Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2cb/hc2cbdft_32.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:54:27 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft_32 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 498 FP additions, 260 FP multiplications,
32
 * (or, 300 additions, 62 multiplications, 198 fused multiply/add),
33
 * 122 stack variables, 7 constants, and 128 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cbdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
40
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
41
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
42
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
44
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
45
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
46
     {
47
    INT m;
48
    for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) {
49
         E T3h, T4B, Tv, T3K, T6T, T8Y, T7i, T8L, T7f, T8X, T1G, T4Y, T1j, T4K, T2M;
50
         E T4X, T6d, T8C, T66, T8o, T6M, T8K, T2P, T4L, T3o, T4C, T4q, T5q, T6C, T8p;
51
         E T6z, T8B, TK, TZ, T10, T32, T39, T3L, T4t, T4E, T8t, T8F, T4w, T4F, T8w;
52
         E T8E, T6l, T6E, T6s, T6F, T28, T51, T2R, T4P, T71, T90, T7k, T8P, T2z, T50;
53
         E T2S, T4S, T78, T91, T7l, T8S;
54
         {
55
        E T16, T3l, T2H, T3m, T3, T6, T7, T2E, T13, Ta, Td, Te, T1c, T3j, T3i;
56
        E T2J, T1h, T2K, Tt, T6Q, T6R, T1z, T1E, T6a, T6b, T3g, Tm, T6N, T6O, T1o;
57
        E T1t, T67, T68, T3d, T4o, T4p;
58
        {
59
       E T14, T15, T2F, T2G;
60
       T14 = Ip[0];
61
       T15 = Im[WS(rs, 15)];
62
       T16 = T14 + T15;
63
       T3l = T14 - T15;
64
       T2F = Ip[WS(rs, 8)];
65
       T2G = Im[WS(rs, 7)];
66
       T2H = T2F + T2G;
67
       T3m = T2F - T2G;
68
       {
69
            E T1, T2, T4, T5;
70
            T1 = Rp[0];
71
            T2 = Rm[WS(rs, 15)];
72
            T3 = T1 + T2;
73
            T4 = Rp[WS(rs, 8)];
74
            T5 = Rm[WS(rs, 7)];
75
            T6 = T4 + T5;
76
            T7 = T3 + T6;
77
            T2E = T1 - T2;
78
            T13 = T4 - T5;
79
       }
80
        }
81
        {
82
       E T19, T1a, T1b, T18, T1e, T1f, T1g, T1d;
83
       {
84
            E T8, T9, Tb, Tc;
85
            T19 = Ip[WS(rs, 4)];
86
            T1a = Im[WS(rs, 11)];
87
            T1b = T19 + T1a;
88
            T8 = Rp[WS(rs, 4)];
89
            T9 = Rm[WS(rs, 11)];
90
            Ta = T8 + T9;
91
            T18 = T8 - T9;
92
            T1e = Im[WS(rs, 3)];
93
            T1f = Ip[WS(rs, 12)];
94
            T1g = T1e + T1f;
95
            Tb = Rm[WS(rs, 3)];
96
            Tc = Rp[WS(rs, 12)];
97
            Td = Tb + Tc;
98
            T1d = Tb - Tc;
99
       }
100
       Te = Ta + Td;
101
       T1c = T18 + T1b;
102
       T3j = T1f - T1e;
103
       T3i = T19 - T1a;
104
       T2J = T18 - T1b;
105
       T1h = T1d + T1g;
106
       T2K = T1d - T1g;
107
        }
108
        {
109
       E Tp, T1A, T1y, T3e, Ts, T1v, T1D, T3f;
110
       {
111
            E Tn, To, T1w, T1x;
112
            Tn = Rm[WS(rs, 1)];
113
            To = Rp[WS(rs, 14)];
114
            Tp = Tn + To;
115
            T1A = Tn - To;
116
            T1w = Im[WS(rs, 1)];
117
            T1x = Ip[WS(rs, 14)];
118
            T1y = T1w + T1x;
119
            T3e = T1x - T1w;
120
       }
121
       {
122
            E Tq, Tr, T1B, T1C;
123
            Tq = Rp[WS(rs, 6)];
124
            Tr = Rm[WS(rs, 9)];
125
            Ts = Tq + Tr;
126
            T1v = Tq - Tr;
127
            T1B = Ip[WS(rs, 6)];
128
            T1C = Im[WS(rs, 9)];
129
            T1D = T1B + T1C;
130
            T3f = T1B - T1C;
131
       }
132
       Tt = Tp + Ts;
133
       T6Q = T1A + T1D;
134
       T6R = T1v + T1y;
135
       T1z = T1v - T1y;
136
       T1E = T1A - T1D;
137
       T6a = Tp - Ts;
138
       T6b = T3e - T3f;
139
       T3g = T3e + T3f;
140
        }
141
        {
142
       E Ti, T1p, T1n, T3b, Tl, T1k, T1s, T3c;
143
       {
144
            E Tg, Th, T1l, T1m;
145
            Tg = Rp[WS(rs, 2)];
146
            Th = Rm[WS(rs, 13)];
147
            Ti = Tg + Th;
148
            T1p = Tg - Th;
149
            T1l = Ip[WS(rs, 2)];
150
            T1m = Im[WS(rs, 13)];
151
            T1n = T1l + T1m;
152
            T3b = T1l - T1m;
153
       }
154
       {
155
            E Tj, Tk, T1q, T1r;
156
            Tj = Rp[WS(rs, 10)];
157
            Tk = Rm[WS(rs, 5)];
158
            Tl = Tj + Tk;
159
            T1k = Tj - Tk;
160
            T1q = Ip[WS(rs, 10)];
161
            T1r = Im[WS(rs, 5)];
162
            T1s = T1q + T1r;
163
            T3c = T1q - T1r;
164
       }
165
       Tm = Ti + Tl;
166
       T6N = T1p + T1s;
167
       T6O = T1n - T1k;
168
       T1o = T1k + T1n;
169
       T1t = T1p - T1s;
170
       T67 = Ti - Tl;
171
       T68 = T3b - T3c;
172
       T3d = T3b + T3c;
173
        }
174
        T3h = T3d + T3g;
175
        T4B = Tm - Tt;
176
        {
177
       E Tf, Tu, T6P, T6S;
178
       Tf = T7 + Te;
179
       Tu = Tm + Tt;
180
       Tv = Tf + Tu;
181
       T3K = Tf - Tu;
182
       T6P = FMA(KP414213562, T6O, T6N);
183
       T6S = FMA(KP414213562, T6R, T6Q);
184
       T6T = T6P - T6S;
185
       T8Y = T6P + T6S;
186
        }
187
        {
188
       E T7g, T7h, T7d, T7e;
189
       T7g = FNMS(KP414213562, T6N, T6O);
190
       T7h = FNMS(KP414213562, T6Q, T6R);
191
       T7i = T7g + T7h;
192
       T8L = T7h - T7g;
193
       T7d = T2E + T2H;
194
       T7e = T1c + T1h;
195
       T7f = FNMS(KP707106781, T7e, T7d);
196
       T8X = FMA(KP707106781, T7e, T7d);
197
        }
198
        {
199
       E T1u, T1F, T17, T1i;
200
       T1u = FMA(KP414213562, T1t, T1o);
201
       T1F = FNMS(KP414213562, T1E, T1z);
202
       T1G = T1u + T1F;
203
       T4Y = T1F - T1u;
204
       T17 = T13 + T16;
205
       T1i = T1c - T1h;
206
       T1j = FMA(KP707106781, T1i, T17);
207
       T4K = FNMS(KP707106781, T1i, T17);
208
        }
209
        {
210
       E T2I, T2L, T69, T6c;
211
       T2I = T2E - T2H;
212
       T2L = T2J + T2K;
213
       T2M = FMA(KP707106781, T2L, T2I);
214
       T4X = FNMS(KP707106781, T2L, T2I);
215
       T69 = T67 - T68;
216
       T6c = T6a + T6b;
217
       T6d = T69 + T6c;
218
       T8C = T69 - T6c;
219
        }
220
        {
221
       E T64, T65, T6K, T6L;
222
       T64 = T3 - T6;
223
       T65 = T3j - T3i;
224
       T66 = T64 + T65;
225
       T8o = T64 - T65;
226
       T6K = T16 - T13;
227
       T6L = T2J - T2K;
228
       T6M = FMA(KP707106781, T6L, T6K);
229
       T8K = FNMS(KP707106781, T6L, T6K);
230
        }
231
        {
232
       E T2N, T2O, T3k, T3n;
233
       T2N = FNMS(KP414213562, T1o, T1t);
234
       T2O = FMA(KP414213562, T1z, T1E);
235
       T2P = T2N + T2O;
236
       T4L = T2N - T2O;
237
       T3k = T3i + T3j;
238
       T3n = T3l + T3m;
239
       T3o = T3k + T3n;
240
       T4C = T3n - T3k;
241
        }
242
        T4o = T7 - Te;
243
        T4p = T3g - T3d;
244
        T4q = T4o + T4p;
245
        T5q = T4o - T4p;
246
        {
247
       E T6A, T6B, T6x, T6y;
248
       T6A = T67 + T68;
249
       T6B = T6b - T6a;
250
       T6C = T6A + T6B;
251
       T8p = T6B - T6A;
252
       T6x = Ta - Td;
253
       T6y = T3l - T3m;
254
       T6z = T6x + T6y;
255
       T8B = T6y - T6x;
256
        }
257
         }
258
         {
259
        E TC, T6V, T6Y, T1M, T23, T6f, T6j, T31, TY, T6n, T6p, T2i, T2n, T2w, T35;
260
        E T2v, TJ, T6g, T6i, T1R, T1W, T25, T2Y, T24, TR, T72, T75, T2d, T2u, T6m;
261
        E T6q, T38;
262
        {
263
       E Ty, T1Z, T1L, T2Z, TB, T1I, T22, T30;
264
       {
265
            E Tw, Tx, T1J, T1K;
266
            Tw = Rp[WS(rs, 1)];
267
            Tx = Rm[WS(rs, 14)];
268
            Ty = Tw + Tx;
269
            T1Z = Tw - Tx;
270
            T1J = Ip[WS(rs, 1)];
271
            T1K = Im[WS(rs, 14)];
272
            T1L = T1J + T1K;
273
            T2Z = T1J - T1K;
274
       }
275
       {
276
            E Tz, TA, T20, T21;
277
            Tz = Rp[WS(rs, 9)];
278
            TA = Rm[WS(rs, 6)];
279
            TB = Tz + TA;
280
            T1I = Tz - TA;
281
            T20 = Ip[WS(rs, 9)];
282
            T21 = Im[WS(rs, 6)];
283
            T22 = T20 + T21;
284
            T30 = T20 - T21;
285
       }
286
       TC = Ty + TB;
287
       T6V = T1L - T1I;
288
       T6Y = T1Z + T22;
289
       T1M = T1I + T1L;
290
       T23 = T1Z - T22;
291
       T6f = Ty - TB;
292
       T6j = T2Z - T30;
293
       T31 = T2Z + T30;
294
        }
295
        {
296
       E TU, T2e, T2h, T33, TX, T2j, T2m, T34;
297
       {
298
            E TS, TT, T2f, T2g;
299
            TS = Rp[WS(rs, 3)];
300
            TT = Rm[WS(rs, 12)];
301
            TU = TS + TT;
302
            T2e = TS - TT;
303
            T2f = Ip[WS(rs, 3)];
304
            T2g = Im[WS(rs, 12)];
305
            T2h = T2f + T2g;
306
            T33 = T2f - T2g;
307
       }
308
       {
309
            E TV, TW, T2k, T2l;
310
            TV = Rm[WS(rs, 4)];
311
            TW = Rp[WS(rs, 11)];
312
            TX = TV + TW;
313
            T2j = TV - TW;
314
            T2k = Im[WS(rs, 4)];
315
            T2l = Ip[WS(rs, 11)];
316
            T2m = T2k + T2l;
317
            T34 = T2l - T2k;
318
       }
319
       TY = TU + TX;
320
       T6n = T34 - T33;
321
       T6p = TU - TX;
322
       T2i = T2e + T2h;
323
       T2n = T2j + T2m;
324
       T2w = T2j - T2m;
325
       T35 = T33 + T34;
326
       T2v = T2e - T2h;
327
        }
328
        {
329
       E TF, T1N, T1Q, T2W, TI, T1S, T1V, T2X;
330
       {
331
            E TD, TE, T1O, T1P;
332
            TD = Rp[WS(rs, 5)];
333
            TE = Rm[WS(rs, 10)];
334
            TF = TD + TE;
335
            T1N = TD - TE;
336
            T1O = Ip[WS(rs, 5)];
337
            T1P = Im[WS(rs, 10)];
338
            T1Q = T1O + T1P;
339
            T2W = T1O - T1P;
340
       }
341
       {
342
            E TG, TH, T1T, T1U;
343
            TG = Rm[WS(rs, 2)];
344
            TH = Rp[WS(rs, 13)];
345
            TI = TG + TH;
346
            T1S = TG - TH;
347
            T1T = Im[WS(rs, 2)];
348
            T1U = Ip[WS(rs, 13)];
349
            T1V = T1T + T1U;
350
            T2X = T1U - T1T;
351
       }
352
       TJ = TF + TI;
353
       T6g = T2X - T2W;
354
       T6i = TF - TI;
355
       T1R = T1N + T1Q;
356
       T1W = T1S + T1V;
357
       T25 = T1S - T1V;
358
       T2Y = T2W + T2X;
359
       T24 = T1N - T1Q;
360
        }
361
        {
362
       E TN, T2q, T2c, T36, TQ, T29, T2t, T37;
363
       {
364
            E TL, TM, T2a, T2b;
365
            TL = Rm[0];
366
            TM = Rp[WS(rs, 15)];
367
            TN = TL + TM;
368
            T2q = TL - TM;
369
            T2a = Im[0];
370
            T2b = Ip[WS(rs, 15)];
371
            T2c = T2a + T2b;
372
            T36 = T2b - T2a;
373
       }
374
       {
375
            E TO, TP, T2r, T2s;
376
            TO = Rp[WS(rs, 7)];
377
            TP = Rm[WS(rs, 8)];
378
            TQ = TO + TP;
379
            T29 = TO - TP;
380
            T2r = Ip[WS(rs, 7)];
381
            T2s = Im[WS(rs, 8)];
382
            T2t = T2r + T2s;
383
            T37 = T2r - T2s;
384
       }
385
       TR = TN + TQ;
386
       T72 = T29 + T2c;
387
       T75 = T2q + T2t;
388
       T2d = T29 - T2c;
389
       T2u = T2q - T2t;
390
       T6m = TN - TQ;
391
       T6q = T36 - T37;
392
       T38 = T36 + T37;
393
        }
394
        {
395
       E T4r, T4s, T8r, T8s;
396
       TK = TC + TJ;
397
       TZ = TR + TY;
398
       T10 = TK + TZ;
399
       T32 = T2Y + T31;
400
       T39 = T35 + T38;
401
       T3L = T39 - T32;
402
       T4r = TC - TJ;
403
       T4s = T31 - T2Y;
404
       T4t = T4r - T4s;
405
       T4E = T4r + T4s;
406
       T8r = T6q - T6p;
407
       T8s = T6m - T6n;
408
       T8t = FMA(KP414213562, T8s, T8r);
409
       T8F = FNMS(KP414213562, T8r, T8s);
410
       {
411
            E T4u, T4v, T8u, T8v;
412
            T4u = TR - TY;
413
            T4v = T38 - T35;
414
            T4w = T4u + T4v;
415
            T4F = T4v - T4u;
416
            T8u = T6j - T6i;
417
            T8v = T6f - T6g;
418
            T8w = FNMS(KP414213562, T8v, T8u);
419
            T8E = FMA(KP414213562, T8u, T8v);
420
       }
421
        }
422
        {
423
       E T6h, T6k, T6o, T6r;
424
       T6h = T6f + T6g;
425
       T6k = T6i + T6j;
426
       T6l = FNMS(KP414213562, T6k, T6h);
427
       T6E = FMA(KP414213562, T6h, T6k);
428
       T6o = T6m + T6n;
429
       T6r = T6p + T6q;
430
       T6s = FMA(KP414213562, T6r, T6o);
431
       T6F = FNMS(KP414213562, T6o, T6r);
432
       {
433
            E T1Y, T4O, T27, T4N, T1X, T26;
434
            T1X = T1R - T1W;
435
            T1Y = FMA(KP707106781, T1X, T1M);
436
            T4O = FNMS(KP707106781, T1X, T1M);
437
            T26 = T24 + T25;
438
            T27 = FMA(KP707106781, T26, T23);
439
            T4N = FNMS(KP707106781, T26, T23);
440
            T28 = FMA(KP198912367, T27, T1Y);
441
            T51 = FNMS(KP668178637, T4N, T4O);
442
            T2R = FNMS(KP198912367, T1Y, T27);
443
            T4P = FMA(KP668178637, T4O, T4N);
444
       }
445
        }
446
        {
447
       E T6X, T8O, T70, T8N, T6W, T6Z;
448
       T6W = T25 - T24;
449
       T6X = FNMS(KP707106781, T6W, T6V);
450
       T8O = FMA(KP707106781, T6W, T6V);
451
       T6Z = T1R + T1W;
452
       T70 = FNMS(KP707106781, T6Z, T6Y);
453
       T8N = FMA(KP707106781, T6Z, T6Y);
454
       T71 = FMA(KP668178637, T70, T6X);
455
       T90 = FNMS(KP198912367, T8N, T8O);
456
       T7k = FNMS(KP668178637, T6X, T70);
457
       T8P = FMA(KP198912367, T8O, T8N);
458
        }
459
        {
460
       E T2p, T4R, T2y, T4Q, T2o, T2x;
461
       T2o = T2i - T2n;
462
       T2p = FMA(KP707106781, T2o, T2d);
463
       T4R = FNMS(KP707106781, T2o, T2d);
464
       T2x = T2v + T2w;
465
       T2y = FMA(KP707106781, T2x, T2u);
466
       T4Q = FNMS(KP707106781, T2x, T2u);
467
       T2z = FNMS(KP198912367, T2y, T2p);
468
       T50 = FMA(KP668178637, T4Q, T4R);
469
       T2S = FMA(KP198912367, T2p, T2y);
470
       T4S = FNMS(KP668178637, T4R, T4Q);
471
        }
472
        {
473
       E T74, T8R, T77, T8Q, T73, T76;
474
       T73 = T2v - T2w;
475
       T74 = FNMS(KP707106781, T73, T72);
476
       T8R = FMA(KP707106781, T73, T72);
477
       T76 = T2i + T2n;
478
       T77 = FNMS(KP707106781, T76, T75);
479
       T8Q = FMA(KP707106781, T76, T75);
480
       T78 = FMA(KP668178637, T77, T74);
481
       T91 = FNMS(KP198912367, T8Q, T8R);
482
       T7l = FNMS(KP668178637, T74, T77);
483
       T8S = FMA(KP198912367, T8R, T8Q);
484
        }
485
         }
486
         {
487
        E T11, T3q, T3x, T3t, T3v, T3w, T3F, T2B, T3A, T2U, T3D, T2C, T3r, T3B, T3H;
488
        E T2V, T3s, T2D;
489
        {
490
       E T3a, T3p, T3u, T12, T3z;
491
       T11 = Tv + T10;
492
       T3a = T32 + T39;
493
       T3p = T3h + T3o;
494
       T3q = T3a + T3p;
495
       T3x = T3p - T3a;
496
       T3u = Tv - T10;
497
       T3t = W[30];
498
       T3v = T3t * T3u;
499
       T3w = W[31];
500
       T3F = T3w * T3u;
501
       {
502
            E T1H, T2A, T2Q, T2T;
503
            T1H = FMA(KP923879532, T1G, T1j);
504
            T2A = T28 + T2z;
505
            T2B = FMA(KP980785280, T2A, T1H);
506
            T3A = FNMS(KP980785280, T2A, T1H);
507
            T2Q = FMA(KP923879532, T2P, T2M);
508
            T2T = T2R + T2S;
509
            T2U = FMA(KP980785280, T2T, T2Q);
510
            T3D = FNMS(KP980785280, T2T, T2Q);
511
       }
512
       T12 = W[0];
513
       T2C = T12 * T2B;
514
       T3r = T12 * T2U;
515
       T3z = W[32];
516
       T3B = T3z * T3A;
517
       T3H = T3z * T3D;
518
        }
519
        T2D = W[1];
520
        T2V = FMA(T2D, T2U, T2C);
521
        T3s = FNMS(T2D, T2B, T3r);
522
        Rp[0] = T11 - T2V;
523
        Ip[0] = T3q + T3s;
524
        Rm[0] = T11 + T2V;
525
        Im[0] = T3s - T3q;
526
        {
527
       E T3y, T3G, T3E, T3I, T3C;
528
       T3y = FNMS(T3w, T3x, T3v);
529
       T3G = FMA(T3t, T3x, T3F);
530
       T3C = W[33];
531
       T3E = FMA(T3C, T3D, T3B);
532
       T3I = FNMS(T3C, T3A, T3H);
533
       Rp[WS(rs, 8)] = T3y - T3E;
534
       Ip[WS(rs, 8)] = T3G + T3I;
535
       Rm[WS(rs, 8)] = T3y + T3E;
536
       Im[WS(rs, 8)] = T3I - T3G;
537
        }
538
         }
539
         {
540
        E T3R, T4b, T47, T49, T4a, T4j, T3J, T3N, T3O, T43, T3W, T4e, T41, T4h, T3X;
541
        E T45, T4f, T4l;
542
        {
543
       E T3P, T3Q, T48, T3M, T3T, T4d;
544
       T3P = TK - TZ;
545
       T3Q = T3o - T3h;
546
       T3R = T3P + T3Q;
547
       T4b = T3Q - T3P;
548
       T48 = T3K - T3L;
549
       T47 = W[46];
550
       T49 = T47 * T48;
551
       T4a = W[47];
552
       T4j = T4a * T48;
553
       T3M = T3K + T3L;
554
       T3J = W[14];
555
       T3N = T3J * T3M;
556
       T3O = W[15];
557
       T43 = T3O * T3M;
558
       {
559
            E T3U, T3V, T3Z, T40;
560
            T3U = FNMS(KP923879532, T1G, T1j);
561
            T3V = T2R - T2S;
562
            T3W = FMA(KP980785280, T3V, T3U);
563
            T4e = FNMS(KP980785280, T3V, T3U);
564
            T3Z = FNMS(KP923879532, T2P, T2M);
565
            T40 = T2z - T28;
566
            T41 = FMA(KP980785280, T40, T3Z);
567
            T4h = FNMS(KP980785280, T40, T3Z);
568
       }
569
       T3T = W[16];
570
       T3X = T3T * T3W;
571
       T45 = T3T * T41;
572
       T4d = W[48];
573
       T4f = T4d * T4e;
574
       T4l = T4d * T4h;
575
        }
576
        {
577
       E T3S, T44, T42, T46, T3Y;
578
       T3S = FNMS(T3O, T3R, T3N);
579
       T44 = FMA(T3J, T3R, T43);
580
       T3Y = W[17];
581
       T42 = FMA(T3Y, T41, T3X);
582
       T46 = FNMS(T3Y, T3W, T45);
583
       Rp[WS(rs, 4)] = T3S - T42;
584
       Ip[WS(rs, 4)] = T44 + T46;
585
       Rm[WS(rs, 4)] = T3S + T42;
586
       Im[WS(rs, 4)] = T46 - T44;
587
        }
588
        {
589
       E T4c, T4k, T4i, T4m, T4g;
590
       T4c = FNMS(T4a, T4b, T49);
591
       T4k = FMA(T47, T4b, T4j);
592
       T4g = W[49];
593
       T4i = FMA(T4g, T4h, T4f);
594
       T4m = FNMS(T4g, T4e, T4l);
595
       Rp[WS(rs, 12)] = T4c - T4i;
596
       Ip[WS(rs, 12)] = T4k + T4m;
597
       Rm[WS(rs, 12)] = T4c + T4i;
598
       Im[WS(rs, 12)] = T4m - T4k;
599
        }
600
         }
601
         {
602
        E T4H, T5d, T4n, T4z, T4A, T55, T59, T5b, T5c, T5l, T4U, T5g, T53, T5j, T4V;
603
        E T57, T5h, T5n, T4D, T4G;
604
        T4D = T4B + T4C;
605
        T4G = T4E + T4F;
606
        T4H = FMA(KP707106781, T4G, T4D);
607
        T5d = FNMS(KP707106781, T4G, T4D);
608
        {
609
       E T4y, T5a, T4x, T4J, T5f;
610
       T4x = T4t + T4w;
611
       T4y = FMA(KP707106781, T4x, T4q);
612
       T5a = FNMS(KP707106781, T4x, T4q);
613
       T4n = W[6];
614
       T4z = T4n * T4y;
615
       T4A = W[7];
616
       T55 = T4A * T4y;
617
       T59 = W[38];
618
       T5b = T59 * T5a;
619
       T5c = W[39];
620
       T5l = T5c * T5a;
621
       {
622
            E T4M, T4T, T4Z, T52;
623
            T4M = FMA(KP923879532, T4L, T4K);
624
            T4T = T4P - T4S;
625
            T4U = FMA(KP831469612, T4T, T4M);
626
            T5g = FNMS(KP831469612, T4T, T4M);
627
            T4Z = FMA(KP923879532, T4Y, T4X);
628
            T52 = T50 - T51;
629
            T53 = FMA(KP831469612, T52, T4Z);
630
            T5j = FNMS(KP831469612, T52, T4Z);
631
       }
632
       T4J = W[8];
633
       T4V = T4J * T4U;
634
       T57 = T4J * T53;
635
       T5f = W[40];
636
       T5h = T5f * T5g;
637
       T5n = T5f * T5j;
638
        }
639
        {
640
       E T4I, T56, T54, T58, T4W;
641
       T4I = FNMS(T4A, T4H, T4z);
642
       T56 = FMA(T4n, T4H, T55);
643
       T4W = W[9];
644
       T54 = FMA(T4W, T53, T4V);
645
       T58 = FNMS(T4W, T4U, T57);
646
       Rp[WS(rs, 2)] = T4I - T54;
647
       Ip[WS(rs, 2)] = T56 + T58;
648
       Rm[WS(rs, 2)] = T4I + T54;
649
       Im[WS(rs, 2)] = T58 - T56;
650
        }
651
        {
652
       E T5e, T5m, T5k, T5o, T5i;
653
       T5e = FNMS(T5c, T5d, T5b);
654
       T5m = FMA(T59, T5d, T5l);
655
       T5i = W[41];
656
       T5k = FMA(T5i, T5j, T5h);
657
       T5o = FNMS(T5i, T5g, T5n);
658
       Rp[WS(rs, 10)] = T5e - T5k;
659
       Ip[WS(rs, 10)] = T5m + T5o;
660
       Rm[WS(rs, 10)] = T5e + T5k;
661
       Im[WS(rs, 10)] = T5o - T5m;
662
        }
663
         }
664
         {
665
        E T5x, T5R, T5p, T5t, T5u, T5J, T5N, T5P, T5Q, T5Z, T5C, T5U, T5H, T5X, T5D;
666
        E T5L, T5V, T61, T5v, T5w;
667
        T5v = T4C - T4B;
668
        T5w = T4t - T4w;
669
        T5x = FMA(KP707106781, T5w, T5v);
670
        T5R = FNMS(KP707106781, T5w, T5v);
671
        {
672
       E T5s, T5O, T5r, T5z, T5T;
673
       T5r = T4F - T4E;
674
       T5s = FMA(KP707106781, T5r, T5q);
675
       T5O = FNMS(KP707106781, T5r, T5q);
676
       T5p = W[22];
677
       T5t = T5p * T5s;
678
       T5u = W[23];
679
       T5J = T5u * T5s;
680
       T5N = W[54];
681
       T5P = T5N * T5O;
682
       T5Q = W[55];
683
       T5Z = T5Q * T5O;
684
       {
685
            E T5A, T5B, T5F, T5G;
686
            T5A = FNMS(KP923879532, T4L, T4K);
687
            T5B = T51 + T50;
688
            T5C = FNMS(KP831469612, T5B, T5A);
689
            T5U = FMA(KP831469612, T5B, T5A);
690
            T5F = FNMS(KP923879532, T4Y, T4X);
691
            T5G = T4P + T4S;
692
            T5H = FNMS(KP831469612, T5G, T5F);
693
            T5X = FMA(KP831469612, T5G, T5F);
694
       }
695
       T5z = W[24];
696
       T5D = T5z * T5C;
697
       T5L = T5z * T5H;
698
       T5T = W[56];
699
       T5V = T5T * T5U;
700
       T61 = T5T * T5X;
701
        }
702
        {
703
       E T5y, T5K, T5I, T5M, T5E;
704
       T5y = FNMS(T5u, T5x, T5t);
705
       T5K = FMA(T5p, T5x, T5J);
706
       T5E = W[25];
707
       T5I = FMA(T5E, T5H, T5D);
708
       T5M = FNMS(T5E, T5C, T5L);
709
       Rp[WS(rs, 6)] = T5y - T5I;
710
       Ip[WS(rs, 6)] = T5K + T5M;
711
       Rm[WS(rs, 6)] = T5y + T5I;
712
       Im[WS(rs, 6)] = T5M - T5K;
713
        }
714
        {
715
       E T5S, T60, T5Y, T62, T5W;
716
       T5S = FNMS(T5Q, T5R, T5P);
717
       T60 = FMA(T5N, T5R, T5Z);
718
       T5W = W[57];
719
       T5Y = FMA(T5W, T5X, T5V);
720
       T62 = FNMS(T5W, T5U, T61);
721
       Rp[WS(rs, 14)] = T5S - T5Y;
722
       Ip[WS(rs, 14)] = T60 + T62;
723
       Rm[WS(rs, 14)] = T5S + T5Y;
724
       Im[WS(rs, 14)] = T62 - T60;
725
        }
726
         }
727
         {
728
        E T6H, T7x, T63, T6v, T6w, T7p, T7t, T7v, T7w, T7F, T7a, T7A, T7n, T7D, T7b;
729
        E T7r, T7B, T7H;
730
        {
731
       E T6D, T6G, T6J, T7z;
732
       T6D = FMA(KP707106781, T6C, T6z);
733
       T6G = T6E + T6F;
734
       T6H = FMA(KP923879532, T6G, T6D);
735
       T7x = FNMS(KP923879532, T6G, T6D);
736
       {
737
            E T6u, T7u, T6e, T6t;
738
            T6e = FMA(KP707106781, T6d, T66);
739
            T6t = T6l + T6s;
740
            T6u = FMA(KP923879532, T6t, T6e);
741
            T7u = FNMS(KP923879532, T6t, T6e);
742
            T63 = W[2];
743
            T6v = T63 * T6u;
744
            T6w = W[3];
745
            T7p = T6w * T6u;
746
            T7t = W[34];
747
            T7v = T7t * T7u;
748
            T7w = W[35];
749
            T7F = T7w * T7u;
750
       }
751
       {
752
            E T6U, T79, T7j, T7m;
753
            T6U = FMA(KP923879532, T6T, T6M);
754
            T79 = T71 - T78;
755
            T7a = FMA(KP831469612, T79, T6U);
756
            T7A = FNMS(KP831469612, T79, T6U);
757
            T7j = FNMS(KP923879532, T7i, T7f);
758
            T7m = T7k + T7l;
759
            T7n = FMA(KP831469612, T7m, T7j);
760
            T7D = FNMS(KP831469612, T7m, T7j);
761
       }
762
       T6J = W[4];
763
       T7b = T6J * T7a;
764
       T7r = T6J * T7n;
765
       T7z = W[36];
766
       T7B = T7z * T7A;
767
       T7H = T7z * T7D;
768
        }
769
        {
770
       E T6I, T7q, T7o, T7s, T7c;
771
       T6I = FNMS(T6w, T6H, T6v);
772
       T7q = FMA(T63, T6H, T7p);
773
       T7c = W[5];
774
       T7o = FMA(T7c, T7n, T7b);
775
       T7s = FNMS(T7c, T7a, T7r);
776
       Rp[WS(rs, 1)] = T6I - T7o;
777
       Ip[WS(rs, 1)] = T7q + T7s;
778
       Rm[WS(rs, 1)] = T6I + T7o;
779
       Im[WS(rs, 1)] = T7s - T7q;
780
        }
781
        {
782
       E T7y, T7G, T7E, T7I, T7C;
783
       T7y = FNMS(T7w, T7x, T7v);
784
       T7G = FMA(T7t, T7x, T7F);
785
       T7C = W[37];
786
       T7E = FMA(T7C, T7D, T7B);
787
       T7I = FNMS(T7C, T7A, T7H);
788
       Rp[WS(rs, 9)] = T7y - T7E;
789
       Ip[WS(rs, 9)] = T7G + T7I;
790
       Rm[WS(rs, 9)] = T7y + T7E;
791
       Im[WS(rs, 9)] = T7I - T7G;
792
        }
793
         }
794
         {
795
        E T8H, T9d, T8n, T8z, T8A, T95, T99, T9b, T9c, T9l, T8U, T9g, T93, T9j, T8V;
796
        E T97, T9h, T9n;
797
        {
798
       E T8D, T8G, T8J, T9f;
799
       T8D = FMA(KP707106781, T8C, T8B);
800
       T8G = T8E - T8F;
801
       T8H = FMA(KP923879532, T8G, T8D);
802
       T9d = FNMS(KP923879532, T8G, T8D);
803
       {
804
            E T8y, T9a, T8q, T8x;
805
            T8q = FMA(KP707106781, T8p, T8o);
806
            T8x = T8t - T8w;
807
            T8y = FMA(KP923879532, T8x, T8q);
808
            T9a = FNMS(KP923879532, T8x, T8q);
809
            T8n = W[10];
810
            T8z = T8n * T8y;
811
            T8A = W[11];
812
            T95 = T8A * T8y;
813
            T99 = W[42];
814
            T9b = T99 * T9a;
815
            T9c = W[43];
816
            T9l = T9c * T9a;
817
       }
818
       {
819
            E T8M, T8T, T8Z, T92;
820
            T8M = FMA(KP923879532, T8L, T8K);
821
            T8T = T8P - T8S;
822
            T8U = FMA(KP980785280, T8T, T8M);
823
            T9g = FNMS(KP980785280, T8T, T8M);
824
            T8Z = FNMS(KP923879532, T8Y, T8X);
825
            T92 = T90 + T91;
826
            T93 = FNMS(KP980785280, T92, T8Z);
827
            T9j = FMA(KP980785280, T92, T8Z);
828
       }
829
       T8J = W[12];
830
       T8V = T8J * T8U;
831
       T97 = T8J * T93;
832
       T9f = W[44];
833
       T9h = T9f * T9g;
834
       T9n = T9f * T9j;
835
        }
836
        {
837
       E T8I, T96, T94, T98, T8W;
838
       T8I = FNMS(T8A, T8H, T8z);
839
       T96 = FMA(T8n, T8H, T95);
840
       T8W = W[13];
841
       T94 = FMA(T8W, T93, T8V);
842
       T98 = FNMS(T8W, T8U, T97);
843
       Rp[WS(rs, 3)] = T8I - T94;
844
       Ip[WS(rs, 3)] = T96 + T98;
845
       Rm[WS(rs, 3)] = T8I + T94;
846
       Im[WS(rs, 3)] = T98 - T96;
847
        }
848
        {
849
       E T9e, T9m, T9k, T9o, T9i;
850
       T9e = FNMS(T9c, T9d, T9b);
851
       T9m = FMA(T99, T9d, T9l);
852
       T9i = W[45];
853
       T9k = FMA(T9i, T9j, T9h);
854
       T9o = FNMS(T9i, T9g, T9n);
855
       Rp[WS(rs, 11)] = T9e - T9k;
856
       Ip[WS(rs, 11)] = T9m + T9o;
857
       Rm[WS(rs, 11)] = T9e + T9k;
858
       Im[WS(rs, 11)] = T9o - T9m;
859
        }
860
         }
861
         {
862
        E T9x, T9R, T9p, T9t, T9u, T9J, T9N, T9P, T9Q, T9Z, T9C, T9U, T9H, T9X, T9D;
863
        E T9L, T9V, Ta1;
864
        {
865
       E T9v, T9w, T9z, T9T;
866
       T9v = FNMS(KP707106781, T8C, T8B);
867
       T9w = T8w + T8t;
868
       T9x = FNMS(KP923879532, T9w, T9v);
869
       T9R = FMA(KP923879532, T9w, T9v);
870
       {
871
            E T9s, T9O, T9q, T9r;
872
            T9q = FNMS(KP707106781, T8p, T8o);
873
            T9r = T8E + T8F;
874
            T9s = FNMS(KP923879532, T9r, T9q);
875
            T9O = FMA(KP923879532, T9r, T9q);
876
            T9p = W[26];
877
            T9t = T9p * T9s;
878
            T9u = W[27];
879
            T9J = T9u * T9s;
880
            T9N = W[58];
881
            T9P = T9N * T9O;
882
            T9Q = W[59];
883
            T9Z = T9Q * T9O;
884
       }
885
       {
886
            E T9A, T9B, T9F, T9G;
887
            T9A = FNMS(KP923879532, T8L, T8K);
888
            T9B = T91 - T90;
889
            T9C = FMA(KP980785280, T9B, T9A);
890
            T9U = FNMS(KP980785280, T9B, T9A);
891
            T9F = FMA(KP923879532, T8Y, T8X);
892
            T9G = T8P + T8S;
893
            T9H = FNMS(KP980785280, T9G, T9F);
894
            T9X = FMA(KP980785280, T9G, T9F);
895
       }
896
       T9z = W[28];
897
       T9D = T9z * T9C;
898
       T9L = T9z * T9H;
899
       T9T = W[60];
900
       T9V = T9T * T9U;
901
       Ta1 = T9T * T9X;
902
        }
903
        {
904
       E T9y, T9K, T9I, T9M, T9E;
905
       T9y = FNMS(T9u, T9x, T9t);
906
       T9K = FMA(T9p, T9x, T9J);
907
       T9E = W[29];
908
       T9I = FMA(T9E, T9H, T9D);
909
       T9M = FNMS(T9E, T9C, T9L);
910
       Rp[WS(rs, 7)] = T9y - T9I;
911
       Ip[WS(rs, 7)] = T9K + T9M;
912
       Rm[WS(rs, 7)] = T9y + T9I;
913
       Im[WS(rs, 7)] = T9M - T9K;
914
        }
915
        {
916
       E T9S, Ta0, T9Y, Ta2, T9W;
917
       T9S = FNMS(T9Q, T9R, T9P);
918
       Ta0 = FMA(T9N, T9R, T9Z);
919
       T9W = W[61];
920
       T9Y = FMA(T9W, T9X, T9V);
921
       Ta2 = FNMS(T9W, T9U, Ta1);
922
       Rp[WS(rs, 15)] = T9S - T9Y;
923
       Ip[WS(rs, 15)] = Ta0 + Ta2;
924
       Rm[WS(rs, 15)] = T9S + T9Y;
925
       Im[WS(rs, 15)] = Ta2 - Ta0;
926
        }
927
         }
928
         {
929
        E T7R, T8b, T7J, T7N, T7O, T83, T87, T89, T8a, T8j, T7W, T8e, T81, T8h, T7X;
930
        E T85, T8f, T8l;
931
        {
932
       E T7P, T7Q, T7T, T8d;
933
       T7P = FNMS(KP707106781, T6C, T6z);
934
       T7Q = T6l - T6s;
935
       T7R = FMA(KP923879532, T7Q, T7P);
936
       T8b = FNMS(KP923879532, T7Q, T7P);
937
       {
938
            E T7M, T88, T7K, T7L;
939
            T7K = FNMS(KP707106781, T6d, T66);
940
            T7L = T6F - T6E;
941
            T7M = FMA(KP923879532, T7L, T7K);
942
            T88 = FNMS(KP923879532, T7L, T7K);
943
            T7J = W[18];
944
            T7N = T7J * T7M;
945
            T7O = W[19];
946
            T83 = T7O * T7M;
947
            T87 = W[50];
948
            T89 = T87 * T88;
949
            T8a = W[51];
950
            T8j = T8a * T88;
951
       }
952
       {
953
            E T7U, T7V, T7Z, T80;
954
            T7U = FNMS(KP923879532, T6T, T6M);
955
            T7V = T7k - T7l;
956
            T7W = FMA(KP831469612, T7V, T7U);
957
            T8e = FNMS(KP831469612, T7V, T7U);
958
            T7Z = FMA(KP923879532, T7i, T7f);
959
            T80 = T71 + T78;
960
            T81 = FNMS(KP831469612, T80, T7Z);
961
            T8h = FMA(KP831469612, T80, T7Z);
962
       }
963
       T7T = W[20];
964
       T7X = T7T * T7W;
965
       T85 = T7T * T81;
966
       T8d = W[52];
967
       T8f = T8d * T8e;
968
       T8l = T8d * T8h;
969
        }
970
        {
971
       E T7S, T84, T82, T86, T7Y;
972
       T7S = FNMS(T7O, T7R, T7N);
973
       T84 = FMA(T7J, T7R, T83);
974
       T7Y = W[21];
975
       T82 = FMA(T7Y, T81, T7X);
976
       T86 = FNMS(T7Y, T7W, T85);
977
       Rp[WS(rs, 5)] = T7S - T82;
978
       Ip[WS(rs, 5)] = T84 + T86;
979
       Rm[WS(rs, 5)] = T7S + T82;
980
       Im[WS(rs, 5)] = T86 - T84;
981
        }
982
        {
983
       E T8c, T8k, T8i, T8m, T8g;
984
       T8c = FNMS(T8a, T8b, T89);
985
       T8k = FMA(T87, T8b, T8j);
986
       T8g = W[53];
987
       T8i = FMA(T8g, T8h, T8f);
988
       T8m = FNMS(T8g, T8e, T8l);
989
       Rp[WS(rs, 13)] = T8c - T8i;
990
       Ip[WS(rs, 13)] = T8k + T8m;
991
       Rm[WS(rs, 13)] = T8c + T8i;
992
       Im[WS(rs, 13)] = T8m - T8k;
993
        }
994
         }
995
    }
996
     }
997
}
998
999
static const tw_instr twinstr[] = {
1000
     { TW_FULL, 1, 32 },
1001
     { TW_NEXT, 1, 0 }
1002
};
1003
1004
static const hc2c_desc desc = { 32, "hc2cbdft_32", twinstr, &GENUS, { 300, 62, 198, 0 } };
1005
1006
void X(codelet_hc2cbdft_32) (planner *p) {
1007
     X(khc2c_register) (p, hc2cbdft_32, &desc, HC2C_VIA_DFT);
1008
}
1009
#else
1010
1011
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft_32 -include rdft/scalar/hc2cb.h */
1012
1013
/*
1014
 * This function contains 498 FP additions, 208 FP multiplications,
1015
 * (or, 404 additions, 114 multiplications, 94 fused multiply/add),
1016
 * 102 stack variables, 7 constants, and 128 memory accesses
1017
 */
1018
#include "rdft/scalar/hc2cb.h"
1019
1020
static void hc2cbdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
1021
0
{
1022
0
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1023
0
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1024
0
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1025
0
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1026
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1027
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1028
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1029
0
     {
1030
0
    INT m;
1031
0
    for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) {
1032
0
         E Tf, T4a, T6h, T7Z, T6P, T8e, T1j, T4v, T2R, T4L, T5C, T7E, T6a, T7U, T3n;
1033
0
         E T4q, TZ, T38, T2p, T4B, T7M, T7R, T2y, T4C, T5Y, T63, T6C, T86, T4i, T4n;
1034
0
         E T6z, T85, TK, T31, T1Y, T4y, T7J, T7Q, T27, T4z, T5R, T62, T6v, T83, T4f;
1035
0
         E T4m, T6s, T82, Tu, T4p, T6o, T8f, T6M, T80, T1G, T4K, T2I, T4w, T5J, T7T;
1036
0
         E T67, T7F, T3g, T4b;
1037
0
         {
1038
0
        E T3, T2M, T16, T3k, T6, T13, T2P, T3l, Td, T3i, T1h, T2K, Ta, T3h, T1c;
1039
0
        E T2J;
1040
0
        {
1041
0
       E T1, T2, T2N, T2O;
1042
0
       T1 = Rp[0];
1043
0
       T2 = Rm[WS(rs, 15)];
1044
0
       T3 = T1 + T2;
1045
0
       T2M = T1 - T2;
1046
0
       {
1047
0
            E T14, T15, T4, T5;
1048
0
            T14 = Ip[0];
1049
0
            T15 = Im[WS(rs, 15)];
1050
0
            T16 = T14 + T15;
1051
0
            T3k = T14 - T15;
1052
0
            T4 = Rp[WS(rs, 8)];
1053
0
            T5 = Rm[WS(rs, 7)];
1054
0
            T6 = T4 + T5;
1055
0
            T13 = T4 - T5;
1056
0
       }
1057
0
       T2N = Ip[WS(rs, 8)];
1058
0
       T2O = Im[WS(rs, 7)];
1059
0
       T2P = T2N + T2O;
1060
0
       T3l = T2N - T2O;
1061
0
       {
1062
0
            E Tb, Tc, T1d, T1e, T1f, T1g;
1063
0
            Tb = Rm[WS(rs, 3)];
1064
0
            Tc = Rp[WS(rs, 12)];
1065
0
            T1d = Tb - Tc;
1066
0
            T1e = Im[WS(rs, 3)];
1067
0
            T1f = Ip[WS(rs, 12)];
1068
0
            T1g = T1e + T1f;
1069
0
            Td = Tb + Tc;
1070
0
            T3i = T1f - T1e;
1071
0
            T1h = T1d + T1g;
1072
0
            T2K = T1d - T1g;
1073
0
       }
1074
0
       {
1075
0
            E T8, T9, T18, T19, T1a, T1b;
1076
0
            T8 = Rp[WS(rs, 4)];
1077
0
            T9 = Rm[WS(rs, 11)];
1078
0
            T18 = T8 - T9;
1079
0
            T19 = Ip[WS(rs, 4)];
1080
0
            T1a = Im[WS(rs, 11)];
1081
0
            T1b = T19 + T1a;
1082
0
            Ta = T8 + T9;
1083
0
            T3h = T19 - T1a;
1084
0
            T1c = T18 + T1b;
1085
0
            T2J = T18 - T1b;
1086
0
       }
1087
0
        }
1088
0
        {
1089
0
       E T7, Te, T6f, T6g;
1090
0
       T7 = T3 + T6;
1091
0
       Te = Ta + Td;
1092
0
       Tf = T7 + Te;
1093
0
       T4a = T7 - Te;
1094
0
       T6f = T16 - T13;
1095
0
       T6g = KP707106781 * (T2J - T2K);
1096
0
       T6h = T6f + T6g;
1097
0
       T7Z = T6f - T6g;
1098
0
        }
1099
0
        {
1100
0
       E T6N, T6O, T17, T1i;
1101
0
       T6N = T2M + T2P;
1102
0
       T6O = KP707106781 * (T1c + T1h);
1103
0
       T6P = T6N - T6O;
1104
0
       T8e = T6O + T6N;
1105
0
       T17 = T13 + T16;
1106
0
       T1i = KP707106781 * (T1c - T1h);
1107
0
       T1j = T17 + T1i;
1108
0
       T4v = T17 - T1i;
1109
0
        }
1110
0
        {
1111
0
       E T2L, T2Q, T5A, T5B;
1112
0
       T2L = KP707106781 * (T2J + T2K);
1113
0
       T2Q = T2M - T2P;
1114
0
       T2R = T2L + T2Q;
1115
0
       T4L = T2Q - T2L;
1116
0
       T5A = T3 - T6;
1117
0
       T5B = T3i - T3h;
1118
0
       T5C = T5A + T5B;
1119
0
       T7E = T5A - T5B;
1120
0
        }
1121
0
        {
1122
0
       E T68, T69, T3j, T3m;
1123
0
       T68 = Ta - Td;
1124
0
       T69 = T3k - T3l;
1125
0
       T6a = T68 + T69;
1126
0
       T7U = T69 - T68;
1127
0
       T3j = T3h + T3i;
1128
0
       T3m = T3k + T3l;
1129
0
       T3n = T3j + T3m;
1130
0
       T4q = T3m - T3j;
1131
0
        }
1132
0
         }
1133
0
         {
1134
0
        E TR, T5S, T29, T2t, T2c, T5W, T2w, T37, TY, T5T, T5V, T2i, T2n, T2r, T34;
1135
0
        E T2q, T6A, T6B;
1136
0
        {
1137
0
       E TL, TM, TN, TO, TP, TQ;
1138
0
       TL = Rm[0];
1139
0
       TM = Rp[WS(rs, 15)];
1140
0
       TN = TL + TM;
1141
0
       TO = Rp[WS(rs, 7)];
1142
0
       TP = Rm[WS(rs, 8)];
1143
0
       TQ = TO + TP;
1144
0
       TR = TN + TQ;
1145
0
       T5S = TN - TQ;
1146
0
       T29 = TO - TP;
1147
0
       T2t = TL - TM;
1148
0
        }
1149
0
        {
1150
0
       E T2a, T2b, T35, T2u, T2v, T36;
1151
0
       T2a = Im[0];
1152
0
       T2b = Ip[WS(rs, 15)];
1153
0
       T35 = T2b - T2a;
1154
0
       T2u = Ip[WS(rs, 7)];
1155
0
       T2v = Im[WS(rs, 8)];
1156
0
       T36 = T2u - T2v;
1157
0
       T2c = T2a + T2b;
1158
0
       T5W = T35 - T36;
1159
0
       T2w = T2u + T2v;
1160
0
       T37 = T35 + T36;
1161
0
        }
1162
0
        {
1163
0
       E TU, T2e, T2h, T32, TX, T2j, T2m, T33;
1164
0
       {
1165
0
            E TS, TT, T2f, T2g;
1166
0
            TS = Rp[WS(rs, 3)];
1167
0
            TT = Rm[WS(rs, 12)];
1168
0
            TU = TS + TT;
1169
0
            T2e = TS - TT;
1170
0
            T2f = Ip[WS(rs, 3)];
1171
0
            T2g = Im[WS(rs, 12)];
1172
0
            T2h = T2f + T2g;
1173
0
            T32 = T2f - T2g;
1174
0
       }
1175
0
       {
1176
0
            E TV, TW, T2k, T2l;
1177
0
            TV = Rm[WS(rs, 4)];
1178
0
            TW = Rp[WS(rs, 11)];
1179
0
            TX = TV + TW;
1180
0
            T2j = TV - TW;
1181
0
            T2k = Im[WS(rs, 4)];
1182
0
            T2l = Ip[WS(rs, 11)];
1183
0
            T2m = T2k + T2l;
1184
0
            T33 = T2l - T2k;
1185
0
       }
1186
0
       TY = TU + TX;
1187
0
       T5T = T33 - T32;
1188
0
       T5V = TU - TX;
1189
0
       T2i = T2e + T2h;
1190
0
       T2n = T2j + T2m;
1191
0
       T2r = T2j - T2m;
1192
0
       T34 = T32 + T33;
1193
0
       T2q = T2e - T2h;
1194
0
        }
1195
0
        TZ = TR + TY;
1196
0
        T38 = T34 + T37;
1197
0
        {
1198
0
       E T2d, T2o, T7K, T7L;
1199
0
       T2d = T29 - T2c;
1200
0
       T2o = KP707106781 * (T2i - T2n);
1201
0
       T2p = T2d + T2o;
1202
0
       T4B = T2d - T2o;
1203
0
       T7K = T5S - T5T;
1204
0
       T7L = T5W - T5V;
1205
0
       T7M = FMA(KP382683432, T7K, KP923879532 * T7L);
1206
0
       T7R = FNMS(KP923879532, T7K, KP382683432 * T7L);
1207
0
        }
1208
0
        {
1209
0
       E T2s, T2x, T5U, T5X;
1210
0
       T2s = KP707106781 * (T2q + T2r);
1211
0
       T2x = T2t - T2w;
1212
0
       T2y = T2s + T2x;
1213
0
       T4C = T2x - T2s;
1214
0
       T5U = T5S + T5T;
1215
0
       T5X = T5V + T5W;
1216
0
       T5Y = FMA(KP923879532, T5U, KP382683432 * T5X);
1217
0
       T63 = FNMS(KP382683432, T5U, KP923879532 * T5X);
1218
0
        }
1219
0
        T6A = T2t + T2w;
1220
0
        T6B = KP707106781 * (T2i + T2n);
1221
0
        T6C = T6A - T6B;
1222
0
        T86 = T6B + T6A;
1223
0
        {
1224
0
       E T4g, T4h, T6x, T6y;
1225
0
       T4g = TR - TY;
1226
0
       T4h = T37 - T34;
1227
0
       T4i = T4g + T4h;
1228
0
       T4n = T4h - T4g;
1229
0
       T6x = KP707106781 * (T2q - T2r);
1230
0
       T6y = T29 + T2c;
1231
0
       T6z = T6x - T6y;
1232
0
       T85 = T6y + T6x;
1233
0
        }
1234
0
         }
1235
0
         {
1236
0
        E TC, T5L, T1I, T22, T1L, T5P, T25, T30, TJ, T5M, T5O, T1R, T1W, T20, T2X;
1237
0
        E T1Z, T6t, T6u;
1238
0
        {
1239
0
       E Tw, Tx, Ty, Tz, TA, TB;
1240
0
       Tw = Rp[WS(rs, 1)];
1241
0
       Tx = Rm[WS(rs, 14)];
1242
0
       Ty = Tw + Tx;
1243
0
       Tz = Rp[WS(rs, 9)];
1244
0
       TA = Rm[WS(rs, 6)];
1245
0
       TB = Tz + TA;
1246
0
       TC = Ty + TB;
1247
0
       T5L = Ty - TB;
1248
0
       T1I = Tz - TA;
1249
0
       T22 = Tw - Tx;
1250
0
        }
1251
0
        {
1252
0
       E T1J, T1K, T2Y, T23, T24, T2Z;
1253
0
       T1J = Ip[WS(rs, 1)];
1254
0
       T1K = Im[WS(rs, 14)];
1255
0
       T2Y = T1J - T1K;
1256
0
       T23 = Ip[WS(rs, 9)];
1257
0
       T24 = Im[WS(rs, 6)];
1258
0
       T2Z = T23 - T24;
1259
0
       T1L = T1J + T1K;
1260
0
       T5P = T2Y - T2Z;
1261
0
       T25 = T23 + T24;
1262
0
       T30 = T2Y + T2Z;
1263
0
        }
1264
0
        {
1265
0
       E TF, T1N, T1Q, T2V, TI, T1S, T1V, T2W;
1266
0
       {
1267
0
            E TD, TE, T1O, T1P;
1268
0
            TD = Rp[WS(rs, 5)];
1269
0
            TE = Rm[WS(rs, 10)];
1270
0
            TF = TD + TE;
1271
0
            T1N = TD - TE;
1272
0
            T1O = Ip[WS(rs, 5)];
1273
0
            T1P = Im[WS(rs, 10)];
1274
0
            T1Q = T1O + T1P;
1275
0
            T2V = T1O - T1P;
1276
0
       }
1277
0
       {
1278
0
            E TG, TH, T1T, T1U;
1279
0
            TG = Rm[WS(rs, 2)];
1280
0
            TH = Rp[WS(rs, 13)];
1281
0
            TI = TG + TH;
1282
0
            T1S = TG - TH;
1283
0
            T1T = Im[WS(rs, 2)];
1284
0
            T1U = Ip[WS(rs, 13)];
1285
0
            T1V = T1T + T1U;
1286
0
            T2W = T1U - T1T;
1287
0
       }
1288
0
       TJ = TF + TI;
1289
0
       T5M = T2W - T2V;
1290
0
       T5O = TF - TI;
1291
0
       T1R = T1N + T1Q;
1292
0
       T1W = T1S + T1V;
1293
0
       T20 = T1S - T1V;
1294
0
       T2X = T2V + T2W;
1295
0
       T1Z = T1N - T1Q;
1296
0
        }
1297
0
        TK = TC + TJ;
1298
0
        T31 = T2X + T30;
1299
0
        {
1300
0
       E T1M, T1X, T7H, T7I;
1301
0
       T1M = T1I + T1L;
1302
0
       T1X = KP707106781 * (T1R - T1W);
1303
0
       T1Y = T1M + T1X;
1304
0
       T4y = T1M - T1X;
1305
0
       T7H = T5L - T5M;
1306
0
       T7I = T5P - T5O;
1307
0
       T7J = FNMS(KP923879532, T7I, KP382683432 * T7H);
1308
0
       T7Q = FMA(KP923879532, T7H, KP382683432 * T7I);
1309
0
        }
1310
0
        {
1311
0
       E T21, T26, T5N, T5Q;
1312
0
       T21 = KP707106781 * (T1Z + T20);
1313
0
       T26 = T22 - T25;
1314
0
       T27 = T21 + T26;
1315
0
       T4z = T26 - T21;
1316
0
       T5N = T5L + T5M;
1317
0
       T5Q = T5O + T5P;
1318
0
       T5R = FNMS(KP382683432, T5Q, KP923879532 * T5N);
1319
0
       T62 = FMA(KP382683432, T5N, KP923879532 * T5Q);
1320
0
        }
1321
0
        T6t = T22 + T25;
1322
0
        T6u = KP707106781 * (T1R + T1W);
1323
0
        T6v = T6t - T6u;
1324
0
        T83 = T6u + T6t;
1325
0
        {
1326
0
       E T4d, T4e, T6q, T6r;
1327
0
       T4d = TC - TJ;
1328
0
       T4e = T30 - T2X;
1329
0
       T4f = T4d - T4e;
1330
0
       T4m = T4d + T4e;
1331
0
       T6q = T1L - T1I;
1332
0
       T6r = KP707106781 * (T1Z - T20);
1333
0
       T6s = T6q + T6r;
1334
0
       T82 = T6q - T6r;
1335
0
        }
1336
0
         }
1337
0
         {
1338
0
        E Ti, T3a, Tl, T3b, T1o, T1t, T6j, T6i, T5E, T5D, Tp, T3d, Ts, T3e, T1z;
1339
0
        E T1E, T6m, T6l, T5H, T5G;
1340
0
        {
1341
0
       E T1p, T1n, T1k, T1s;
1342
0
       {
1343
0
            E Tg, Th, T1l, T1m;
1344
0
            Tg = Rp[WS(rs, 2)];
1345
0
            Th = Rm[WS(rs, 13)];
1346
0
            Ti = Tg + Th;
1347
0
            T1p = Tg - Th;
1348
0
            T1l = Ip[WS(rs, 2)];
1349
0
            T1m = Im[WS(rs, 13)];
1350
0
            T1n = T1l + T1m;
1351
0
            T3a = T1l - T1m;
1352
0
       }
1353
0
       {
1354
0
            E Tj, Tk, T1q, T1r;
1355
0
            Tj = Rp[WS(rs, 10)];
1356
0
            Tk = Rm[WS(rs, 5)];
1357
0
            Tl = Tj + Tk;
1358
0
            T1k = Tj - Tk;
1359
0
            T1q = Ip[WS(rs, 10)];
1360
0
            T1r = Im[WS(rs, 5)];
1361
0
            T1s = T1q + T1r;
1362
0
            T3b = T1q - T1r;
1363
0
       }
1364
0
       T1o = T1k + T1n;
1365
0
       T1t = T1p - T1s;
1366
0
       T6j = T1p + T1s;
1367
0
       T6i = T1n - T1k;
1368
0
       T5E = T3a - T3b;
1369
0
       T5D = Ti - Tl;
1370
0
        }
1371
0
        {
1372
0
       E T1A, T1y, T1v, T1D;
1373
0
       {
1374
0
            E Tn, To, T1w, T1x;
1375
0
            Tn = Rm[WS(rs, 1)];
1376
0
            To = Rp[WS(rs, 14)];
1377
0
            Tp = Tn + To;
1378
0
            T1A = Tn - To;
1379
0
            T1w = Im[WS(rs, 1)];
1380
0
            T1x = Ip[WS(rs, 14)];
1381
0
            T1y = T1w + T1x;
1382
0
            T3d = T1x - T1w;
1383
0
       }
1384
0
       {
1385
0
            E Tq, Tr, T1B, T1C;
1386
0
            Tq = Rp[WS(rs, 6)];
1387
0
            Tr = Rm[WS(rs, 9)];
1388
0
            Ts = Tq + Tr;
1389
0
            T1v = Tq - Tr;
1390
0
            T1B = Ip[WS(rs, 6)];
1391
0
            T1C = Im[WS(rs, 9)];
1392
0
            T1D = T1B + T1C;
1393
0
            T3e = T1B - T1C;
1394
0
       }
1395
0
       T1z = T1v - T1y;
1396
0
       T1E = T1A - T1D;
1397
0
       T6m = T1A + T1D;
1398
0
       T6l = T1v + T1y;
1399
0
       T5H = T3d - T3e;
1400
0
       T5G = Tp - Ts;
1401
0
        }
1402
0
        {
1403
0
       E Tm, Tt, T6k, T6n;
1404
0
       Tm = Ti + Tl;
1405
0
       Tt = Tp + Ts;
1406
0
       Tu = Tm + Tt;
1407
0
       T4p = Tm - Tt;
1408
0
       T6k = FMA(KP382683432, T6i, KP923879532 * T6j);
1409
0
       T6n = FMA(KP382683432, T6l, KP923879532 * T6m);
1410
0
       T6o = T6k - T6n;
1411
0
       T8f = T6k + T6n;
1412
0
        }
1413
0
        {
1414
0
       E T6K, T6L, T1u, T1F;
1415
0
       T6K = FNMS(KP923879532, T6i, KP382683432 * T6j);
1416
0
       T6L = FNMS(KP923879532, T6l, KP382683432 * T6m);
1417
0
       T6M = T6K + T6L;
1418
0
       T80 = T6K - T6L;
1419
0
       T1u = FMA(KP923879532, T1o, KP382683432 * T1t);
1420
0
       T1F = FNMS(KP382683432, T1E, KP923879532 * T1z);
1421
0
       T1G = T1u + T1F;
1422
0
       T4K = T1F - T1u;
1423
0
        }
1424
0
        {
1425
0
       E T2G, T2H, T5F, T5I;
1426
0
       T2G = FNMS(KP382683432, T1o, KP923879532 * T1t);
1427
0
       T2H = FMA(KP382683432, T1z, KP923879532 * T1E);
1428
0
       T2I = T2G + T2H;
1429
0
       T4w = T2G - T2H;
1430
0
       T5F = T5D - T5E;
1431
0
       T5I = T5G + T5H;
1432
0
       T5J = KP707106781 * (T5F + T5I);
1433
0
       T7T = KP707106781 * (T5F - T5I);
1434
0
        }
1435
0
        {
1436
0
       E T65, T66, T3c, T3f;
1437
0
       T65 = T5D + T5E;
1438
0
       T66 = T5H - T5G;
1439
0
       T67 = KP707106781 * (T65 + T66);
1440
0
       T7F = KP707106781 * (T66 - T65);
1441
0
       T3c = T3a + T3b;
1442
0
       T3f = T3d + T3e;
1443
0
       T3g = T3c + T3f;
1444
0
       T4b = T3f - T3c;
1445
0
        }
1446
0
         }
1447
0
         {
1448
0
        E T11, T3s, T3p, T3u, T3K, T40, T3G, T3Y, T2T, T43, T3z, T3P, T2B, T45, T3x;
1449
0
        E T3T;
1450
0
        {
1451
0
       E Tv, T10, T3E, T3F;
1452
0
       Tv = Tf + Tu;
1453
0
       T10 = TK + TZ;
1454
0
       T11 = Tv + T10;
1455
0
       T3s = Tv - T10;
1456
0
       {
1457
0
            E T39, T3o, T3I, T3J;
1458
0
            T39 = T31 + T38;
1459
0
            T3o = T3g + T3n;
1460
0
            T3p = T39 + T3o;
1461
0
            T3u = T3o - T39;
1462
0
            T3I = TK - TZ;
1463
0
            T3J = T3n - T3g;
1464
0
            T3K = T3I + T3J;
1465
0
            T40 = T3J - T3I;
1466
0
       }
1467
0
       T3E = Tf - Tu;
1468
0
       T3F = T38 - T31;
1469
0
       T3G = T3E + T3F;
1470
0
       T3Y = T3E - T3F;
1471
0
       {
1472
0
            E T2S, T3N, T2F, T3O, T2D, T2E;
1473
0
            T2S = T2I + T2R;
1474
0
            T3N = T1j - T1G;
1475
0
            T2D = FNMS(KP195090322, T1Y, KP980785280 * T27);
1476
0
            T2E = FMA(KP195090322, T2p, KP980785280 * T2y);
1477
0
            T2F = T2D + T2E;
1478
0
            T3O = T2D - T2E;
1479
0
            T2T = T2F + T2S;
1480
0
            T43 = T3N - T3O;
1481
0
            T3z = T2S - T2F;
1482
0
            T3P = T3N + T3O;
1483
0
       }
1484
0
       {
1485
0
            E T1H, T3S, T2A, T3R, T28, T2z;
1486
0
            T1H = T1j + T1G;
1487
0
            T3S = T2R - T2I;
1488
0
            T28 = FMA(KP980785280, T1Y, KP195090322 * T27);
1489
0
            T2z = FNMS(KP195090322, T2y, KP980785280 * T2p);
1490
0
            T2A = T28 + T2z;
1491
0
            T3R = T2z - T28;
1492
0
            T2B = T1H + T2A;
1493
0
            T45 = T3S - T3R;
1494
0
            T3x = T1H - T2A;
1495
0
            T3T = T3R + T3S;
1496
0
       }
1497
0
        }
1498
0
        {
1499
0
       E T2U, T3q, T12, T2C;
1500
0
       T12 = W[0];
1501
0
       T2C = W[1];
1502
0
       T2U = FMA(T12, T2B, T2C * T2T);
1503
0
       T3q = FNMS(T2C, T2B, T12 * T2T);
1504
0
       Rp[0] = T11 - T2U;
1505
0
       Ip[0] = T3p + T3q;
1506
0
       Rm[0] = T11 + T2U;
1507
0
       Im[0] = T3q - T3p;
1508
0
        }
1509
0
        {
1510
0
       E T41, T47, T46, T48;
1511
0
       {
1512
0
            E T3X, T3Z, T42, T44;
1513
0
            T3X = W[46];
1514
0
            T3Z = W[47];
1515
0
            T41 = FNMS(T3Z, T40, T3X * T3Y);
1516
0
            T47 = FMA(T3Z, T3Y, T3X * T40);
1517
0
            T42 = W[48];
1518
0
            T44 = W[49];
1519
0
            T46 = FMA(T42, T43, T44 * T45);
1520
0
            T48 = FNMS(T44, T43, T42 * T45);
1521
0
       }
1522
0
       Rp[WS(rs, 12)] = T41 - T46;
1523
0
       Ip[WS(rs, 12)] = T47 + T48;
1524
0
       Rm[WS(rs, 12)] = T41 + T46;
1525
0
       Im[WS(rs, 12)] = T48 - T47;
1526
0
        }
1527
0
        {
1528
0
       E T3v, T3B, T3A, T3C;
1529
0
       {
1530
0
            E T3r, T3t, T3w, T3y;
1531
0
            T3r = W[30];
1532
0
            T3t = W[31];
1533
0
            T3v = FNMS(T3t, T3u, T3r * T3s);
1534
0
            T3B = FMA(T3t, T3s, T3r * T3u);
1535
0
            T3w = W[32];
1536
0
            T3y = W[33];
1537
0
            T3A = FMA(T3w, T3x, T3y * T3z);
1538
0
            T3C = FNMS(T3y, T3x, T3w * T3z);
1539
0
       }
1540
0
       Rp[WS(rs, 8)] = T3v - T3A;
1541
0
       Ip[WS(rs, 8)] = T3B + T3C;
1542
0
       Rm[WS(rs, 8)] = T3v + T3A;
1543
0
       Im[WS(rs, 8)] = T3C - T3B;
1544
0
        }
1545
0
        {
1546
0
       E T3L, T3V, T3U, T3W;
1547
0
       {
1548
0
            E T3D, T3H, T3M, T3Q;
1549
0
            T3D = W[14];
1550
0
            T3H = W[15];
1551
0
            T3L = FNMS(T3H, T3K, T3D * T3G);
1552
0
            T3V = FMA(T3H, T3G, T3D * T3K);
1553
0
            T3M = W[16];
1554
0
            T3Q = W[17];
1555
0
            T3U = FMA(T3M, T3P, T3Q * T3T);
1556
0
            T3W = FNMS(T3Q, T3P, T3M * T3T);
1557
0
       }
1558
0
       Rp[WS(rs, 4)] = T3L - T3U;
1559
0
       Ip[WS(rs, 4)] = T3V + T3W;
1560
0
       Rm[WS(rs, 4)] = T3L + T3U;
1561
0
       Im[WS(rs, 4)] = T3W - T3V;
1562
0
        }
1563
0
         }
1564
0
         {
1565
0
        E T7O, T8m, T7W, T8o, T8E, T8U, T8A, T8S, T8h, T8X, T8t, T8J, T89, T8Z, T8r;
1566
0
        E T8N;
1567
0
        {
1568
0
       E T7G, T7N, T8y, T8z;
1569
0
       T7G = T7E + T7F;
1570
0
       T7N = T7J + T7M;
1571
0
       T7O = T7G + T7N;
1572
0
       T8m = T7G - T7N;
1573
0
       {
1574
0
            E T7S, T7V, T8C, T8D;
1575
0
            T7S = T7Q + T7R;
1576
0
            T7V = T7T + T7U;
1577
0
            T7W = T7S + T7V;
1578
0
            T8o = T7V - T7S;
1579
0
            T8C = T7J - T7M;
1580
0
            T8D = T7U - T7T;
1581
0
            T8E = T8C + T8D;
1582
0
            T8U = T8D - T8C;
1583
0
       }
1584
0
       T8y = T7E - T7F;
1585
0
       T8z = T7R - T7Q;
1586
0
       T8A = T8y + T8z;
1587
0
       T8S = T8y - T8z;
1588
0
       {
1589
0
            E T8g, T8H, T8d, T8I, T8b, T8c;
1590
0
            T8g = T8e - T8f;
1591
0
            T8H = T7Z - T80;
1592
0
            T8b = FNMS(KP980785280, T82, KP195090322 * T83);
1593
0
            T8c = FNMS(KP980785280, T85, KP195090322 * T86);
1594
0
            T8d = T8b + T8c;
1595
0
            T8I = T8b - T8c;
1596
0
            T8h = T8d + T8g;
1597
0
            T8X = T8H - T8I;
1598
0
            T8t = T8g - T8d;
1599
0
            T8J = T8H + T8I;
1600
0
       }
1601
0
       {
1602
0
            E T81, T8L, T88, T8M, T84, T87;
1603
0
            T81 = T7Z + T80;
1604
0
            T8L = T8f + T8e;
1605
0
            T84 = FMA(KP195090322, T82, KP980785280 * T83);
1606
0
            T87 = FMA(KP195090322, T85, KP980785280 * T86);
1607
0
            T88 = T84 - T87;
1608
0
            T8M = T84 + T87;
1609
0
            T89 = T81 + T88;
1610
0
            T8Z = T8M + T8L;
1611
0
            T8r = T81 - T88;
1612
0
            T8N = T8L - T8M;
1613
0
       }
1614
0
        }
1615
0
        {
1616
0
       E T7X, T8j, T8i, T8k;
1617
0
       {
1618
0
            E T7D, T7P, T7Y, T8a;
1619
0
            T7D = W[10];
1620
0
            T7P = W[11];
1621
0
            T7X = FNMS(T7P, T7W, T7D * T7O);
1622
0
            T8j = FMA(T7P, T7O, T7D * T7W);
1623
0
            T7Y = W[12];
1624
0
            T8a = W[13];
1625
0
            T8i = FMA(T7Y, T89, T8a * T8h);
1626
0
            T8k = FNMS(T8a, T89, T7Y * T8h);
1627
0
       }
1628
0
       Rp[WS(rs, 3)] = T7X - T8i;
1629
0
       Ip[WS(rs, 3)] = T8j + T8k;
1630
0
       Rm[WS(rs, 3)] = T7X + T8i;
1631
0
       Im[WS(rs, 3)] = T8k - T8j;
1632
0
        }
1633
0
        {
1634
0
       E T8V, T91, T90, T92;
1635
0
       {
1636
0
            E T8R, T8T, T8W, T8Y;
1637
0
            T8R = W[58];
1638
0
            T8T = W[59];
1639
0
            T8V = FNMS(T8T, T8U, T8R * T8S);
1640
0
            T91 = FMA(T8T, T8S, T8R * T8U);
1641
0
            T8W = W[60];
1642
0
            T8Y = W[61];
1643
0
            T90 = FMA(T8W, T8X, T8Y * T8Z);
1644
0
            T92 = FNMS(T8Y, T8X, T8W * T8Z);
1645
0
       }
1646
0
       Rp[WS(rs, 15)] = T8V - T90;
1647
0
       Ip[WS(rs, 15)] = T91 + T92;
1648
0
       Rm[WS(rs, 15)] = T8V + T90;
1649
0
       Im[WS(rs, 15)] = T92 - T91;
1650
0
        }
1651
0
        {
1652
0
       E T8p, T8v, T8u, T8w;
1653
0
       {
1654
0
            E T8l, T8n, T8q, T8s;
1655
0
            T8l = W[42];
1656
0
            T8n = W[43];
1657
0
            T8p = FNMS(T8n, T8o, T8l * T8m);
1658
0
            T8v = FMA(T8n, T8m, T8l * T8o);
1659
0
            T8q = W[44];
1660
0
            T8s = W[45];
1661
0
            T8u = FMA(T8q, T8r, T8s * T8t);
1662
0
            T8w = FNMS(T8s, T8r, T8q * T8t);
1663
0
       }
1664
0
       Rp[WS(rs, 11)] = T8p - T8u;
1665
0
       Ip[WS(rs, 11)] = T8v + T8w;
1666
0
       Rm[WS(rs, 11)] = T8p + T8u;
1667
0
       Im[WS(rs, 11)] = T8w - T8v;
1668
0
        }
1669
0
        {
1670
0
       E T8F, T8P, T8O, T8Q;
1671
0
       {
1672
0
            E T8x, T8B, T8G, T8K;
1673
0
            T8x = W[26];
1674
0
            T8B = W[27];
1675
0
            T8F = FNMS(T8B, T8E, T8x * T8A);
1676
0
            T8P = FMA(T8B, T8A, T8x * T8E);
1677
0
            T8G = W[28];
1678
0
            T8K = W[29];
1679
0
            T8O = FMA(T8G, T8J, T8K * T8N);
1680
0
            T8Q = FNMS(T8K, T8J, T8G * T8N);
1681
0
       }
1682
0
       Rp[WS(rs, 7)] = T8F - T8O;
1683
0
       Ip[WS(rs, 7)] = T8P + T8Q;
1684
0
       Rm[WS(rs, 7)] = T8F + T8O;
1685
0
       Im[WS(rs, 7)] = T8Q - T8P;
1686
0
        }
1687
0
         }
1688
0
         {
1689
0
        E T4k, T4S, T4s, T4U, T5a, T5q, T56, T5o, T4N, T5t, T4Z, T5f, T4F, T5v, T4X;
1690
0
        E T5j;
1691
0
        {
1692
0
       E T4c, T4j, T54, T55;
1693
0
       T4c = T4a + T4b;
1694
0
       T4j = KP707106781 * (T4f + T4i);
1695
0
       T4k = T4c + T4j;
1696
0
       T4S = T4c - T4j;
1697
0
       {
1698
0
            E T4o, T4r, T58, T59;
1699
0
            T4o = KP707106781 * (T4m + T4n);
1700
0
            T4r = T4p + T4q;
1701
0
            T4s = T4o + T4r;
1702
0
            T4U = T4r - T4o;
1703
0
            T58 = KP707106781 * (T4f - T4i);
1704
0
            T59 = T4q - T4p;
1705
0
            T5a = T58 + T59;
1706
0
            T5q = T59 - T58;
1707
0
       }
1708
0
       T54 = T4a - T4b;
1709
0
       T55 = KP707106781 * (T4n - T4m);
1710
0
       T56 = T54 + T55;
1711
0
       T5o = T54 - T55;
1712
0
       {
1713
0
            E T4M, T5d, T4J, T5e, T4H, T4I;
1714
0
            T4M = T4K + T4L;
1715
0
            T5d = T4v - T4w;
1716
0
            T4H = FNMS(KP831469612, T4y, KP555570233 * T4z);
1717
0
            T4I = FMA(KP831469612, T4B, KP555570233 * T4C);
1718
0
            T4J = T4H + T4I;
1719
0
            T5e = T4H - T4I;
1720
0
            T4N = T4J + T4M;
1721
0
            T5t = T5d - T5e;
1722
0
            T4Z = T4M - T4J;
1723
0
            T5f = T5d + T5e;
1724
0
       }
1725
0
       {
1726
0
            E T4x, T5i, T4E, T5h, T4A, T4D;
1727
0
            T4x = T4v + T4w;
1728
0
            T5i = T4L - T4K;
1729
0
            T4A = FMA(KP555570233, T4y, KP831469612 * T4z);
1730
0
            T4D = FNMS(KP831469612, T4C, KP555570233 * T4B);
1731
0
            T4E = T4A + T4D;
1732
0
            T5h = T4D - T4A;
1733
0
            T4F = T4x + T4E;
1734
0
            T5v = T5i - T5h;
1735
0
            T4X = T4x - T4E;
1736
0
            T5j = T5h + T5i;
1737
0
       }
1738
0
        }
1739
0
        {
1740
0
       E T4t, T4P, T4O, T4Q;
1741
0
       {
1742
0
            E T49, T4l, T4u, T4G;
1743
0
            T49 = W[6];
1744
0
            T4l = W[7];
1745
0
            T4t = FNMS(T4l, T4s, T49 * T4k);
1746
0
            T4P = FMA(T4l, T4k, T49 * T4s);
1747
0
            T4u = W[8];
1748
0
            T4G = W[9];
1749
0
            T4O = FMA(T4u, T4F, T4G * T4N);
1750
0
            T4Q = FNMS(T4G, T4F, T4u * T4N);
1751
0
       }
1752
0
       Rp[WS(rs, 2)] = T4t - T4O;
1753
0
       Ip[WS(rs, 2)] = T4P + T4Q;
1754
0
       Rm[WS(rs, 2)] = T4t + T4O;
1755
0
       Im[WS(rs, 2)] = T4Q - T4P;
1756
0
        }
1757
0
        {
1758
0
       E T5r, T5x, T5w, T5y;
1759
0
       {
1760
0
            E T5n, T5p, T5s, T5u;
1761
0
            T5n = W[54];
1762
0
            T5p = W[55];
1763
0
            T5r = FNMS(T5p, T5q, T5n * T5o);
1764
0
            T5x = FMA(T5p, T5o, T5n * T5q);
1765
0
            T5s = W[56];
1766
0
            T5u = W[57];
1767
0
            T5w = FMA(T5s, T5t, T5u * T5v);
1768
0
            T5y = FNMS(T5u, T5t, T5s * T5v);
1769
0
       }
1770
0
       Rp[WS(rs, 14)] = T5r - T5w;
1771
0
       Ip[WS(rs, 14)] = T5x + T5y;
1772
0
       Rm[WS(rs, 14)] = T5r + T5w;
1773
0
       Im[WS(rs, 14)] = T5y - T5x;
1774
0
        }
1775
0
        {
1776
0
       E T4V, T51, T50, T52;
1777
0
       {
1778
0
            E T4R, T4T, T4W, T4Y;
1779
0
            T4R = W[38];
1780
0
            T4T = W[39];
1781
0
            T4V = FNMS(T4T, T4U, T4R * T4S);
1782
0
            T51 = FMA(T4T, T4S, T4R * T4U);
1783
0
            T4W = W[40];
1784
0
            T4Y = W[41];
1785
0
            T50 = FMA(T4W, T4X, T4Y * T4Z);
1786
0
            T52 = FNMS(T4Y, T4X, T4W * T4Z);
1787
0
       }
1788
0
       Rp[WS(rs, 10)] = T4V - T50;
1789
0
       Ip[WS(rs, 10)] = T51 + T52;
1790
0
       Rm[WS(rs, 10)] = T4V + T50;
1791
0
       Im[WS(rs, 10)] = T52 - T51;
1792
0
        }
1793
0
        {
1794
0
       E T5b, T5l, T5k, T5m;
1795
0
       {
1796
0
            E T53, T57, T5c, T5g;
1797
0
            T53 = W[22];
1798
0
            T57 = W[23];
1799
0
            T5b = FNMS(T57, T5a, T53 * T56);
1800
0
            T5l = FMA(T57, T56, T53 * T5a);
1801
0
            T5c = W[24];
1802
0
            T5g = W[25];
1803
0
            T5k = FMA(T5c, T5f, T5g * T5j);
1804
0
            T5m = FNMS(T5g, T5f, T5c * T5j);
1805
0
       }
1806
0
       Rp[WS(rs, 6)] = T5b - T5k;
1807
0
       Ip[WS(rs, 6)] = T5l + T5m;
1808
0
       Rm[WS(rs, 6)] = T5b + T5k;
1809
0
       Im[WS(rs, 6)] = T5m - T5l;
1810
0
        }
1811
0
         }
1812
0
         {
1813
0
        E T60, T6W, T6c, T6Y, T7e, T7u, T7a, T7s, T6R, T7x, T73, T7j, T6F, T7z, T71;
1814
0
        E T7n;
1815
0
        {
1816
0
       E T5K, T5Z, T78, T79;
1817
0
       T5K = T5C + T5J;
1818
0
       T5Z = T5R + T5Y;
1819
0
       T60 = T5K + T5Z;
1820
0
       T6W = T5K - T5Z;
1821
0
       {
1822
0
            E T64, T6b, T7c, T7d;
1823
0
            T64 = T62 + T63;
1824
0
            T6b = T67 + T6a;
1825
0
            T6c = T64 + T6b;
1826
0
            T6Y = T6b - T64;
1827
0
            T7c = T5R - T5Y;
1828
0
            T7d = T6a - T67;
1829
0
            T7e = T7c + T7d;
1830
0
            T7u = T7d - T7c;
1831
0
       }
1832
0
       T78 = T5C - T5J;
1833
0
       T79 = T63 - T62;
1834
0
       T7a = T78 + T79;
1835
0
       T7s = T78 - T79;
1836
0
       {
1837
0
            E T6Q, T7h, T6J, T7i, T6H, T6I;
1838
0
            T6Q = T6M + T6P;
1839
0
            T7h = T6h - T6o;
1840
0
            T6H = FNMS(KP555570233, T6s, KP831469612 * T6v);
1841
0
            T6I = FMA(KP555570233, T6z, KP831469612 * T6C);
1842
0
            T6J = T6H + T6I;
1843
0
            T7i = T6H - T6I;
1844
0
            T6R = T6J + T6Q;
1845
0
            T7x = T7h - T7i;
1846
0
            T73 = T6Q - T6J;
1847
0
            T7j = T7h + T7i;
1848
0
       }
1849
0
       {
1850
0
            E T6p, T7m, T6E, T7l, T6w, T6D;
1851
0
            T6p = T6h + T6o;
1852
0
            T7m = T6P - T6M;
1853
0
            T6w = FMA(KP831469612, T6s, KP555570233 * T6v);
1854
0
            T6D = FNMS(KP555570233, T6C, KP831469612 * T6z);
1855
0
            T6E = T6w + T6D;
1856
0
            T7l = T6D - T6w;
1857
0
            T6F = T6p + T6E;
1858
0
            T7z = T7m - T7l;
1859
0
            T71 = T6p - T6E;
1860
0
            T7n = T7l + T7m;
1861
0
       }
1862
0
        }
1863
0
        {
1864
0
       E T6d, T6T, T6S, T6U;
1865
0
       {
1866
0
            E T5z, T61, T6e, T6G;
1867
0
            T5z = W[2];
1868
0
            T61 = W[3];
1869
0
            T6d = FNMS(T61, T6c, T5z * T60);
1870
0
            T6T = FMA(T61, T60, T5z * T6c);
1871
0
            T6e = W[4];
1872
0
            T6G = W[5];
1873
0
            T6S = FMA(T6e, T6F, T6G * T6R);
1874
0
            T6U = FNMS(T6G, T6F, T6e * T6R);
1875
0
       }
1876
0
       Rp[WS(rs, 1)] = T6d - T6S;
1877
0
       Ip[WS(rs, 1)] = T6T + T6U;
1878
0
       Rm[WS(rs, 1)] = T6d + T6S;
1879
0
       Im[WS(rs, 1)] = T6U - T6T;
1880
0
        }
1881
0
        {
1882
0
       E T7v, T7B, T7A, T7C;
1883
0
       {
1884
0
            E T7r, T7t, T7w, T7y;
1885
0
            T7r = W[50];
1886
0
            T7t = W[51];
1887
0
            T7v = FNMS(T7t, T7u, T7r * T7s);
1888
0
            T7B = FMA(T7t, T7s, T7r * T7u);
1889
0
            T7w = W[52];
1890
0
            T7y = W[53];
1891
0
            T7A = FMA(T7w, T7x, T7y * T7z);
1892
0
            T7C = FNMS(T7y, T7x, T7w * T7z);
1893
0
       }
1894
0
       Rp[WS(rs, 13)] = T7v - T7A;
1895
0
       Ip[WS(rs, 13)] = T7B + T7C;
1896
0
       Rm[WS(rs, 13)] = T7v + T7A;
1897
0
       Im[WS(rs, 13)] = T7C - T7B;
1898
0
        }
1899
0
        {
1900
0
       E T6Z, T75, T74, T76;
1901
0
       {
1902
0
            E T6V, T6X, T70, T72;
1903
0
            T6V = W[34];
1904
0
            T6X = W[35];
1905
0
            T6Z = FNMS(T6X, T6Y, T6V * T6W);
1906
0
            T75 = FMA(T6X, T6W, T6V * T6Y);
1907
0
            T70 = W[36];
1908
0
            T72 = W[37];
1909
0
            T74 = FMA(T70, T71, T72 * T73);
1910
0
            T76 = FNMS(T72, T71, T70 * T73);
1911
0
       }
1912
0
       Rp[WS(rs, 9)] = T6Z - T74;
1913
0
       Ip[WS(rs, 9)] = T75 + T76;
1914
0
       Rm[WS(rs, 9)] = T6Z + T74;
1915
0
       Im[WS(rs, 9)] = T76 - T75;
1916
0
        }
1917
0
        {
1918
0
       E T7f, T7p, T7o, T7q;
1919
0
       {
1920
0
            E T77, T7b, T7g, T7k;
1921
0
            T77 = W[18];
1922
0
            T7b = W[19];
1923
0
            T7f = FNMS(T7b, T7e, T77 * T7a);
1924
0
            T7p = FMA(T7b, T7a, T77 * T7e);
1925
0
            T7g = W[20];
1926
0
            T7k = W[21];
1927
0
            T7o = FMA(T7g, T7j, T7k * T7n);
1928
0
            T7q = FNMS(T7k, T7j, T7g * T7n);
1929
0
       }
1930
0
       Rp[WS(rs, 5)] = T7f - T7o;
1931
0
       Ip[WS(rs, 5)] = T7p + T7q;
1932
0
       Rm[WS(rs, 5)] = T7f + T7o;
1933
0
       Im[WS(rs, 5)] = T7q - T7p;
1934
0
        }
1935
0
         }
1936
0
    }
1937
0
     }
1938
0
}
1939
1940
static const tw_instr twinstr[] = {
1941
     { TW_FULL, 1, 32 },
1942
     { TW_NEXT, 1, 0 }
1943
};
1944
1945
static const hc2c_desc desc = { 32, "hc2cbdft_32", twinstr, &GENUS, { 404, 114, 94, 0 } };
1946
1947
1
void X(codelet_hc2cbdft_32) (planner *p) {
1948
1
     X(khc2c_register) (p, hc2cbdft_32, &desc, HC2C_VIA_DFT);
1949
1
}
1950
#endif