T86, KP980785280 * T85); |
1732 | 0 | T8k = FMA(KP195090322, T89, KP980785280 * T88); |
1733 | 0 | T8l = T8j - T8k; |
1734 | 0 | T8r = T8j + T8k; |
1735 | 0 | } |
1736 | 0 | { |
1737 | 0 | E T87, T8a, T8g, T8h; |
1738 | 0 | T87 = FNMS(KP980785280, T86, KP195090322 * T85); |
1739 | 0 | T8a = FNMS(KP980785280, T89, KP195090322 * T88); |
1740 | 0 | T8b = T87 + T8a; |
1741 | 0 | T8v = T87 - T8a; |
1742 | 0 | T8g = T7C - T7D; |
1743 | 0 | T8h = T7g - T7j; |
1744 | 0 | T8i = T8g + T8h; |
1745 | 0 | T8u = T8g - T8h; |
1746 | 0 | } |
1747 | 0 | { |
1748 | 0 | E T8c, T8m, T8y, T8A; |
1749 | 0 | T8c = T84 - T8b; |
1750 | 0 | T8m = T8i - T8l; |
1751 | 0 | Ip[WS(rs, 11)] = FNMS(T8f, T8m, T81 * T8c); |
1752 | 0 | Im[WS(rs, 11)] = FMA(T8f, T8c, T81 * T8m); |
1753 | 0 | T8y = T8q + T8r; |
1754 | 0 | T8A = T8u - T8v; |
1755 | 0 | Ip[WS(rs, 15)] = FNMS(T8z, T8A, T8x * T8y); |
1756 | 0 | Im[WS(rs, 15)] = FMA(T8x, T8A, T8z * T8y); |
1757 | 0 | } |
1758 | 0 | { |
1759 | 0 | E T8n, T8o, T8s, T8w; |
1760 | 0 | T8n = T84 + T8b; |
1761 | 0 | T8o = T8i + T8l; |
1762 | 0 | Ip[WS(rs, 3)] = FNMS(T1j, T8o, T1f * T8n); |
1763 | 0 | Im[WS(rs, 3)] = FMA(T1j, T8n, T1f * T8o); |
1764 | 0 | T8s = T8q - T8r; |
1765 | 0 | T8w = T8u + T8v; |
1766 | 0 | Ip[WS(rs, 7)] = FNMS(T8t, T8w, T8p * T8s); |
1767 | 0 | Im[WS(rs, 7)] = FMA(T8p, T8w, T8t * T8s); |
1768 | 0 | } |
1769 | 0 | } |
1770 | 0 | { |
1771 | 0 | E T5u, T6u, T6n, T6v, T67, T6B, T6k, T6A; |
1772 | 0 | { |
1773 | 0 | E T5e, T5t, T6l, T6m; |
1774 | 0 | T5e = T56 - T5d; |
1775 | 0 | T5t = T5l - T5s; |
1776 | 0 | T5u = T5e + T5t; |
1777 | 0 | T6u = T5e - T5t; |
1778 | 0 | T6l = FMA(KP831469612, T5F, KP555570233 * T5M); |
1779 | 0 | T6m = FNMS(KP831469612, T5Y, KP555570233 * T65); |
1780 | 0 | T6n = T6l + T6m; |
1781 | 0 | T6v = T6m - T6l; |
1782 | 0 | } |
1783 | 0 | { |
1784 | 0 | E T5N, T66, T6g, T6j; |
1785 | 0 | T5N = FNMS(KP831469612, T5M, KP555570233 * T5F); |
1786 | 0 | T66 = FMA(KP555570233, T5Y, KP831469612 * T65); |
1787 | 0 | T67 = T5N + T66; |
1788 | 0 | T6B = T5N - T66; |
1789 | 0 | T6g = T6c - T6f; |
1790 | 0 | T6j = T6h - T6i; |
1791 | 0 | T6k = T6g + T6j; |
1792 | 0 | T6A = T6g - T6j; |
1793 | 0 | } |
1794 | 0 | { |
1795 | 0 | E T68, T6o, T6D, T6E; |
1796 | 0 | T68 = T5u - T67; |
1797 | 0 | T6o = T6k - T6n; |
1798 | 0 | Ip[WS(rs, 10)] = FNMS(T69, T6o, T53 * T68); |
1799 | 0 | Im[WS(rs, 10)] = FMA(T69, T68, T53 * T6o); |
1800 | 0 | T6D = T6u + T6v; |
1801 | 0 | T6E = T6A + T6B; |
1802 | 0 | Ip[WS(rs, 6)] = FNMS(T4c, T6E, T49 * T6D); |
1803 | 0 | Im[WS(rs, 6)] = FMA(T49, T6E, T4c * T6D); |
1804 | 0 | } |
1805 | 0 | { |
1806 | 0 | E T6p, T6q, T6w, T6C; |
1807 | 0 | T6p = T5u + T67; |
1808 | 0 | T6q = T6k + T6n; |
1809 | 0 | Ip[WS(rs, 2)] = FNMS(T4i, T6q, T4h * T6p); |
1810 | 0 | Im[WS(rs, 2)] = FMA(T4i, T6p, T4h * T6q); |
1811 | 0 | T6w = T6u - T6v; |
1812 | 0 | T6C = T6A - T6B; |
1813 | 0 | Ip[WS(rs, 14)] = FNMS(T6z, T6C, T6t * T6w); |
1814 | 0 | Im[WS(rs, 14)] = FMA(T6t, T6C, T6z * T6w); |
1815 | 0 | } |
1816 | 0 | } |
1817 | 0 | { |
1818 | 0 | E T7l, T7Q, T7L, T7R, T7A, T7V, T7I, T7U; |
1819 | 0 | { |
1820 | 0 | E T7d, T7k, T7J, T7K; |
1821 | 0 | T7d = T7b - T7c; |
1822 | 0 | T7k = T7g + T7j; |
1823 | 0 | T7l = T7d - T7k; |
1824 | 0 | T7Q = T7d + T7k; |
1825 | 0 | T7J = FNMS(KP555570233, T7v, KP831469612 * T7y); |
1826 | 0 | T7K = FMA(KP555570233, T7o, KP831469612 * T7r); |
1827 | 0 | T7L = T7J - T7K; |
1828 | 0 | T7R = T7J + T7K; |
1829 | 0 | } |
1830 | 0 | { |
1831 | 0 | E T7s, T7z, T7E, T7H; |
1832 | 0 | T7s = FNMS(KP555570233, T7r, KP831469612 * T7o); |
1833 | 0 | T7z = FMA(KP831469612, T7v, KP555570233 * T7y); |
1834 | 0 | T7A = T7s - T7z; |
1835 | 0 | T7V = T7z + T7s; |
1836 | 0 | T7E = T7C + T7D; |
1837 | 0 | T7H = T7F - T7G; |
1838 | 0 | T7I = T7E - T7H; |
1839 | 0 | T7U = T7E + T7H; |
1840 | 0 | } |
1841 | 0 | { |
1842 | 0 | E T7B, T7M, T7X, T7Y; |
1843 | 0 | T7B = T7l - T7A; |
1844 | 0 | T7M = T7I - T7L; |
1845 | 0 | Ip[WS(rs, 13)] = FNMS(T1k, T7M, T1g * T7B); |
1846 | 0 | Im[WS(rs, 13)] = FMA(T1k, T7B, T1g * T7M); |
1847 | 0 | T7X = T7Q + T7R; |
1848 | 0 | T7Y = T7U + T7V; |
1849 | 0 | Ip[WS(rs, 1)] = FNMS(T15, T7Y, T12 * T7X); |
1850 | 0 | Im[WS(rs, 1)] = FMA(T12, T7Y, T15 * T7X); |
1851 | 0 | } |
1852 | 0 | { |
1853 | 0 | E T7N, T7O, T7S, T7W; |
1854 | 0 | T7N = T7l + T7A; |
1855 | 0 | T7O = T7I + T7L; |
1856 | 0 | Ip[WS(rs, 5)] = FNMS(T2Y, T7O, T2X * T7N); |
1857 | 0 | Im[WS(rs, 5)] = FMA(T2Y, T7N, T2X * T7O); |
1858 | 0 | T7S = T7Q - T7R; |
1859 | 0 | T7W = T7U - T7V; |
1860 | 0 | Ip[WS(rs, 9)] = FNMS(T7T, T7W, T7P * T7S); |
1861 | 0 | Im[WS(rs, 9)] = FMA(T7P, T7W, T7T * T7S); |
1862 | 0 | } |
1863 | 0 | } |
1864 | 0 | } |
1865 | 0 | } |
1866 | 0 | } |
1867 | 0 | } |
1868 | | |
1869 | | static const tw_instr twinstr[] = { |
1870 | | { TW_CEXP, 1, 1 }, |
1871 | | { TW_CEXP, 1, 3 }, |
1872 | | { TW_CEXP, 1, 9 }, |
1873 | | { TW_CEXP, 1, 27 }, |
1874 | | { TW_NEXT, 1, 0 } |
1875 | | }; |
1876 | | |
1877 | | static const hc2c_desc desc = { 32, "hc2cb2_32", twinstr, &GENUS, { 376, 168, 112, 0 } }; |
1878 | | |
1879 | 1 | void X(codelet_hc2cb2_32) (planner *p) { |
1880 | 1 | X(khc2c_register) (p, hc2cb2_32, &desc, HC2C_VIA_RDFT); |
1881 | 1 | } |
1882 | | #endif |