/src/fftw3/rdft/scalar/r2cb/hc2cbdft_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:54:27 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft_32 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 498 FP additions, 260 FP multiplications, |
32 | | * (or, 300 additions, 62 multiplications, 198 fused multiply/add), |
33 | | * 122 stack variables, 7 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cbdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
40 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
41 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
42 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
43 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
44 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
45 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
46 | | { |
47 | | INT m; |
48 | | for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { |
49 | | E T3h, T4B, Tv, T3K, T6T, T8Y, T7i, T8L, T7f, T8X, T1G, T4Y, T1j, T4K, T2M; |
50 | | E T4X, T6d, T8C, T66, T8o, T6M, T8K, T2P, T4L, T3o, T4C, T4q, T5q, T6C, T8p; |
51 | | E T6z, T8B, TK, TZ, T10, T32, T39, T3L, T4t, T4E, T8t, T8F, T4w, T4F, T8w; |
52 | | E T8E, T6l, T6E, T6s, T6F, T28, T51, T2R, T4P, T71, T90, T7k, T8P, T2z, T50; |
53 | | E T2S, T4S, T78, T91, T7l, T8S; |
54 | | { |
55 | | E T16, T3l, T2H, T3m, T3, T6, T7, T2E, T13, Ta, Td, Te, T1c, T3j, T3i; |
56 | | E T2J, T1h, T2K, Tt, T6Q, T6R, T1z, T1E, T6a, T6b, T3g, Tm, T6N, T6O, T1o; |
57 | | E T1t, T67, T68, T3d, T4o, T4p; |
58 | | { |
59 | | E T14, T15, T2F, T2G; |
60 | | T14 = Ip[0]; |
61 | | T15 = Im[WS(rs, 15)]; |
62 | | T16 = T14 + T15; |
63 | | T3l = T14 - T15; |
64 | | T2F = Ip[WS(rs, 8)]; |
65 | | T2G = Im[WS(rs, 7)]; |
66 | | T2H = T2F + T2G; |
67 | | T3m = T2F - T2G; |
68 | | { |
69 | | E T1, T2, T4, T5; |
70 | | T1 = Rp[0]; |
71 | | T2 = Rm[WS(rs, 15)]; |
72 | | T3 = T1 + T2; |
73 | | T4 = Rp[WS(rs, 8)]; |
74 | | T5 = Rm[WS(rs, 7)]; |
75 | | T6 = T4 + T5; |
76 | | T7 = T3 + T6; |
77 | | T2E = T1 - T2; |
78 | | T13 = T4 - T5; |
79 | | } |
80 | | } |
81 | | { |
82 | | E T19, T1a, T1b, T18, T1e, T1f, T1g, T1d; |
83 | | { |
84 | | E T8, T9, Tb, Tc; |
85 | | T19 = Ip[WS(rs, 4)]; |
86 | | T1a = Im[WS(rs, 11)]; |
87 | | T1b = T19 + T1a; |
88 | | T8 = Rp[WS(rs, 4)]; |
89 | | T9 = Rm[WS(rs, 11)]; |
90 | | Ta = T8 + T9; |
91 | | T18 = T8 - T9; |
92 | | T1e = Im[WS(rs, 3)]; |
93 | | T1f = Ip[WS(rs, 12)]; |
94 | | T1g = T1e + T1f; |
95 | | Tb = Rm[WS(rs, 3)]; |
96 | | Tc = Rp[WS(rs, 12)]; |
97 | | Td = Tb + Tc; |
98 | | T1d = Tb - Tc; |
99 | | } |
100 | | Te = Ta + Td; |
101 | | T1c = T18 + T1b; |
102 | | T3j = T1f - T1e; |
103 | | T3i = T19 - T1a; |
104 | | T2J = T18 - T1b; |
105 | | T1h = T1d + T1g; |
106 | | T2K = T1d - T1g; |
107 | | } |
108 | | { |
109 | | E Tp, T1A, T1y, T3e, Ts, T1v, T1D, T3f; |
110 | | { |
111 | | E Tn, To, T1w, T1x; |
112 | | Tn = Rm[WS(rs, 1)]; |
113 | | To = Rp[WS(rs, 14)]; |
114 | | Tp = Tn + To; |
115 | | T1A = Tn - To; |
116 | | T1w = Im[WS(rs, 1)]; |
117 | | T1x = Ip[WS(rs, 14)]; |
118 | | T1y = T1w + T1x; |
119 | | T3e = T1x - T1w; |
120 | | } |
121 | | { |
122 | | E Tq, Tr, T1B, T1C; |
123 | | Tq = Rp[WS(rs, 6)]; |
124 | | Tr = Rm[WS(rs, 9)]; |
125 | | Ts = Tq + Tr; |
126 | | T1v = Tq - Tr; |
127 | | T1B = Ip[WS(rs, 6)]; |
128 | | T1C = Im[WS(rs, 9)]; |
129 | | T1D = T1B + T1C; |
130 | | T3f = T1B - T1C; |
131 | | } |
132 | | Tt = Tp + Ts; |
133 | | T6Q = T1A + T1D; |
134 | | T6R = T1v + T1y; |
135 | | T1z = T1v - T1y; |
136 | | T1E = T1A - T1D; |
137 | | T6a = Tp - Ts; |
138 | | T6b = T3e - T3f; |
139 | | T3g = T3e + T3f; |
140 | | } |
141 | | { |
142 | | E Ti, T1p, T1n, T3b, Tl, T1k, T1s, T3c; |
143 | | { |
144 | | E Tg, Th, T1l, T1m; |
145 | | Tg = Rp[WS(rs, 2)]; |
146 | | Th = Rm[WS(rs, 13)]; |
147 | | Ti = Tg + Th; |
148 | | T1p = Tg - Th; |
149 | | T1l = Ip[WS(rs, 2)]; |
150 | | T1m = Im[WS(rs, 13)]; |
151 | | T1n = T1l + T1m; |
152 | | T3b = T1l - T1m; |
153 | | } |
154 | | { |
155 | | E Tj, Tk, T1q, T1r; |
156 | | Tj = Rp[WS(rs, 10)]; |
157 | | Tk = Rm[WS(rs, 5)]; |
158 | | Tl = Tj + Tk; |
159 | | T1k = Tj - Tk; |
160 | | T1q = Ip[WS(rs, 10)]; |
161 | | T1r = Im[WS(rs, 5)]; |
162 | | T1s = T1q + T1r; |
163 | | T3c = T1q - T1r; |
164 | | } |
165 | | Tm = Ti + Tl; |
166 | | T6N = T1p + T1s; |
167 | | T6O = T1n - T1k; |
168 | | T1o = T1k + T1n; |
169 | | T1t = T1p - T1s; |
170 | | T67 = Ti - Tl; |
171 | | T68 = T3b - T3c; |
172 | | T3d = T3b + T3c; |
173 | | } |
174 | | T3h = T3d + T3g; |
175 | | T4B = Tm - Tt; |
176 | | { |
177 | | E Tf, Tu, T6P, T6S; |
178 | | Tf = T7 + Te; |
179 | | Tu = Tm + Tt; |
180 | | Tv = Tf + Tu; |
181 | | T3K = Tf - Tu; |
182 | | T6P = FMA(KP414213562, T6O, T6N); |
183 | | T6S = FMA(KP414213562, T6R, T6Q); |
184 | | T6T = T6P - T6S; |
185 | | T8Y = T6P + T6S; |
186 | | } |
187 | | { |
188 | | E T7g, T7h, T7d, T7e; |
189 | | T7g = FNMS(KP414213562, T6N, T6O); |
190 | | T7h = FNMS(KP414213562, T6Q, T6R); |
191 | | T7i = T7g + T7h; |
192 | | T8L = T7h - T7g; |
193 | | T7d = T2E + T2H; |
194 | | T7e = T1c + T1h; |
195 | | T7f = FNMS(KP707106781, T7e, T7d); |
196 | | T8X = FMA(KP707106781, T7e, T7d); |
197 | | } |
198 | | { |
199 | | E T1u, T1F, T17, T1i; |
200 | | T1u = FMA(KP414213562, T1t, T1o); |
201 | | T1F = FNMS(KP414213562, T1E, T1z); |
202 | | T1G = T1u + T1F; |
203 | | T4Y = T1F - T1u; |
204 | | T17 = T13 + T16; |
205 | | T1i = T1c - T1h; |
206 | | T1j = FMA(KP707106781, T1i, T17); |
207 | | T4K = FNMS(KP707106781, T1i, T17); |
208 | | } |
209 | | { |
210 | | E T2I, T2L, T69, T6c; |
211 | | T2I = T2E - T2H; |
212 | | T2L = T2J + T2K; |
213 | | T2M = FMA(KP707106781, T2L, T2I); |
214 | | T4X = FNMS(KP707106781, T2L, T2I); |
215 | | T69 = T67 - T68; |
216 | | T6c = T6a + T6b; |
217 | | T6d = T69 + T6c; |
218 | | T8C = T69 - T6c; |
219 | | } |
220 | | { |
221 | | E T64, T65, T6K, T6L; |
222 | | T64 = T3 - T6; |
223 | | T65 = T3j - T3i; |
224 | | T66 = T64 + T65; |
225 | | T8o = T64 - T65; |
226 | | T6K = T16 - T13; |
227 | | T6L = T2J - T2K; |
228 | | T6M = FMA(KP707106781, T6L, T6K); |
229 | | T8K = FNMS(KP707106781, T6L, T6K); |
230 | | } |
231 | | { |
232 | | E T2N, T2O, T3k, T3n; |
233 | | T2N = FNMS(KP414213562, T1o, T1t); |
234 | | T2O = FMA(KP414213562, T1z, T1E); |
235 | | T2P = T2N + T2O; |
236 | | T4L = T2N - T2O; |
237 | | T3k = T3i + T3j; |
238 | | T3n = T3l + T3m; |
239 | | T3o = T3k + T3n; |
240 | | T4C = T3n - T3k; |
241 | | } |
242 | | T4o = T7 - Te; |
243 | | T4p = T3g - T3d; |
244 | | T4q = T4o + T4p; |
245 | | T5q = T4o - T4p; |
246 | | { |
247 | | E T6A, T6B, T6x, T6y; |
248 | | T6A = T67 + T68; |
249 | | T6B = T6b - T6a; |
250 | | T6C = T6A + T6B; |
251 | | T8p = T6B - T6A; |
252 | | T6x = Ta - Td; |
253 | | T6y = T3l - T3m; |
254 | | T6z = T6x + T6y; |
255 | | T8B = T6y - T6x; |
256 | | } |
257 | | } |
258 | | { |
259 | | E TC, T6V, T6Y, T1M, T23, T6f, T6j, T31, TY, T6n, T6p, T2i, T2n, T2w, T35; |
260 | | E T2v, TJ, T6g, T6i, T1R, T1W, T25, T2Y, T24, TR, T72, T75, T2d, T2u, T6m; |
261 | | E T6q, T38; |
262 | | { |
263 | | E Ty, T1Z, T1L, T2Z, TB, T1I, T22, T30; |
264 | | { |
265 | | E Tw, Tx, T1J, T1K; |
266 | | Tw = Rp[WS(rs, 1)]; |
267 | | Tx = Rm[WS(rs, 14)]; |
268 | | Ty = Tw + Tx; |
269 | | T1Z = Tw - Tx; |
270 | | T1J = Ip[WS(rs, 1)]; |
271 | | T1K = Im[WS(rs, 14)]; |
272 | | T1L = T1J + T1K; |
273 | | T2Z = T1J - T1K; |
274 | | } |
275 | | { |
276 | | E Tz, TA, T20, T21; |
277 | | Tz = Rp[WS(rs, 9)]; |
278 | | TA = Rm[WS(rs, 6)]; |
279 | | TB = Tz + TA; |
280 | | T1I = Tz - TA; |
281 | | T20 = Ip[WS(rs, 9)]; |
282 | | T21 = Im[WS(rs, 6)]; |
283 | | T22 = T20 + T21; |
284 | | T30 = T20 - T21; |
285 | | } |
286 | | TC = Ty + TB; |
287 | | T6V = T1L - T1I; |
288 | | T6Y = T1Z + T22; |
289 | | T1M = T1I + T1L; |
290 | | T23 = T1Z - T22; |
291 | | T6f = Ty - TB; |
292 | | T6j = T2Z - T30; |
293 | | T31 = T2Z + T30; |
294 | | } |
295 | | { |
296 | | E TU, T2e, T2h, T33, TX, T2j, T2m, T34; |
297 | | { |
298 | | E TS, TT, T2f, T2g; |
299 | | TS = Rp[WS(rs, 3)]; |
300 | | TT = Rm[WS(rs, 12)]; |
301 | | TU = TS + TT; |
302 | | T2e = TS - TT; |
303 | | T2f = Ip[WS(rs, 3)]; |
304 | | T2g = Im[WS(rs, 12)]; |
305 | | T2h = T2f + T2g; |
306 | | T33 = T2f - T2g; |
307 | | } |
308 | | { |
309 | | E TV, TW, T2k, T2l; |
310 | | TV = Rm[WS(rs, 4)]; |
311 | | TW = Rp[WS(rs, 11)]; |
312 | | TX = TV + TW; |
313 | | T2j = TV - TW; |
314 | | T2k = Im[WS(rs, 4)]; |
315 | | T2l = Ip[WS(rs, 11)]; |
316 | | T2m = T2k + T2l; |
317 | | T34 = T2l - T2k; |
318 | | } |
319 | | TY = TU + TX; |
320 | | T6n = T34 - T33; |
321 | | T6p = TU - TX; |
322 | | T2i = T2e + T2h; |
323 | | T2n = T2j + T2m; |
324 | | T2w = T2j - T2m; |
325 | | T35 = T33 + T34; |
326 | | T2v = T2e - T2h; |
327 | | } |
328 | | { |
329 | | E TF, T1N, T1Q, T2W, TI, T1S, T1V, T2X; |
330 | | { |
331 | | E TD, TE, T1O, T1P; |
332 | | TD = Rp[WS(rs, 5)]; |
333 | | TE = Rm[WS(rs, 10)]; |
334 | | TF = TD + TE; |
335 | | T1N = TD - TE; |
336 | | T1O = Ip[WS(rs, 5)]; |
337 | | T1P = Im[WS(rs, 10)]; |
338 | | T1Q = T1O + T1P; |
339 | | T2W = T1O - T1P; |
340 | | } |
341 | | { |
342 | | E TG, TH, T1T, T1U; |
343 | | TG = Rm[WS(rs, 2)]; |
344 | | TH = Rp[WS(rs, 13)]; |
345 | | TI = TG + TH; |
346 | | T1S = TG - TH; |
347 | | T1T = Im[WS(rs, 2)]; |
348 | | T1U = Ip[WS(rs, 13)]; |
349 | | T1V = T1T + T1U; |
350 | | T2X = T1U - T1T; |
351 | | } |
352 | | TJ = TF + TI; |
353 | | T6g = T2X - T2W; |
354 | | T6i = TF - TI; |
355 | | T1R = T1N + T1Q; |
356 | | T1W = T1S + T1V; |
357 | | T25 = T1S - T1V; |
358 | | T2Y = T2W + T2X; |
359 | | T24 = T1N - T1Q; |
360 | | } |
361 | | { |
362 | | E TN, T2q, T2c, T36, TQ, T29, T2t, T37; |
363 | | { |
364 | | E TL, TM, T2a, T2b; |
365 | | TL = Rm[0]; |
366 | | TM = Rp[WS(rs, 15)]; |
367 | | TN = TL + TM; |
368 | | T2q = TL - TM; |
369 | | T2a = Im[0]; |
370 | | T2b = Ip[WS(rs, 15)]; |
371 | | T2c = T2a + T2b; |
372 | | T36 = T2b - T2a; |
373 | | } |
374 | | { |
375 | | E TO, TP, T2r, T2s; |
376 | | TO = Rp[WS(rs, 7)]; |
377 | | TP = Rm[WS(rs, 8)]; |
378 | | TQ = TO + TP; |
379 | | T29 = TO - TP; |
380 | | T2r = Ip[WS(rs, 7)]; |
381 | | T2s = Im[WS(rs, 8)]; |
382 | | T2t = T2r + T2s; |
383 | | T37 = T2r - T2s; |
384 | | } |
385 | | TR = TN + TQ; |
386 | | T72 = T29 + T2c; |
387 | | T75 = T2q + T2t; |
388 | | T2d = T29 - T2c; |
389 | | T2u = T2q - T2t; |
390 | | T6m = TN - TQ; |
391 | | T6q = T36 - T37; |
392 | | T38 = T36 + T37; |
393 | | } |
394 | | { |
395 | | E T4r, T4s, T8r, T8s; |
396 | | TK = TC + TJ; |
397 | | TZ = TR + TY; |
398 | | T10 = TK + TZ; |
399 | | T32 = T2Y + T31; |
400 | | T39 = T35 + T38; |
401 | | T3L = T39 - T32; |
402 | | T4r = TC - TJ; |
403 | | T4s = T31 - T2Y; |
404 | | T4t = T4r - T4s; |
405 | | T4E = T4r + T4s; |
406 | | T8r = T6q - T6p; |
407 | | T8s = T6m - T6n; |
408 | | T8t = FMA(KP414213562, T8s, T8r); |
409 | | T8F = FNMS(KP414213562, T8r, T8s); |
410 | | { |
411 | | E T4u, T4v, T8u, T8v; |
412 | | T4u = TR - TY; |
413 | | T4v = T38 - T35; |
414 | | T4w = T4u + T4v; |
415 | | T4F = T4v - T4u; |
416 | | T8u = T6j - T6i; |
417 | | T8v = T6f - T6g; |
418 | | T8w = FNMS(KP414213562, T8v, T8u); |
419 | | T8E = FMA(KP414213562, T8u, T8v); |
420 | | } |
421 | | } |
422 | | { |
423 | | E T6h, T6k, T6o, T6r; |
424 | | T6h = T6f + T6g; |
425 | | T6k = T6i + T6j; |
426 | | T6l = FNMS(KP414213562, T6k, T6h); |
427 | | T6E = FMA(KP414213562, T6h, T6k); |
428 | | T6o = T6m + T6n; |
429 | | T6r = T6p + T6q; |
430 | | T6s = FMA(KP414213562, T6r, T6o); |
431 | | T6F = FNMS(KP414213562, T6o, T6r); |
432 | | { |
433 | | E T1Y, T4O, T27, T4N, T1X, T26; |
434 | | T1X = T1R - T1W; |
435 | | T1Y = FMA(KP707106781, T1X, T1M); |
436 | | T4O = FNMS(KP707106781, T1X, T1M); |
437 | | T26 = T24 + T25; |
438 | | T27 = FMA(KP707106781, T26, T23); |
439 | | T4N = FNMS(KP707106781, T26, T23); |
440 | | T28 = FMA(KP198912367, T27, T1Y); |
441 | | T51 = FNMS(KP668178637, T4N, T4O); |
442 | | T2R = FNMS(KP198912367, T1Y, T27); |
443 | | T4P = FMA(KP668178637, T4O, T4N); |
444 | | } |
445 | | } |
446 | | { |
447 | | E T6X, T8O, T70, T8N, T6W, T6Z; |
448 | | T6W = T25 - T24; |
449 | | T6X = FNMS(KP707106781, T6W, T6V); |
450 | | T8O = FMA(KP707106781, T6W, T6V); |
451 | | T6Z = T1R + T1W; |
452 | | T70 = FNMS(KP707106781, T6Z, T6Y); |
453 | | T8N = FMA(KP707106781, T6Z, T6Y); |
454 | | T71 = FMA(KP668178637, T70, T6X); |
455 | | T90 = FNMS(KP198912367, T8N, T8O); |
456 | | T7k = FNMS(KP668178637, T6X, T70); |
457 | | T8P = FMA(KP198912367, T8O, T8N); |
458 | | } |
459 | | { |
460 | | E T2p, T4R, T2y, T4Q, T2o, T2x; |
461 | | T2o = T2i - T2n; |
462 | | T2p = FMA(KP707106781, T2o, T2d); |
463 | | T4R = FNMS(KP707106781, T2o, T2d); |
464 | | T2x = T2v + T2w; |
465 | | T2y = FMA(KP707106781, T2x, T2u); |
466 | | T4Q = FNMS(KP707106781, T2x, T2u); |
467 | | T2z = FNMS(KP198912367, T2y, T2p); |
468 | | T50 = FMA(KP668178637, T4Q, T4R); |
469 | | T2S = FMA(KP198912367, T2p, T2y); |
470 | | T4S = FNMS(KP668178637, T4R, T4Q); |
471 | | } |
472 | | { |
473 | | E T74, T8R, T77, T8Q, T73, T76; |
474 | | T73 = T2v - T2w; |
475 | | T74 = FNMS(KP707106781, T73, T72); |
476 | | T8R = FMA(KP707106781, T73, T72); |
477 | | T76 = T2i + T2n; |
478 | | T77 = FNMS(KP707106781, T76, T75); |
479 | | T8Q = FMA(KP707106781, T76, T75); |
480 | | T78 = FMA(KP668178637, T77, T74); |
481 | | T91 = FNMS(KP198912367, T8Q, T8R); |
482 | | T7l = FNMS(KP668178637, T74, T77); |
483 | | T8S = FMA(KP198912367, T8R, T8Q); |
484 | | } |
485 | | } |
486 | | { |
487 | | E T11, T3q, T3x, T3t, T3v, T3w, T3F, T2B, T3A, T2U, T3D, T2C, T3r, T3B, T3H; |
488 | | E T2V, T3s, T2D; |
489 | | { |
490 | | E T3a, T3p, T3u, T12, T3z; |
491 | | T11 = Tv + T10; |
492 | | T3a = T32 + T39; |
493 | | T3p = T3h + T3o; |
494 | | T3q = T3a + T3p; |
495 | | T3x = T3p - T3a; |
496 | | T3u = Tv - T10; |
497 | | T3t = W[30]; |
498 | | T3v = T3t * T3u; |
499 | | T3w = W[31]; |
500 | | T3F = T3w * T3u; |
501 | | { |
502 | | E T1H, T2A, T2Q, T2T; |
503 | | T1H = FMA(KP923879532, T1G, T1j); |
504 | | T2A = T28 + T2z; |
505 | | T2B = FMA(KP980785280, T2A, T1H); |
506 | | T3A = FNMS(KP980785280, T2A, T1H); |
507 | | T2Q = FMA(KP923879532, T2P, T2M); |
508 | | T2T = T2R + T2S; |
509 | | T2U = FMA(KP980785280, T2T, T2Q); |
510 | | T3D = FNMS(KP980785280, T2T, T2Q); |
511 | | } |
512 | | T12 = W[0]; |
513 | | T2C = T12 * T2B; |
514 | | T3r = T12 * T2U; |
515 | | T3z = W[32]; |
516 | | T3B = T3z * T3A; |
517 | | T3H = T3z * T3D; |
518 | | } |
519 | | T2D = W[1]; |
520 | | T2V = FMA(T2D, T2U, T2C); |
521 | | T3s = FNMS(T2D, T2B, T3r); |
522 | | Rp[0] = T11 - T2V; |
523 | | Ip[0] = T3q + T3s; |
524 | | Rm[0] = T11 + T2V; |
525 | | Im[0] = T3s - T3q; |
526 | | { |
527 | | E T3y, T3G, T3E, T3I, T3C; |
528 | | T3y = FNMS(T3w, T3x, T3v); |
529 | | T3G = FMA(T3t, T3x, T3F); |
530 | | T3C = W[33]; |
531 | | T3E = FMA(T3C, T3D, T3B); |
532 | | T3I = FNMS(T3C, T3A, T3H); |
533 | | Rp[WS(rs, 8)] = T3y - T3E; |
534 | | Ip[WS(rs, 8)] = T3G + T3I; |
535 | | Rm[WS(rs, 8)] = T3y + T3E; |
536 | | Im[WS(rs, 8)] = T3I - T3G; |
537 | | } |
538 | | } |
539 | | { |
540 | | E T3R, T4b, T47, T49, T4a, T4j, T3J, T3N, T3O, T43, T3W, T4e, T41, T4h, T3X; |
541 | | E T45, T4f, T4l; |
542 | | { |
543 | | E T3P, T3Q, T48, T3M, T3T, T4d; |
544 | | T3P = TK - TZ; |
545 | | T3Q = T3o - T3h; |
546 | | T3R = T3P + T3Q; |
547 | | T4b = T3Q - T3P; |
548 | | T48 = T3K - T3L; |
549 | | T47 = W[46]; |
550 | | T49 = T47 * T48; |
551 | | T4a = W[47]; |
552 | | T4j = T4a * T48; |
553 | | T3M = T3K + T3L; |
554 | | T3J = W[14]; |
555 | | T3N = T3J * T3M; |
556 | | T3O = W[15]; |
557 | | T43 = T3O * T3M; |
558 | | { |
559 | | E T3U, T3V, T3Z, T40; |
560 | | T3U = FNMS(KP923879532, T1G, T1j); |
561 | | T3V = T2R - T2S; |
562 | | T3W = FMA(KP980785280, T3V, T3U); |
563 | | T4e = FNMS(KP980785280, T3V, T3U); |
564 | | T3Z = FNMS(KP923879532, T2P, T2M); |
565 | | T40 = T2z - T28; |
566 | | T41 = FMA(KP980785280, T40, T3Z); |
567 | | T4h = FNMS(KP980785280, T40, T3Z); |
568 | | } |
569 | | T3T = W[16]; |
570 | | T3X = T3T * T3W; |
571 | | T45 = T3T * T41; |
572 | | T4d = W[48]; |
573 | | T4f = T4d * T4e; |
574 | | T4l = T4d * T4h; |
575 | | } |
576 | | { |
577 | | E T3S, T44, T42, T46, T3Y; |
578 | | T3S = FNMS(T3O, T3R, T3N); |
579 | | T44 = FMA(T3J, T3R, T43); |
580 | | T3Y = W[17]; |
581 | | T42 = FMA(T3Y, T41, T3X); |
582 | | T46 = FNMS(T3Y, T3W, T45); |
583 | | Rp[WS(rs, 4)] = T3S - T42; |
584 | | Ip[WS(rs, 4)] = T44 + T46; |
585 | | Rm[WS(rs, 4)] = T3S + T42; |
586 | | Im[WS(rs, 4)] = T46 - T44; |
587 | | } |
588 | | { |
589 | | E T4c, T4k, T4i, T4m, T4g; |
590 | | T4c = FNMS(T4a, T4b, T49); |
591 | | T4k = FMA(T47, T4b, T4j); |
592 | | T4g = W[49]; |
593 | | T4i = FMA(T4g, T4h, T4f); |
594 | | T4m = FNMS(T4g, T4e, T4l); |
595 | | Rp[WS(rs, 12)] = T4c - T4i; |
596 | | Ip[WS(rs, 12)] = T4k + T4m; |
597 | | Rm[WS(rs, 12)] = T4c + T4i; |
598 | | Im[WS(rs, 12)] = T4m - T4k; |
599 | | } |
600 | | } |
601 | | { |
602 | | E T4H, T5d, T4n, T4z, T4A, T55, T59, T5b, T5c, T5l, T4U, T5g, T53, T5j, T4V; |
603 | | E T57, T5h, T5n, T4D, T4G; |
604 | | T4D = T4B + T4C; |
605 | | T4G = T4E + T4F; |
606 | | T4H = FMA(KP707106781, T4G, T4D); |
607 | | T5d = FNMS(KP707106781, T4G, T4D); |
608 | | { |
609 | | E T4y, T5a, T4x, T4J, T5f; |
610 | | T4x = T4t + T4w; |
611 | | T4y = FMA(KP707106781, T4x, T4q); |
612 | | T5a = FNMS(KP707106781, T4x, T4q); |
613 | | T4n = W[6]; |
614 | | T4z = T4n * T4y; |
615 | | T4A = W[7]; |
616 | | T55 = T4A * T4y; |
617 | | T59 = W[38]; |
618 | | T5b = T59 * T5a; |
619 | | T5c = W[39]; |
620 | | T5l = T5c * T5a; |
621 | | { |
622 | | E T4M, T4T, T4Z, T52; |
623 | | T4M = FMA(KP923879532, T4L, T4K); |
624 | | T4T = T4P - T4S; |
625 | | T4U = FMA(KP831469612, T4T, T4M); |
626 | | T5g = FNMS(KP831469612, T4T, T4M); |
627 | | T4Z = FMA(KP923879532, T4Y, T4X); |
628 | | T52 = T50 - T51; |
629 | | T53 = FMA(KP831469612, T52, T4Z); |
630 | | T5j = FNMS(KP831469612, T52, T4Z); |
631 | | } |
632 | | T4J = W[8]; |
633 | | T4V = T4J * T4U; |
634 | | T57 = T4J * T53; |
635 | | T5f = W[40]; |
636 | | T5h = T5f * T5g; |
637 | | T5n = T5f * T5j; |
638 | | } |
639 | | { |
640 | | E T4I, T56, T54, T58, T4W; |
641 | | T4I = FNMS(T4A, T4H, T4z); |
642 | | T56 = FMA(T4n, T4H, T55); |
643 | | T4W = W[9]; |
644 | | T54 = FMA(T4W, T53, T4V); |
645 | | T58 = FNMS(T4W, T4U, T57); |
646 | | Rp[WS(rs, 2)] = T4I - T54; |
647 | | Ip[WS(rs, 2)] = T56 + T58; |
648 | | Rm[WS(rs, 2)] = T4I + T54; |
649 | | Im[WS(rs, 2)] = T58 - T56; |
650 | | } |
651 | | { |
652 | | E T5e, T5m, T5k, T5o, T5i; |
653 | | T5e = FNMS(T5c, T5d, T5b); |
654 | | T5m = FMA(T59, T5d, T5l); |
655 | | T5i = W[41]; |
656 | | T5k = FMA(T5i, T5j, T5h); |
657 | | T5o = FNMS(T5i, T5g, T5n); |
658 | | Rp[WS(rs, 10)] = T5e - T5k; |
659 | | Ip[WS(rs, 10)] = T5m + T5o; |
660 | | Rm[WS(rs, 10)] = T5e + T5k; |
661 | | Im[WS(rs, 10)] = T5o - T5m; |
662 | | } |
663 | | } |
664 | | { |
665 | | E T5x, T5R, T5p, T5t, T5u, T5J, T5N, T5P, T5Q, T5Z, T5C, T5U, T5H, T5X, T5D; |
666 | | E T5L, T5V, T61, T5v, T5w; |
667 | | T5v = T4C - T4B; |
668 | | T5w = T4t - T4w; |
669 | | T5x = FMA(KP707106781, T5w, T5v); |
670 | | T5R = FNMS(KP707106781, T5w, T5v); |
671 | | { |
672 | | E T5s, T5O, T5r, T5z, T5T; |
673 | | T5r = T4F - T4E; |
674 | | T5s = FMA(KP707106781, T5r, T5q); |
675 | | T5O = FNMS(KP707106781, T5r, T5q); |
676 | | T5p = W[22]; |
677 | | T5t = T5p * T5s; |
678 | | T5u = W[23]; |
679 | | T5J = T5u * T5s; |
680 | | T5N = W[54]; |
681 | | T5P = T5N * T5O; |
682 | | T5Q = W[55]; |
683 | | T5Z = T5Q * T5O; |
684 | | { |
685 | | E T5A, T5B, T5F, T5G; |
686 | | T5A = FNMS(KP923879532, T4L, T4K); |
687 | | T5B = T51 + T50; |
688 | | T5C = FNMS(KP831469612, T5B, T5A); |
689 | | T5U = FMA(KP831469612, T5B, T5A); |
690 | | T5F = FNMS(KP923879532, T4Y, T4X); |
691 | | T5G = T4P + T4S; |
692 | | T5H = FNMS(KP831469612, T5G, T5F); |
693 | | T5X = FMA(KP831469612, T5G, T5F); |
694 | | } |
695 | | T5z = W[24]; |
696 | | T5D = T5z * T5C; |
697 | | T5L = T5z * T5H; |
698 | | T5T = W[56]; |
699 | | T5V = T5T * T5U; |
700 | | T61 = T5T * T5X; |
701 | | } |
702 | | { |
703 | | E T5y, T5K, T5I, T5M, T5E; |
704 | | T5y = FNMS(T5u, T5x, T5t); |
705 | | T5K = FMA(T5p, T5x, T5J); |
706 | | T5E = W[25]; |
707 | | T5I = FMA(T5E, T5H, T5D); |
708 | | T5M = FNMS(T5E, T5C, T5L); |
709 | | Rp[WS(rs, 6)] = T5y - T5I; |
710 | | Ip[WS(rs, 6)] = T5K + T5M; |
711 | | Rm[WS(rs, 6)] = T5y + T5I; |
712 | | Im[WS(rs, 6)] = T5M - T5K; |
713 | | } |
714 | | { |
715 | | E T5S, T60, T5Y, T62, T5W; |
716 | | T5S = FNMS(T5Q, T5R, T5P); |
717 | | T60 = FMA(T5N, T5R, T5Z); |
718 | | T5W = W[57]; |
719 | | T5Y = FMA(T5W, T5X, T5V); |
720 | | T62 = FNMS(T5W, T5U, T61); |
721 | | Rp[WS(rs, 14)] = T5S - T5Y; |
722 | | Ip[WS(rs, 14)] = T60 + T62; |
723 | | Rm[WS(rs, 14)] = T5S + T5Y; |
724 | | Im[WS(rs, 14)] = T62 - T60; |
725 | | } |
726 | | } |
727 | | { |
728 | | E T6H, T7x, T63, T6v, T6w, T7p, T7t, T7v, T7w, T7F, T7a, T7A, T7n, T7D, T7b; |
729 | | E T7r, T7B, T7H; |
730 | | { |
731 | | E T6D, T6G, T6J, T7z; |
732 | | T6D = FMA(KP707106781, T6C, T6z); |
733 | | T6G = T6E + T6F; |
734 | | T6H = FMA(KP923879532, T6G, T6D); |
735 | | T7x = FNMS(KP923879532, T6G, T6D); |
736 | | { |
737 | | E T6u, T7u, T6e, T6t; |
738 | | T6e = FMA(KP707106781, T6d, T66); |
739 | | T6t = T6l + T6s; |
740 | | T6u = FMA(KP923879532, T6t, T6e); |
741 | | T7u = FNMS(KP923879532, T6t, T6e); |
742 | | T63 = W[2]; |
743 | | T6v = T63 * T6u; |
744 | | T6w = W[3]; |
745 | | T7p = T6w * T6u; |
746 | | T7t = W[34]; |
747 | | T7v = T7t * T7u; |
748 | | T7w = W[35]; |
749 | | T7F = T7w * T7u; |
750 | | } |
751 | | { |
752 | | E T6U, T79, T7j, T7m; |
753 | | T6U = FMA(KP923879532, T6T, T6M); |
754 | | T79 = T71 - T78; |
755 | | T7a = FMA(KP831469612, T79, T6U); |
756 | | T7A = FNMS(KP831469612, T79, T6U); |
757 | | T7j = FNMS(KP923879532, T7i, T7f); |
758 | | T7m = T7k + T7l; |
759 | | T7n = FMA(KP831469612, T7m, T7j); |
760 | | T7D = FNMS(KP831469612, T7m, T7j); |
761 | | } |
762 | | T6J = W[4]; |
763 | | T7b = T6J * T7a; |
764 | | T7r = T6J * T7n; |
765 | | T7z = W[36]; |
766 | | T7B = T7z * T7A; |
767 | | T7H = T7z * T7D; |
768 | | } |
769 | | { |
770 | | E T6I, T7q, T7o, T7s, T7c; |
771 | | T6I = FNMS(T6w, T6H, T6v); |
772 | | T7q = FMA(T63, T6H, T7p); |
773 | | T7c = W[5]; |
774 | | T7o = FMA(T7c, T7n, T7b); |
775 | | T7s = FNMS(T7c, T7a, T7r); |
776 | | Rp[WS(rs, 1)] = T6I - T7o; |
777 | | Ip[WS(rs, 1)] = T7q + T7s; |
778 | | Rm[WS(rs, 1)] = T6I + T7o; |
779 | | Im[WS(rs, 1)] = T7s - T7q; |
780 | | } |
781 | | { |
782 | | E T7y, T7G, T7E, T7I, T7C; |
783 | | T7y = FNMS(T7w, T7x, T7v); |
784 | | T7G = FMA(T7t, T7x, T7F); |
785 | | T7C = W[37]; |
786 | | T7E = FMA(T7C, T7D, T7B); |
787 | | T7I = FNMS(T7C, T7A, T7H); |
788 | | Rp[WS(rs, 9)] = T7y - T7E; |
789 | | Ip[WS(rs, 9)] = T7G + T7I; |
790 | | Rm[WS(rs, 9)] = T7y + T7E; |
791 | | Im[WS(rs, 9)] = T7I - T7G; |
792 | | } |
793 | | } |
794 | | { |
795 | | E T8H, T9d, T8n, T8z, T8A, T95, T99, T9b, T9c, T9l, T8U, T9g, T93, T9j, T8V; |
796 | | E T97, T9h, T9n; |
797 | | { |
798 | | E T8D, T8G, T8J, T9f; |
799 | | T8D = FMA(KP707106781, T8C, T8B); |
800 | | T8G = T8E - T8F; |
801 | | T8H = FMA(KP923879532, T8G, T8D); |
802 | | T9d = FNMS(KP923879532, T8G, T8D); |
803 | | { |
804 | | E T8y, T9a, T8q, T8x; |
805 | | T8q = FMA(KP707106781, T8p, T8o); |
806 | | T8x = T8t - T8w; |
807 | | T8y = FMA(KP923879532, T8x, T8q); |
808 | | T9a = FNMS(KP923879532, T8x, T8q); |
809 | | T8n = W[10]; |
810 | | T8z = T8n * T8y; |
811 | | T8A = W[11]; |
812 | | T95 = T8A * T8y; |
813 | | T99 = W[42]; |
814 | | T9b = T99 * T9a; |
815 | | T9c = W[43]; |
816 | | T9l = T9c * T9a; |
817 | | } |
818 | | { |
819 | | E T8M, T8T, T8Z, T92; |
820 | | T8M = FMA(KP923879532, T8L, T8K); |
821 | | T8T = T8P - T8S; |
822 | | T8U = FMA(KP980785280, T8T, T8M); |
823 | | T9g = FNMS(KP980785280, T8T, T8M); |
824 | | T8Z = FNMS(KP923879532, T8Y, T8X); |
825 | | T92 = T90 + T91; |
826 | | T93 = FNMS(KP980785280, T92, T8Z); |
827 | | T9j = FMA(KP980785280, T92, T8Z); |
828 | | } |
829 | | T8J = W[12]; |
830 | | T8V = T8J * T8U; |
831 | | T97 = T8J * T93; |
832 | | T9f = W[44]; |
833 | | T9h = T9f * T9g; |
834 | | T9n = T9f * T9j; |
835 | | } |
836 | | { |
837 | | E T8I, T96, T94, T98, T8W; |
838 | | T8I = FNMS(T8A, T8H, T8z); |
839 | | T96 = FMA(T8n, T8H, T95); |
840 | | T8W = W[13]; |
841 | | T94 = FMA(T8W, T93, T8V); |
842 | | T98 = FNMS(T8W, T8U, T97); |
843 | | Rp[WS(rs, 3)] = T8I - T94; |
844 | | Ip[WS(rs, 3)] = T96 + T98; |
845 | | Rm[WS(rs, 3)] = T8I + T94; |
846 | | Im[WS(rs, 3)] = T98 - T96; |
847 | | } |
848 | | { |
849 | | E T9e, T9m, T9k, T9o, T9i; |
850 | | T9e = FNMS(T9c, T9d, T9b); |
851 | | T9m = FMA(T99, T9d, T9l); |
852 | | T9i = W[45]; |
853 | | T9k = FMA(T9i, T9j, T9h); |
854 | | T9o = FNMS(T9i, T9g, T9n); |
855 | | Rp[WS(rs, 11)] = T9e - T9k; |
856 | | Ip[WS(rs, 11)] = T9m + T9o; |
857 | | Rm[WS(rs, 11)] = T9e + T9k; |
858 | | Im[WS(rs, 11)] = T9o - T9m; |
859 | | } |
860 | | } |
861 | | { |
862 | | E T9x, T9R, T9p, T9t, T9u, T9J, T9N, T9P, T9Q, T9Z, T9C, T9U, T9H, T9X, T9D; |
863 | | E T9L, T9V, Ta1; |
864 | | { |
865 | | E T9v, T9w, T9z, T9T; |
866 | | T9v = FNMS(KP707106781, T8C, T8B); |
867 | | T9w = T8w + T8t; |
868 | | T9x = FNMS(KP923879532, T9w, T9v); |
869 | | T9R = FMA(KP923879532, T9w, T9v); |
870 | | { |
871 | | E T9s, T9O, T9q, T9r; |
872 | | T9q = FNMS(KP707106781, T8p, T8o); |
873 | | T9r = T8E + T8F; |
874 | | T9s = FNMS(KP923879532, T9r, T9q); |
875 | | T9O = FMA(KP923879532, T9r, T9q); |
876 | | T9p = W[26]; |
877 | | T9t = T9p * T9s; |
878 | | T9u = W[27]; |
879 | | T9J = T9u * T9s; |
880 | | T9N = W[58]; |
881 | | T9P = T9N * T9O; |
882 | | T9Q = W[59]; |
883 | | T9Z = T9Q * T9O; |
884 | | } |
885 | | { |
886 | | E T9A, T9B, T9F, T9G; |
887 | | T9A = FNMS(KP923879532, T8L, T8K); |
888 | | T9B = T91 - T90; |
889 | | T9C = FMA(KP980785280, T9B, T9A); |
890 | | T9U = FNMS(KP980785280, T9B, T9A); |
891 | | T9F = FMA(KP923879532, T8Y, T8X); |
892 | | T9G = T8P + T8S; |
893 | | T9H = FNMS(KP980785280, T9G, T9F); |
894 | | T9X = FMA(KP980785280, T9G, T9F); |
895 | | } |
896 | | T9z = W[28]; |
897 | | T9D = T9z * T9C; |
898 | | T9L = T9z * T9H; |
899 | | T9T = W[60]; |
900 | | T9V = T9T * T9U; |
901 | | Ta1 = T9T * T9X; |
902 | | } |
903 | | { |
904 | | E T9y, T9K, T9I, T9M, T9E; |
905 | | T9y = FNMS(T9u, T9x, T9t); |
906 | | T9K = FMA(T9p, T9x, T9J); |
907 | | T9E = W[29]; |
908 | | T9I = FMA(T9E, T9H, T9D); |
909 | | T9M = FNMS(T9E, T9C, T9L); |
910 | | Rp[WS(rs, 7)] = T9y - T9I; |
911 | | Ip[WS(rs, 7)] = T9K + T9M; |
912 | | Rm[WS(rs, 7)] = T9y + T9I; |
913 | | Im[WS(rs, 7)] = T9M - T9K; |
914 | | } |
915 | | { |
916 | | E T9S, Ta0, T9Y, Ta2, T9W; |
917 | | T9S = FNMS(T9Q, T9R, T9P); |
918 | | Ta0 = FMA(T9N, T9R, T9Z); |
919 | | T9W = W[61]; |
920 | | T9Y = FMA(T9W, T9X, T9V); |
921 | | Ta2 = FNMS(T9W, T9U, Ta1); |
922 | | Rp[WS(rs, 15)] = T9S - T9Y; |
923 | | Ip[WS(rs, 15)] = Ta0 + Ta2; |
924 | | Rm[WS(rs, 15)] = T9S + T9Y; |
925 | | Im[WS(rs, 15)] = Ta2 - Ta0; |
926 | | } |
927 | | } |
928 | | { |
929 | | E T7R, T8b, T7J, T7N, T7O, T83, T87, T89, T8a, T8j, T7W, T8e, T81, T8h, T7X; |
930 | | E T85, T8f, T8l; |
931 | | { |
932 | | E T7P, T7Q, T7T, T8d; |
933 | | T7P = FNMS(KP707106781, T6C, T6z); |
934 | | T7Q = T6l - T6s; |
935 | | T7R = FMA(KP923879532, T7Q, T7P); |
936 | | T8b = FNMS(KP923879532, T7Q, T7P); |
937 | | { |
938 | | E T7M, T88, T7K, T7L; |
939 | | T7K = FNMS(KP707106781, T6d, T66); |
940 | | T7L = T6F - T6E; |
941 | | T7M = FMA(KP923879532, T7L, T7K); |
942 | | T88 = FNMS(KP923879532, T7L, T7K); |
943 | | T7J = W[18]; |
944 | | T7N = T7J * T7M; |
945 | | T7O = W[19]; |
946 | | T83 = T7O * T7M; |
947 | | T87 = W[50]; |
948 | | T89 = T87 * T88; |
949 | | T8a = W[51]; |
950 | | T8j = T8a * T88; |
951 | | } |
952 | | { |
953 | | E T7U, T7V, T7Z, T80; |
954 | | T7U = FNMS(KP923879532, T6T, T6M); |
955 | | T7V = T7k - T7l; |
956 | | T7W = FMA(KP831469612, T7V, T7U); |
957 | | T8e = FNMS(KP831469612, T7V, T7U); |
958 | | T7Z = FMA(KP923879532, T7i, T7f); |
959 | | T80 = T71 + T78; |
960 | | T81 = FNMS(KP831469612, T80, T7Z); |
961 | | T8h = FMA(KP831469612, T80, T7Z); |
962 | | } |
963 | | T7T = W[20]; |
964 | | T7X = T7T * T7W; |
965 | | T85 = T7T * T81; |
966 | | T8d = W[52]; |
967 | | T8f = T8d * T8e; |
968 | | T8l = T8d * T8h; |
969 | | } |
970 | | { |
971 | | E T7S, T84, T82, T86, T7Y; |
972 | | T7S = FNMS(T7O, T7R, T7N); |
973 | | T84 = FMA(T7J, T7R, T83); |
974 | | T7Y = W[21]; |
975 | | T82 = FMA(T7Y, T81, T7X); |
976 | | T86 = FNMS(T7Y, T7W, T85); |
977 | | Rp[WS(rs, 5)] = T7S - T82; |
978 | | Ip[WS(rs, 5)] = T84 + T86; |
979 | | Rm[WS(rs, 5)] = T7S + T82; |
980 | | Im[WS(rs, 5)] = T86 - T84; |
981 | | } |
982 | | { |
983 | | E T8c, T8k, T8i, T8m, T8g; |
984 | | T8c = FNMS(T8a, T8b, T89); |
985 | | T8k = FMA(T87, T8b, T8j); |
986 | | T8g = W[53]; |
987 | | T8i = FMA(T8g, T8h, T8f); |
988 | | T8m = FNMS(T8g, T8e, T8l); |
989 | | Rp[WS(rs, 13)] = T8c - T8i; |
990 | | Ip[WS(rs, 13)] = T8k + T8m; |
991 | | Rm[WS(rs, 13)] = T8c + T8i; |
992 | | Im[WS(rs, 13)] = T8m - T8k; |
993 | | } |
994 | | } |
995 | | } |
996 | | } |
997 | | } |
998 | | |
999 | | static const tw_instr twinstr[] = { |
1000 | | { TW_FULL, 1, 32 }, |
1001 | | { TW_NEXT, 1, 0 } |
1002 | | }; |
1003 | | |
1004 | | static const hc2c_desc desc = { 32, "hc2cbdft_32", twinstr, &GENUS, { 300, 62, 198, 0 } }; |
1005 | | |
1006 | | void X(codelet_hc2cbdft_32) (planner *p) { |
1007 | | X(khc2c_register) (p, hc2cbdft_32, &desc, HC2C_VIA_DFT); |
1008 | | } |
1009 | | #else |
1010 | | |
1011 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hc2cbdft_32 -include rdft/scalar/hc2cb.h */ |
1012 | | |
1013 | | /* |
1014 | | * This function contains 498 FP additions, 208 FP multiplications, |
1015 | | * (or, 404 additions, 114 multiplications, 94 fused multiply/add), |
1016 | | * 102 stack variables, 7 constants, and 128 memory accesses |
1017 | | */ |
1018 | | #include "rdft/scalar/hc2cb.h" |
1019 | | |
1020 | | static void hc2cbdft_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
1021 | 0 | { |
1022 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
1023 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
1024 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
1025 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
1026 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
1027 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
1028 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1029 | 0 | { |
1030 | 0 | INT m; |
1031 | 0 | for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 62, MAKE_VOLATILE_STRIDE(128, rs)) { |
1032 | 0 | E Tf, T4a, T6h, T7Z, T6P, T8e, T1j, T4v, T2R, T4L, T5C, T7E, T6a, T7U, T3n; |
1033 | 0 | E T4q, TZ, T38, T2p, T4B, T7M, T7R, T2y, T4C, T5Y, T63, T6C, T86, T4i, T4n; |
1034 | 0 | E T6z, T85, TK, T31, T1Y, T4y, T7J, T7Q, T27, T4z, T5R, T62, T6v, T83, T4f; |
1035 | 0 | E T4m, T6s, T82, Tu, T4p, T6o, T8f, T6M, T80, T1G, T4K, T2I, T4w, T5J, T7T; |
1036 | 0 | E T67, T7F, T3g, T4b; |
1037 | 0 | { |
1038 | 0 | E T3, T2M, T16, T3k, T6, T13, T2P, T3l, Td, T3i, T1h, T2K, Ta, T3h, T1c; |
1039 | 0 | E T2J; |
1040 | 0 | { |
1041 | 0 | E T1, T2, T2N, T2O; |
1042 | 0 | T1 = Rp[0]; |
1043 | 0 | T2 = Rm[WS(rs, 15)]; |
1044 | 0 | T3 = T1 + T2; |
1045 | 0 | T2M = T1 - T2; |
1046 | 0 | { |
1047 | 0 | E T14, T15, T4, T5; |
1048 | 0 | T14 = Ip[0]; |
1049 | 0 | T15 = Im[WS(rs, 15)]; |
1050 | 0 | T16 = T14 + T15; |
1051 | 0 | T3k = T14 - T15; |
1052 | 0 | T4 = Rp[WS(rs, 8)]; |
1053 | 0 | T5 = Rm[WS(rs, 7)]; |
1054 | 0 | T6 = T4 + T5; |
1055 | 0 | T13 = T4 - T5; |
1056 | 0 | } |
1057 | 0 | T2N = Ip[WS(rs, 8)]; |
1058 | 0 | T2O = Im[WS(rs, 7)]; |
1059 | 0 | T2P = T2N + T2O; |
1060 | 0 | T3l = T2N - T2O; |
1061 | 0 | { |
1062 | 0 | E Tb, Tc, T1d, T1e, T1f, T1g; |
1063 | 0 | Tb = Rm[WS(rs, 3)]; |
1064 | 0 | Tc = Rp[WS(rs, 12)]; |
1065 | 0 | T1d = Tb - Tc; |
1066 | 0 | T1e = Im[WS(rs, 3)]; |
1067 | 0 | T1f = Ip[WS(rs, 12)]; |
1068 | 0 | T1g = T1e + T1f; |
1069 | 0 | Td = Tb + Tc; |
1070 | 0 | T3i = T1f - T1e; |
1071 | 0 | T1h = T1d + T1g; |
1072 | 0 | T2K = T1d - T1g; |
1073 | 0 | } |
1074 | 0 | { |
1075 | 0 | E T8, T9, T18, T19, T1a, T1b; |
1076 | 0 | T8 = Rp[WS(rs, 4)]; |
1077 | 0 | T9 = Rm[WS(rs, 11)]; |
1078 | 0 | T18 = T8 - T9; |
1079 | 0 | T19 = Ip[WS(rs, 4)]; |
1080 | 0 | T1a = Im[WS(rs, 11)]; |
1081 | 0 | T1b = T19 + T1a; |
1082 | 0 | Ta = T8 + T9; |
1083 | 0 | T3h = T19 - T1a; |
1084 | 0 | T1c = T18 + T1b; |
1085 | 0 | T2J = T18 - T1b; |
1086 | 0 | } |
1087 | 0 | } |
1088 | 0 | { |
1089 | 0 | E T7, Te, T6f, T6g; |
1090 | 0 | T7 = T3 + T6; |
1091 | 0 | Te = Ta + Td; |
1092 | 0 | Tf = T7 + Te; |
1093 | 0 | T4a = T7 - Te; |
1094 | 0 | T6f = T16 - T13; |
1095 | 0 | T6g = KP707106781 * (T2J - T2K); |
1096 | 0 | T6h = T6f + T6g; |
1097 | 0 | T7Z = T6f - T6g; |
1098 | 0 | } |
1099 | 0 | { |
1100 | 0 | E T6N, T6O, T17, T1i; |
1101 | 0 | T6N = T2M + T2P; |
1102 | 0 | T6O = KP707106781 * (T1c + T1h); |
1103 | 0 | T6P = T6N - T6O; |
1104 | 0 | T8e = T6O + T6N; |
1105 | 0 | T17 = T13 + T16; |
1106 | 0 | T1i = KP707106781 * (T1c - T1h); |
1107 | 0 | T1j = T17 + T1i; |
1108 | 0 | T4v = T17 - T1i; |
1109 | 0 | } |
1110 | 0 | { |
1111 | 0 | E T2L, T2Q, T5A, T5B; |
1112 | 0 | T2L = KP707106781 * (T2J + T2K); |
1113 | 0 | T2Q = T2M - T2P; |
1114 | 0 | T2R = T2L + T2Q; |
1115 | 0 | T4L = T2Q - T2L; |
1116 | 0 | T5A = T3 - T6; |
1117 | 0 | T5B = T3i - T3h; |
1118 | 0 | T5C = T5A + T5B; |
1119 | 0 | T7E = T5A - T5B; |
1120 | 0 | } |
1121 | 0 | { |
1122 | 0 | E T68, T69, T3j, T3m; |
1123 | 0 | T68 = Ta - Td; |
1124 | 0 | T69 = T3k - T3l; |
1125 | 0 | T6a = T68 + T69; |
1126 | 0 | T7U = T69 - T68; |
1127 | 0 | T3j = T3h + T3i; |
1128 | 0 | T3m = T3k + T3l; |
1129 | 0 | T3n = T3j + T3m; |
1130 | 0 | T4q = T3m - T3j; |
1131 | 0 | } |
1132 | 0 | } |
1133 | 0 | { |
1134 | 0 | E TR, T5S, T29, T2t, T2c, T5W, T2w, T37, TY, T5T, T5V, T2i, T2n, T2r, T34; |
1135 | 0 | E T2q, T6A, T6B; |
1136 | 0 | { |
1137 | 0 | E TL, TM, TN, TO, TP, TQ; |
1138 | 0 | TL = Rm[0]; |
1139 | 0 | TM = Rp[WS(rs, 15)]; |
1140 | 0 | TN = TL + TM; |
1141 | 0 | TO = Rp[WS(rs, 7)]; |
1142 | 0 | TP = Rm[WS(rs, 8)]; |
1143 | 0 | TQ = TO + TP; |
1144 | 0 | TR = TN + TQ; |
1145 | 0 | T5S = TN - TQ; |
1146 | 0 | T29 = TO - TP; |
1147 | 0 | T2t = TL - TM; |
1148 | 0 | } |
1149 | 0 | { |
1150 | 0 | E T2a, T2b, T35, T2u, T2v, T36; |
1151 | 0 | T2a = Im[0]; |
1152 | 0 | T2b = Ip[WS(rs, 15)]; |
1153 | 0 | T35 = T2b - T2a; |
1154 | 0 | T2u = Ip[WS(rs, 7)]; |
1155 | 0 | T2v = Im[WS(rs, 8)]; |
1156 | 0 | T36 = T2u - T2v; |
1157 | 0 | T2c = T2a + T2b; |
1158 | 0 | T5W = T35 - T36; |
1159 | 0 | T2w = T2u + T2v; |
1160 | 0 | T37 = T35 + T36; |
1161 | 0 | } |
1162 | 0 | { |
1163 | 0 | E TU, T2e, T2h, T32, TX, T2j, T2m, T33; |
1164 | 0 | { |
1165 | 0 | E TS, TT, T2f, T2g; |
1166 | 0 | TS = Rp[WS(rs, 3)]; |
1167 | 0 | TT = Rm[WS(rs, 12)]; |
1168 | 0 | TU = TS + TT; |
1169 | 0 | T2e = TS - TT; |
1170 | 0 | T2f = Ip[WS(rs, 3)]; |
1171 | 0 | T2g = Im[WS(rs, 12)]; |
1172 | 0 | T2h = T2f + T2g; |
1173 | 0 | T32 = T2f - T2g; |
1174 | 0 | } |
1175 | 0 | { |
1176 | 0 | E TV, TW, T2k, T2l; |
1177 | 0 | TV = Rm[WS(rs, 4)]; |
1178 | 0 | TW = Rp[WS(rs, 11)]; |
1179 | 0 | TX = TV + TW; |
1180 | 0 | T2j = TV - TW; |
1181 | 0 | T2k = Im[WS(rs, 4)]; |
1182 | 0 | T2l = Ip[WS(rs, 11)]; |
1183 | 0 | T2m = T2k + T2l; |
1184 | 0 | T33 = T2l - T2k; |
1185 | 0 | } |
1186 | 0 | TY = TU + TX; |
1187 | 0 | T5T = T33 - T32; |
1188 | 0 | T5V = TU - TX; |
1189 | 0 | T2i = T2e + T2h; |
1190 | 0 | T2n = T2j + T2m; |
1191 | 0 | T2r = T2j - T2m; |
1192 | 0 | T34 = T32 + T33; |
1193 | 0 | T2q = T2e - T2h; |
1194 | 0 | } |
1195 | 0 | TZ = TR + TY; |
1196 | 0 | T38 = T34 + T37; |
1197 | 0 | { |
1198 | 0 | E T2d, T2o, T7K, T7L; |
1199 | 0 | T2d = T29 - T2c; |
1200 | 0 | T2o = KP707106781 * (T2i - T2n); |
1201 | 0 | T2p = T2d + T2o; |
1202 | 0 | T4B = T2d - T2o; |
1203 | 0 | T7K = T5S - T5T; |
1204 | 0 | T7L = T5W - T5V; |
1205 | 0 | T7M = FMA(KP382683432, T7K, KP923879532 * T7L); |
1206 | 0 | T7R = FNMS(KP923879532, T7K, KP382683432 * T7L); |
1207 | 0 | } |
1208 | 0 | { |
1209 | 0 | E T2s, T2x, T5U, T5X; |
1210 | 0 | T2s = KP707106781 * (T2q + T2r); |
1211 | 0 | T2x = T2t - T2w; |
1212 | 0 | T2y = T2s + T2x; |
1213 | 0 | T4C = T2x - T2s; |
1214 | 0 | T5U = T5S + T5T; |
1215 | 0 | T5X = T5V + T5W; |
1216 | 0 | T5Y = FMA(KP923879532, T5U, KP382683432 * T5X); |
1217 | 0 | T63 = FNMS(KP382683432, T5U, KP923879532 * T5X); |
1218 | 0 | } |
1219 | 0 | T6A = T2t + T2w; |
1220 | 0 | T6B = KP707106781 * (T2i + T2n); |
1221 | 0 | T6C = T6A - T6B; |
1222 | 0 | T86 = T6B + T6A; |
1223 | 0 | { |
1224 | 0 | E T4g, T4h, T6x, T6y; |
1225 | 0 | T4g = TR - TY; |
1226 | 0 | T4h = T37 - T34; |
1227 | 0 | T4i = T4g + T4h; |
1228 | 0 | T4n = T4h - T4g; |
1229 | 0 | T6x = KP707106781 * (T2q - T2r); |
1230 | 0 | T6y = T29 + T2c; |
1231 | 0 | T6z = T6x - T6y; |
1232 | 0 | T85 = T6y + T6x; |
1233 | 0 | } |
1234 | 0 | } |
1235 | 0 | { |
1236 | 0 | E TC, T5L, T1I, T22, T1L, T5P, T25, T30, TJ, T5M, T5O, T1R, T1W, T20, T2X; |
1237 | 0 | E T1Z, T6t, T6u; |
1238 | 0 | { |
1239 | 0 | E Tw, Tx, Ty, Tz, TA, TB; |
1240 | 0 | Tw = Rp[WS(rs, 1)]; |
1241 | 0 | Tx = Rm[WS(rs, 14)]; |
1242 | 0 | Ty = Tw + Tx; |
1243 | 0 | Tz = Rp[WS(rs, 9)]; |
1244 | 0 | TA = Rm[WS(rs, 6)]; |
1245 | 0 | TB = Tz + TA; |
1246 | 0 | TC = Ty + TB; |
1247 | 0 | T5L = Ty - TB; |
1248 | 0 | T1I = Tz - TA; |
1249 | 0 | T22 = Tw - Tx; |
1250 | 0 | } |
1251 | 0 | { |
1252 | 0 | E T1J, T1K, T2Y, T23, T24, T2Z; |
1253 | 0 | T1J = Ip[WS(rs, 1)]; |
1254 | 0 | T1K = Im[WS(rs, 14)]; |
1255 | 0 | T2Y = T1J - T1K; |
1256 | 0 | T23 = Ip[WS(rs, 9)]; |
1257 | 0 | T24 = Im[WS(rs, 6)]; |
1258 | 0 | T2Z = T23 - T24; |
1259 | 0 | T1L = T1J + T1K; |
1260 | 0 | T5P = T2Y - T2Z; |
1261 | 0 | T25 = T23 + T24; |
1262 | 0 | T30 = T2Y + T2Z; |
1263 | 0 | } |
1264 | 0 | { |
1265 | 0 | E TF, T1N, T1Q, T2V, TI, T1S, T1V, T2W; |
1266 | 0 | { |
1267 | 0 | E TD, TE, T1O, T1P; |
1268 | 0 | TD = Rp[WS(rs, 5)]; |
1269 | 0 | TE = Rm[WS(rs, 10)]; |
1270 | 0 | TF = TD + TE; |
1271 | 0 | T1N = TD - TE; |
1272 | 0 | T1O = Ip[WS(rs, 5)]; |
1273 | 0 | T1P = Im[WS(rs, 10)]; |
1274 | 0 | T1Q = T1O + T1P; |
1275 | 0 | T2V = T1O - T1P; |
1276 | 0 | } |
1277 | 0 | { |
1278 | 0 | E TG, TH, T1T, T1U; |
1279 | 0 | TG = Rm[WS(rs, 2)]; |
1280 | 0 | TH = Rp[WS(rs, 13)]; |
1281 | 0 | TI = TG + TH; |
1282 | 0 | T1S = TG - TH; |
1283 | 0 | T1T = Im[WS(rs, 2)]; |
1284 | 0 | T1U = Ip[WS(rs, 13)]; |
1285 | 0 | T1V = T1T + T1U; |
1286 | 0 | T2W = T1U - T1T; |
1287 | 0 | } |
1288 | 0 | TJ = TF + TI; |
1289 | 0 | T5M = T2W - T2V; |
1290 | 0 | T5O = TF - TI; |
1291 | 0 | T1R = T1N + T1Q; |
1292 | 0 | T1W = T1S + T1V; |
1293 | 0 | T20 = T1S - T1V; |
1294 | 0 | T2X = T2V + T2W; |
1295 | 0 | T1Z = T1N - T1Q; |
1296 | 0 | } |
1297 | 0 | TK = TC + TJ; |
1298 | 0 | T31 = T2X + T30; |
1299 | 0 | { |
1300 | 0 | E T1M, T1X, T7H, T7I; |
1301 | 0 | T1M = T1I + T1L; |
1302 | 0 | T1X = KP707106781 * (T1R - T1W); |
1303 | 0 | T1Y = T1M + T1X; |
1304 | 0 | T4y = T1M - T1X; |
1305 | 0 | T7H = T5L - T5M; |
1306 | 0 | T7I = T5P - T5O; |
1307 | 0 | T7J = FNMS(KP923879532, T7I, KP382683432 * T7H); |
1308 | 0 | T7Q = FMA(KP923879532, T7H, KP382683432 * T7I); |
1309 | 0 | } |
1310 | 0 | { |
1311 | 0 | E T21, T26, T5N, T5Q; |
1312 | 0 | T21 = KP707106781 * (T1Z + T20); |
1313 | 0 | T26 = T22 - T25; |
1314 | 0 | T27 = T21 + T26; |
1315 | 0 | T4z = T26 - T21; |
1316 | 0 | T5N = T5L + T5M; |
1317 | 0 | T5Q = T5O + T5P; |
1318 | 0 | T5R = FNMS(KP382683432, T5Q, KP923879532 * T5N); |
1319 | 0 | T62 = FMA(KP382683432, T5N, KP923879532 * T5Q); |
1320 | 0 | } |
1321 | 0 | T6t = T22 + T25; |
1322 | 0 | T6u = KP707106781 * (T1R + T1W); |
1323 | 0 | T6v = T6t - T6u; |
1324 | 0 | T83 = T6u + T6t; |
1325 | 0 | { |
1326 | 0 | E T4d, T4e, T6q, T6r; |
1327 | 0 | T4d = TC - TJ; |
1328 | 0 | T4e = T30 - T2X; |
1329 | 0 | T4f = T4d - T4e; |
1330 | 0 | T4m = T4d + T4e; |
1331 | 0 | T6q = T1L - T1I; |
1332 | 0 | T6r = KP707106781 * (T1Z - T20); |
1333 | 0 | T6s = T6q + T6r; |
1334 | 0 | T82 = T6q - T6r; |
1335 | 0 | } |
1336 | 0 | } |
1337 | 0 | { |
1338 | 0 | E Ti, T3a, Tl, T3b, T1o, T1t, T6j, T6i, T5E, T5D, Tp, T3d, Ts, T3e, T1z; |
1339 | 0 | E T1E, T6m, T6l, T5H, T5G; |
1340 | 0 | { |
1341 | 0 | E T1p, T1n, T1k, T1s; |
1342 | 0 | { |
1343 | 0 | E Tg, Th, T1l, T1m; |
1344 | 0 | Tg = Rp[WS(rs, 2)]; |
1345 | 0 | Th = Rm[WS(rs, 13)]; |
1346 | 0 | Ti = Tg + Th; |
1347 | 0 | T1p = Tg - Th; |
1348 | 0 | T1l = Ip[WS(rs, 2)]; |
1349 | 0 | T1m = Im[WS(rs, 13)]; |
1350 | 0 | T1n = T1l + T1m; |
1351 | 0 | T3a = T1l - T1m; |
1352 | 0 | } |
1353 | 0 | { |
1354 | 0 | E Tj, Tk, T1q, T1r; |
1355 | 0 | Tj = Rp[WS(rs, 10)]; |
1356 | 0 | Tk = Rm[WS(rs, 5)]; |
1357 | 0 | Tl = Tj + Tk; |
1358 | 0 | T1k = Tj - Tk; |
1359 | 0 | T1q = Ip[WS(rs, 10)]; |
1360 | 0 | T1r = Im[WS(rs, 5)]; |
1361 | 0 | T1s = T1q + T1r; |
1362 | 0 | T3b = T1q - T1r; |
1363 | 0 | } |
1364 | 0 | T1o = T1k + T1n; |
1365 | 0 | T1t = T1p - T1s; |
1366 | 0 | T6j = T1p + T1s; |
1367 | 0 | T6i = T1n - T1k; |
1368 | 0 | T5E = T3a - T3b; |
1369 | 0 | T5D = Ti - Tl; |
1370 | 0 | } |
1371 | 0 | { |
1372 | 0 | E T1A, T1y, T1v, T1D; |
1373 | 0 | { |
1374 | 0 | E Tn, To, T1w, T1x; |
1375 | 0 | Tn = Rm[WS(rs, 1)]; |
1376 | 0 | To = Rp[WS(rs, 14)]; |
1377 | 0 | Tp = Tn + To; |
1378 | 0 | T1A = Tn - To; |
1379 | 0 | T1w = Im[WS(rs, 1)]; |
1380 | 0 | T1x = Ip[WS(rs, 14)]; |
1381 | 0 | T1y = T1w + T1x; |
1382 | 0 | T3d = T1x - T1w; |
1383 | 0 | } |
1384 | 0 | { |
1385 | 0 | E Tq, Tr, T1B, T1C; |
1386 | 0 | Tq = Rp[WS(rs, 6)]; |
1387 | 0 | Tr = Rm[WS(rs, 9)]; |
1388 | 0 | Ts = Tq + Tr; |
1389 | 0 | T1v = Tq - Tr; |
1390 | 0 | T1B = Ip[WS(rs, 6)]; |
1391 | 0 | T1C = Im[WS(rs, 9)]; |
1392 | 0 | T1D = T1B + T1C; |
1393 | 0 | T3e = T1B - T1C; |
1394 | 0 | } |
1395 | 0 | T1z = T1v - T1y; |
1396 | 0 | T1E = T1A - T1D; |
1397 | 0 | T6m = T1A + T1D; |
1398 | 0 | T6l = T1v + T1y; |
1399 | 0 | T5H = T3d - T3e; |
1400 | 0 | T5G = Tp - Ts; |
1401 | 0 | } |
1402 | 0 | { |
1403 | 0 | E Tm, Tt, T6k, T6n; |
1404 | 0 | Tm = Ti + Tl; |
1405 | 0 | Tt = Tp + Ts; |
1406 | 0 | Tu = Tm + Tt; |
1407 | 0 | T4p = Tm - Tt; |
1408 | 0 | T6k = FMA(KP382683432, T6i, KP923879532 * T6j); |
1409 | 0 | T6n = FMA(KP382683432, T6l, KP923879532 * T6m); |
1410 | 0 | T6o = T6k - T6n; |
1411 | 0 | T8f = T6k + T6n; |
1412 | 0 | } |
1413 | 0 | { |
1414 | 0 | E T6K, T6L, T1u, T1F; |
1415 | 0 | T6K = FNMS(KP923879532, T6i, KP382683432 * T6j); |
1416 | 0 | T6L = FNMS(KP923879532, T6l, KP382683432 * T6m); |
1417 | 0 | T6M = T6K + T6L; |
1418 | 0 | T80 = T6K - T6L; |
1419 | 0 | T1u = FMA(KP923879532, T1o, KP382683432 * T1t); |
1420 | 0 | T1F = FNMS(KP382683432, T1E, KP923879532 * T1z); |
1421 | 0 | T1G = T1u + T1F; |
1422 | 0 | T4K = T1F - T1u; |
1423 | 0 | } |
1424 | 0 | { |
1425 | 0 | E T2G, T2H, T5F, T5I; |
1426 | 0 | T2G = FNMS(KP382683432, T1o, KP923879532 * T1t); |
1427 | 0 | T2H = FMA(KP382683432, T1z, KP923879532 * T1E); |
1428 | 0 | T2I = T2G + T2H; |
1429 | 0 | T4w = T2G - T2H; |
1430 | 0 | T5F = T5D - T5E; |
1431 | 0 | T5I = T5G + T5H; |
1432 | 0 | T5J = KP707106781 * (T5F + T5I); |
1433 | 0 | T7T = KP707106781 * (T5F - T5I); |
1434 | 0 | } |
1435 | 0 | { |
1436 | 0 | E T65, T66, T3c, T3f; |
1437 | 0 | T65 = T5D + T5E; |
1438 | 0 | T66 = T5H - T5G; |
1439 | 0 | T67 = KP707106781 * (T65 + T66); |
1440 | 0 | T7F = KP707106781 * (T66 - T65); |
1441 | 0 | T3c = T3a + T3b; |
1442 | 0 | T3f = T3d + T3e; |
1443 | 0 | T3g = T3c + T3f; |
1444 | 0 | T4b = T3f - T3c; |
1445 | 0 | } |
1446 | 0 | } |
1447 | 0 | { |
1448 | 0 | E T11, T3s, T3p, T3u, T3K, T40, T3G, T3Y, T2T, T43, T3z, T3P, T2B, T45, T3x; |
1449 | 0 | E T3T; |
1450 | 0 | { |
1451 | 0 | E Tv, T10, T3E, T3F; |
1452 | 0 | Tv = Tf + Tu; |
1453 | 0 | T10 = TK + TZ; |
1454 | 0 | T11 = Tv + T10; |
1455 | 0 | T3s = Tv - T10; |
1456 | 0 | { |
1457 | 0 | E T39, T3o, T3I, T3J; |
1458 | 0 | T39 = T31 + T38; |
1459 | 0 | T3o = T3g + T3n; |
1460 | 0 | T3p = T39 + T3o; |
1461 | 0 | T3u = T3o - T39; |
1462 | 0 | T3I = TK - TZ; |
1463 | 0 | T3J = T3n - T3g; |
1464 | 0 | T3K = T3I + T3J; |
1465 | 0 | T40 = T3J - T3I; |
1466 | 0 | } |
1467 | 0 | T3E = Tf - Tu; |
1468 | 0 | T3F = T38 - T31; |
1469 | 0 | T3G = T3E + T3F; |
1470 | 0 | T3Y = T3E - T3F; |
1471 | 0 | { |
1472 | 0 | E T2S, T3N, T2F, T3O, T2D, T2E; |
1473 | 0 | T2S = T2I + T2R; |
1474 | 0 | T3N = T1j - T1G; |
1475 | 0 | T2D = FNMS(KP195090322, T1Y, KP980785280 * T27); |
1476 | 0 | T2E = FMA(KP195090322, T2p, KP980785280 * T2y); |
1477 | 0 | T2F = T2D + T2E; |
1478 | 0 | T3O = T2D - T2E; |
1479 | 0 | T2T = T2F + T2S; |
1480 | 0 | T43 = T3N - T3O; |
1481 | 0 | T3z = T2S - T2F; |
1482 | 0 | T3P = T3N + T3O; |
1483 | 0 | } |
1484 | 0 | { |
1485 | 0 | E T1H, T3S, T2A, T3R, T28, T2z; |
1486 | 0 | T1H = T1j + T1G; |
1487 | 0 | T3S = T2R - T2I; |
1488 | 0 | T28 = FMA(KP980785280, T1Y, KP195090322 * T27); |
1489 | 0 | T2z = FNMS(KP195090322, T2y, KP980785280 * T2p); |
1490 | 0 | T2A = T28 + T2z; |
1491 | 0 | T3R = T2z - T28; |
1492 | 0 | T2B = T1H + T2A; |
1493 | 0 | T45 = T3S - T3R; |
1494 | 0 | T3x = T1H - T2A; |
1495 | 0 | T3T = T3R + T3S; |
1496 | 0 | } |
1497 | 0 | } |
1498 | 0 | { |
1499 | 0 | E T2U, T3q, T12, T2C; |
1500 | 0 | T12 = W[0]; |
1501 | 0 | T2C = W[1]; |
1502 | 0 | T2U = FMA(T12, T2B, T2C * T2T); |
1503 | 0 | T3q = FNMS(T2C, T2B, T12 * T2T); |
1504 | 0 | Rp[0] = T11 - T2U; |
1505 | 0 | Ip[0] = T3p + T3q; |
1506 | 0 | Rm[0] = T11 + T2U; |
1507 | 0 | Im[0] = T3q - T3p; |
1508 | 0 | } |
1509 | 0 | { |
1510 | 0 | E T41, T47, T46, T48; |
1511 | 0 | { |
1512 | 0 | E T3X, T3Z, T42, T44; |
1513 | 0 | T3X = W[46]; |
1514 | 0 | T3Z = W[47]; |
1515 | 0 | T41 = FNMS(T3Z, T40, T3X * T3Y); |
1516 | 0 | T47 = FMA(T3Z, T3Y, T3X * T40); |
1517 | 0 | T42 = W[48]; |
1518 | 0 | T44 = W[49]; |
1519 | 0 | T46 = FMA(T42, T43, T44 * T45); |
1520 | 0 | T48 = FNMS(T44, T43, T42 * T45); |
1521 | 0 | } |
1522 | 0 | Rp[WS(rs, 12)] = T41 - T46; |
1523 | 0 | Ip[WS(rs, 12)] = T47 + T48; |
1524 | 0 | Rm[WS(rs, 12)] = T41 + T46; |
1525 | 0 | Im[WS(rs, 12)] = T48 - T47; |
1526 | 0 | } |
1527 | 0 | { |
1528 | 0 | E T3v, T3B, T3A, T3C; |
1529 | 0 | { |
1530 | 0 | E T3r, T3t, T3w, T3y; |
1531 | 0 | T3r = W[30]; |
1532 | 0 | T3t = W[31]; |
1533 | 0 | T3v = FNMS(T3t, T3u, T3r * T3s); |
1534 | 0 | T3B = FMA(T3t, T3s, T3r * T3u); |
1535 | 0 | T3w = W[32]; |
1536 | 0 | T3y = W[33]; |
1537 | 0 | T3A = FMA(T3w, T3x, T3y * T3z); |
1538 | 0 | T3C = FNMS(T3y, T3x, T3w * T3z); |
1539 | 0 | } |
1540 | 0 | Rp[WS(rs, 8)] = T3v - T3A; |
1541 | 0 | Ip[WS(rs, 8)] = T3B + T3C; |
1542 | 0 | Rm[WS(rs, 8)] = T3v + T3A; |
1543 | 0 | Im[WS(rs, 8)] = T3C - T3B; |
1544 | 0 | } |
1545 | 0 | { |
1546 | 0 | E T3L, T3V, T3U, T3W; |
1547 | 0 | { |
1548 | 0 | E T3D, T3H, T3M, T3Q; |
1549 | 0 | T3D = W[14]; |
1550 | 0 | T3H = W[15]; |
1551 | 0 | T3L = FNMS(T3H, T3K, T3D * T3G); |
1552 | 0 | T3V = FMA(T3H, T3G, T3D * T3K); |
1553 | 0 | T3M = W[16]; |
1554 | 0 | T3Q = W[17]; |
1555 | 0 | T3U = FMA(T3M, T3P, T3Q * T3T); |
1556 | 0 | T3W = FNMS(T3Q, T3P, T3M * T3T); |
1557 | 0 | } |
1558 | 0 | Rp[WS(rs, 4)] = T3L - T3U; |
1559 | 0 | Ip[WS(rs, 4)] = T3V + T3W; |
1560 | 0 | Rm[WS(rs, 4)] = T3L + T3U; |
1561 | 0 | Im[WS(rs, 4)] = T3W - T3V; |
1562 | 0 | } |
1563 | 0 | } |
1564 | 0 | { |
1565 | 0 | E T7O, T8m, T7W, T8o, T8E, T8U, T8A, T8S, T8h, T8X, T8t, T8J, T89, T8Z, T8r; |
1566 | 0 | E T8N; |
1567 | 0 | { |
1568 | 0 | E T7G, T7N, T8y, T8z; |
1569 | 0 | T7G = T7E + T7F; |
1570 | 0 | T7N = T7J + T7M; |
1571 | 0 | T7O = T7G + T7N; |
1572 | 0 | T8m = T7G - T7N; |
1573 | 0 | { |
1574 | 0 | E T7S, T7V, T8C, T8D; |
1575 | 0 | T7S = T7Q + T7R; |
1576 | 0 | T7V = T7T + T7U; |
1577 | 0 | T7W = T7S + T7V; |
1578 | 0 | T8o = T7V - T7S; |
1579 | 0 | T8C = T7J - T7M; |
1580 | 0 | T8D = T7U - T7T; |
1581 | 0 | T8E = T8C + T8D; |
1582 | 0 | T8U = T8D - T8C; |
1583 | 0 | } |
1584 | 0 | T8y = T7E - T7F; |
1585 | 0 | T8z = T7R - T7Q; |
1586 | 0 | T8A = T8y + T8z; |
1587 | 0 | T8S = T8y - T8z; |
1588 | 0 | { |
1589 | 0 | E T8g, T8H, T8d, T8I, T8b, T8c; |
1590 | 0 | T8g = T8e - T8f; |
1591 | 0 | T8H = T7Z - T80; |
1592 | 0 | T8b = FNMS(KP980785280, T82, KP195090322 * T83); |
1593 | 0 | T8c = FNMS(KP980785280, T85, KP195090322 * T86); |
1594 | 0 | T8d = T8b + T8c; |
1595 | 0 | T8I = T8b - T8c; |
1596 | 0 | T8h = T8d + T8g; |
1597 | 0 | T8X = T8H - T8I; |
1598 | 0 | T8t = T8g - T8d; |
1599 | 0 | T8J = T8H + T8I; |
1600 | 0 | } |
1601 | 0 | { |
1602 | 0 | E T81, T8L, T88, T8M, T84, T87; |
1603 | 0 | T81 = T7Z + T80; |
1604 | 0 | T8L = T8f + T8e; |
1605 | 0 | T84 = FMA(KP195090322, T82, KP980785280 * T83); |
1606 | 0 | T87 = FMA(KP195090322, T85, KP980785280 * T86); |
1607 | 0 | T88 = T84 - T87; |
1608 | 0 | T8M = T84 + T87; |
1609 | 0 | T89 = T81 + T88; |
1610 | 0 | T8Z = T8M + T8L; |
1611 | 0 | T8r = T81 - T88; |
1612 | 0 | T8N = T8L - T8M; |
1613 | 0 | } |
1614 | 0 | } |
1615 | 0 | { |
1616 | 0 | E T7X, T8j, T8i, T8k; |
1617 | 0 | { |
1618 | 0 | E T7D, T7P, T7Y, T8a; |
1619 | 0 | T7D = W[10]; |
1620 | 0 | T7P = W[11]; |
1621 | 0 | T7X = FNMS(T7P, T7W, T7D * T7O); |
1622 | 0 | T8j = FMA(T7P, T7O, T7D * T7W); |
1623 | 0 | T7Y = W[12]; |
1624 | 0 | T8a = W[13]; |
1625 | 0 | T8i = FMA(T7Y, T89, T8a * T8h); |
1626 | 0 | T8k = FNMS(T8a, T89, T7Y * T8h); |
1627 | 0 | } |
1628 | 0 | Rp[WS(rs, 3)] = T7X - T8i; |
1629 | 0 | Ip[WS(rs, 3)] = T8j + T8k; |
1630 | 0 | Rm[WS(rs, 3)] = T7X + T8i; |
1631 | 0 | Im[WS(rs, 3)] = T8k - T8j; |
1632 | 0 | } |
1633 | 0 | { |
1634 | 0 | E T8V, T91, T90, T92; |
1635 | 0 | { |
1636 | 0 | E T8R, T8T, T8W, T8Y; |
1637 | 0 | T8R = W[58]; |
1638 | 0 | T8T = W[59]; |
1639 | 0 | T8V = FNMS(T8T, T8U, T8R * T8S); |
1640 | 0 | T91 = FMA(T8T, T8S, T8R * T8U); |
1641 | 0 | T8W = W[60]; |
1642 | 0 | T8Y = W[61]; |
1643 | 0 | T90 = FMA(T8W, T8X, T8Y * T8Z); |
1644 | 0 | T92 = FNMS(T8Y, T8X, T8W * T8Z); |
1645 | 0 | } |
1646 | 0 | Rp[WS(rs, 15)] = T8V - T90; |
1647 | 0 | Ip[WS(rs, 15)] = T91 + T92; |
1648 | 0 | Rm[WS(rs, 15)] = T8V + T90; |
1649 | 0 | Im[WS(rs, 15)] = T92 - T91; |
1650 | 0 | } |
1651 | 0 | { |
1652 | 0 | E T8p, T8v, T8u, T8w; |
1653 | 0 | { |
1654 | 0 | E T8l, T8n, T8q, T8s; |
1655 | 0 | T8l = W[42]; |
1656 | 0 | T8n = W[43]; |
1657 | 0 | T8p = FNMS(T8n, T8o, T8l * T8m); |
1658 | 0 | T8v = FMA(T8n, T8m, T8l * T8o); |
1659 | 0 | T8q = W[44]; |
1660 | 0 | T8s = W[45]; |
1661 | 0 | T8u = FMA(T8q, T8r, T8s * T8t); |
1662 | 0 | T8w = FNMS(T8s, T8r, T8q * T8t); |
1663 | 0 | } |
1664 | 0 | Rp[WS(rs, 11)] = T8p - T8u; |
1665 | 0 | Ip[WS(rs, 11)] = T8v + T8w; |
1666 | 0 | Rm[WS(rs, 11)] = T8p + T8u; |
1667 | 0 | Im[WS(rs, 11)] = T8w - T8v; |
1668 | 0 | } |
1669 | 0 | { |
1670 | 0 | E T8F, T8P, T8O, T8Q; |
1671 | 0 | { |
1672 | 0 | E T8x, T8B, T8G, T8K; |
1673 | 0 | T8x = W[26]; |
1674 | 0 | T8B = W[27]; |
1675 | 0 | T8F = FNMS(T8B, T8E, T8x * T8A); |
1676 | 0 | T8P = FMA(T8B, T8A, T8x * T8E); |
1677 | 0 | T8G = W[28]; |
1678 | 0 | T8K = W[29]; |
1679 | 0 | T8O = FMA(T8G, T8J, T8K * T8N); |
1680 | 0 | T8Q = FNMS(T8K, T8J, T8G * T8N); |
1681 | 0 | } |
1682 | 0 | Rp[WS(rs, 7)] = T8F - T8O; |
1683 | 0 | Ip[WS(rs, 7)] = T8P + T8Q; |
1684 | 0 | Rm[WS(rs, 7)] = T8F + T8O; |
1685 | 0 | Im[WS(rs, 7)] = T8Q - T8P; |
1686 | 0 | } |
1687 | 0 | } |
1688 | 0 | { |
1689 | 0 | E T4k, T4S, T4s, T4U, T5a, T5q, T56, T5o, T4N, T5t, T4Z, T5f, T4F, T5v, T4X; |
1690 | 0 | E T5j; |
1691 | 0 | { |
1692 | 0 | E T4c, T4j, T54, T55; |
1693 | 0 | T4c = T4a + T4b; |
1694 | 0 | T4j = KP707106781 * (T4f + T4i); |
1695 | 0 | T4k = T4c + T4j; |
1696 | 0 | T4S = T4c - T4j; |
1697 | 0 | { |
1698 | 0 | E T4o, T4r, T58, T59; |
1699 | 0 | T4o = KP707106781 * (T4m + T4n); |
1700 | 0 | T4r = T4p + T4q; |
1701 | 0 | T4s = T4o + T4r; |
1702 | 0 | T4U = T4r - T4o; |
1703 | 0 | T58 = KP707106781 * (T4f - T4i); |
1704 | 0 | T59 = T4q - T4p; |
1705 | 0 | T5a = T58 + T59; |
1706 | 0 | T5q = T59 - T58; |
1707 | 0 | } |
1708 | 0 | T54 = T4a - T4b; |
1709 | 0 | T55 = KP707106781 * (T4n - T4m); |
1710 | 0 | T56 = T54 + T55; |
1711 | 0 | T5o = T54 - T55; |
1712 | 0 | { |
1713 | 0 | E T4M, T5d, T4J, T5e, T4H, T4I; |
1714 | 0 | T4M = T4K + T4L; |
1715 | 0 | T5d = T4v - T4w; |
1716 | 0 | T4H = FNMS(KP831469612, T4y, KP555570233 * T4z); |
1717 | 0 | T4I = FMA(KP831469612, T4B, KP555570233 * T4C); |
1718 | 0 | T4J = T4H + T4I; |
1719 | 0 | T5e = T4H - T4I; |
1720 | 0 | T4N = T4J + T4M; |
1721 | 0 | T5t = T5d - T5e; |
1722 | 0 | T4Z = T4M - T4J; |
1723 | 0 | T5f = T5d + T5e; |
1724 | 0 | } |
1725 | 0 | { |
1726 | 0 | E T4x, T5i, T4E, T5h, T4A, T4D; |
1727 | 0 | T4x = T4v + T4w; |
1728 | 0 | T5i = T4L - T4K; |
1729 | 0 | T4A = FMA(KP555570233, T4y, KP831469612 * T4z); |
1730 | 0 | T4D = FNMS(KP831469612, T4C, KP555570233 * T4B); |
1731 | 0 | T4E = T4A + T4D; |
1732 | 0 | T5h = T4D - T4A; |
1733 | 0 | T4F = T4x + T4E; |
1734 | 0 | T5v = T5i - T5h; |
1735 | 0 | T4X = T4x - T4E; |
1736 | 0 | T5j = T5h + T5i; |
1737 | 0 | } |
1738 | 0 | } |
1739 | 0 | { |
1740 | 0 | E T4t, T4P, T4O, T4Q; |
1741 | 0 | { |
1742 | 0 | E T49, T4l, T4u, T4G; |
1743 | 0 | T49 = W[6]; |
1744 | 0 | T4l = W[7]; |
1745 | 0 | T4t = FNMS(T4l, T4s, T49 * T4k); |
1746 | 0 | T4P = FMA(T4l, T4k, T49 * T4s); |
1747 | 0 | T4u = W[8]; |
1748 | 0 | T4G = W[9]; |
1749 | 0 | T4O = FMA(T4u, T4F, T4G * T4N); |
1750 | 0 | T4Q = FNMS(T4G, T4F, T4u * T4N); |
1751 | 0 | } |
1752 | 0 | Rp[WS(rs, 2)] = T4t - T4O; |
1753 | 0 | Ip[WS(rs, 2)] = T4P + T4Q; |
1754 | 0 | Rm[WS(rs, 2)] = T4t + T4O; |
1755 | 0 | Im[WS(rs, 2)] = T4Q - T4P; |
1756 | 0 | } |
1757 | 0 | { |
1758 | 0 | E T5r, T5x, T5w, T5y; |
1759 | 0 | { |
1760 | 0 | E T5n, T5p, T5s, T5u; |
1761 | 0 | T5n = W[54]; |
1762 | 0 | T5p = W[55]; |
1763 | 0 | T5r = FNMS(T5p, T5q, T5n * T5o); |
1764 | 0 | T5x = FMA(T5p, T5o, T5n * T5q); |
1765 | 0 | T5s = W[56]; |
1766 | 0 | T5u = W[57]; |
1767 | 0 | T5w = FMA(T5s, T5t, T5u * T5v); |
1768 | 0 | T5y = FNMS(T5u, T5t, T5s * T5v); |
1769 | 0 | } |
1770 | 0 | Rp[WS(rs, 14)] = T5r - T5w; |
1771 | 0 | Ip[WS(rs, 14)] = T5x + T5y; |
1772 | 0 | Rm[WS(rs, 14)] = T5r + T5w; |
1773 | 0 | Im[WS(rs, 14)] = T5y - T5x; |
1774 | 0 | } |
1775 | 0 | { |
1776 | 0 | E T4V, T51, T50, T52; |
1777 | 0 | { |
1778 | 0 | E T4R, T4T, T4W, T4Y; |
1779 | 0 | T4R = W[38]; |
1780 | 0 | T4T = W[39]; |
1781 | 0 | T4V = FNMS(T4T, T4U, T4R * T4S); |
1782 | 0 | T51 = FMA(T4T, T4S, T4R * T4U); |
1783 | 0 | T4W = W[40]; |
1784 | 0 | T4Y = W[41]; |
1785 | 0 | T50 = FMA(T4W, T4X, T4Y * T4Z); |
1786 | 0 | T52 = FNMS(T4Y, T4X, T4W * T4Z); |
1787 | 0 | } |
1788 | 0 | Rp[WS(rs, 10)] = T4V - T50; |
1789 | 0 | Ip[WS(rs, 10)] = T51 + T52; |
1790 | 0 | Rm[WS(rs, 10)] = T4V + T50; |
1791 | 0 | Im[WS(rs, 10)] = T52 - T51; |
1792 | 0 | } |
1793 | 0 | { |
1794 | 0 | E T5b, T5l, T5k, T5m; |
1795 | 0 | { |
1796 | 0 | E T53, T57, T5c, T5g; |
1797 | 0 | T53 = W[22]; |
1798 | 0 | T57 = W[23]; |
1799 | 0 | T5b = FNMS(T57, T5a, T53 * T56); |
1800 | 0 | T5l = FMA(T57, T56, T53 * T5a); |
1801 | 0 | T5c = W[24]; |
1802 | 0 | T5g = W[25]; |
1803 | 0 | T5k = FMA(T5c, T5f, T5g * T5j); |
1804 | 0 | T5m = FNMS(T5g, T5f, T5c * T5j); |
1805 | 0 | } |
1806 | 0 | Rp[WS(rs, 6)] = T5b - T5k; |
1807 | 0 | Ip[WS(rs, 6)] = T5l + T5m; |
1808 | 0 | Rm[WS(rs, 6)] = T5b + T5k; |
1809 | 0 | Im[WS(rs, 6)] = T5m - T5l; |
1810 | 0 | } |
1811 | 0 | } |
1812 | 0 | { |
1813 | 0 | E T60, T6W, T6c, T6Y, T7e, T7u, T7a, T7s, T6R, T7x, T73, T7j, T6F, T7z, T71; |
1814 | 0 | E T7n; |
1815 | 0 | { |
1816 | 0 | E T5K, T5Z, T78, T79; |
1817 | 0 | T5K = T5C + T5J; |
1818 | 0 | T5Z = T5R + T5Y; |
1819 | 0 | T60 = T5K + T5Z; |
1820 | 0 | T6W = T5K - T5Z; |
1821 | 0 | { |
1822 | 0 | E T64, T6b, T7c, T7d; |
1823 | 0 | T64 = T62 + T63; |
1824 | 0 | T6b = T67 + T6a; |
1825 | 0 | T6c = T64 + T6b; |
1826 | 0 | T6Y = T6b - T64; |
1827 | 0 | T7c = T5R - T5Y; |
1828 | 0 | T7d = T6a - T67; |
1829 | 0 | T7e = T7c + T7d; |
1830 | 0 | T7u = T7d - T7c; |
1831 | 0 | } |
1832 | 0 | T78 = T5C - T5J; |
1833 | 0 | T79 = T63 - T62; |
1834 | 0 | T7a = T78 + T79; |
1835 | 0 | T7s = T78 - T79; |
1836 | 0 | { |
1837 | 0 | E T6Q, T7h, T6J, T7i, T6H, T6I; |
1838 | 0 | T6Q = T6M + T6P; |
1839 | 0 | T7h = T6h - T6o; |
1840 | 0 | T6H = FNMS(KP555570233, T6s, KP831469612 * T6v); |
1841 | 0 | T6I = FMA(KP555570233, T6z, KP831469612 * T6C); |
1842 | 0 | T6J = T6H + T6I; |
1843 | 0 | T7i = T6H - T6I; |
1844 | 0 | T6R = T6J + T6Q; |
1845 | 0 | T7x = T7h - T7i; |
1846 | 0 | T73 = T6Q - T6J; |
1847 | 0 | T7j = T7h + T7i; |
1848 | 0 | } |
1849 | 0 | { |
1850 | 0 | E T6p, T7m, T6E, T7l, T6w, T6D; |
1851 | 0 | T6p = T6h + T6o; |
1852 | 0 | T7m = T6P - T6M; |
1853 | 0 | T6w = FMA(KP831469612, T6s, KP555570233 * T6v); |
1854 | 0 | T6D = FNMS(KP555570233, T6C, KP831469612 * T6z); |
1855 | 0 | T6E = T6w + T6D; |
1856 | 0 | T7l = T6D - T6w; |
1857 | 0 | T6F = T6p + T6E; |
1858 | 0 | T7z = T7m - T7l; |
1859 | 0 | T71 = T6p - T6E; |
1860 | 0 | T7n = T7l + T7m; |
1861 | 0 | } |
1862 | 0 | } |
1863 | 0 | { |
1864 | 0 | E T6d, T6T, T6S, T6U; |
1865 | 0 | { |
1866 | 0 | E T5z, T61, T6e, T6G; |
1867 | 0 | T5z = W[2]; |
1868 | 0 | T61 = W[3]; |
1869 | 0 | T6d = FNMS(T61, T6c, T5z * T60); |
1870 | 0 | T6T = FMA(T61, T60, T5z * T6c); |
1871 | 0 | T6e = W[4]; |
1872 | 0 | T6G = W[5]; |
1873 | 0 | T6S = FMA(T6e, T6F, T6G * T6R); |
1874 | 0 | T6U = FNMS(T6G, T6F, T6e * T6R); |
1875 | 0 | } |
1876 | 0 | Rp[WS(rs, 1)] = T6d - T6S; |
1877 | 0 | Ip[WS(rs, 1)] = T6T + T6U; |
1878 | 0 | Rm[WS(rs, 1)] = T6d + T6S; |
1879 | 0 | Im[WS(rs, 1)] = T6U - T6T; |
1880 | 0 | } |
1881 | 0 | { |
1882 | 0 | E T7v, T7B, T7A, T7C; |
1883 | 0 | { |
1884 | 0 | E T7r, T7t, T7w, T7y; |
1885 | 0 | T7r = W[50]; |
1886 | 0 | T7t = W[51]; |
1887 | 0 | T7v = FNMS(T7t, T7u, T7r * T7s); |
1888 | 0 | T7B = FMA(T7t, T7s, T7r * T7u); |
1889 | 0 | T7w = W[52]; |
1890 | 0 | T7y = W[53]; |
1891 | 0 | T7A = FMA(T7w, T7x, T7y * T7z); |
1892 | 0 | T7C = FNMS(T7y, T7x, T7w * T7z); |
1893 | 0 | } |
1894 | 0 | Rp[WS(rs, 13)] = T7v - T7A; |
1895 | 0 | Ip[WS(rs, 13)] = T7B + T7C; |
1896 | 0 | Rm[WS(rs, 13)] = T7v + T7A; |
1897 | 0 | Im[WS(rs, 13)] = T7C - T7B; |
1898 | 0 | } |
1899 | 0 | { |
1900 | 0 | E T6Z, T75, T74, T76; |
1901 | 0 | { |
1902 | 0 | E T6V, T6X, T70, T72; |
1903 | 0 | T6V = W[34]; |
1904 | 0 | T6X = W[35]; |
1905 | 0 | T6Z = FNMS(T6X, T6Y, T6V * T6W); |
1906 | 0 | T75 = FMA(T6X, T6W, T6V * T6Y); |
1907 | 0 | T70 = W[36]; |
1908 | 0 | T72 = W[37]; |
1909 | 0 | T74 = FMA(T70, T71, T72 * T73); |
1910 | 0 | T76 = FNMS(T72, T71, T70 * T73); |
1911 | 0 | } |
1912 | 0 | Rp[WS(rs, 9)] = T6Z - T74; |
1913 | 0 | Ip[WS(rs, 9)] = T75 + T76; |
1914 | 0 | Rm[WS(rs, 9)] = T6Z + T74; |
1915 | 0 | Im[WS(rs, 9)] = T76 - T75; |
1916 | 0 | } |
1917 | 0 | { |
1918 | 0 | E T7f, T7p, T7o, T7q; |
1919 | 0 | { |
1920 | 0 | E T77, T7b, T7g, T7k; |
1921 | 0 | T77 = W[18]; |
1922 | 0 | T7b = W[19]; |
1923 | 0 | T7f = FNMS(T7b, T7e, T77 * T7a); |
1924 | 0 | T7p = FMA(T7b, T7a, T77 * T7e); |
1925 | 0 | T7g = W[20]; |
1926 | 0 | T7k = W[21]; |
1927 | 0 | T7o = FMA(T7g, T7j, T7k * T7n); |
1928 | 0 | T7q = FNMS(T7k, T7j, T7g * T7n); |
1929 | 0 | } |
1930 | 0 | Rp[WS(rs, 5)] = T7f - T7o; |
1931 | 0 | Ip[WS(rs, 5)] = T7p + T7q; |
1932 | 0 | Rm[WS(rs, 5)] = T7f + T7o; |
1933 | 0 | Im[WS(rs, 5)] = T7q - T7p; |
1934 | 0 | } |
1935 | 0 | } |
1936 | 0 | } |
1937 | 0 | } |
1938 | 0 | } |
1939 | | |
1940 | | static const tw_instr twinstr[] = { |
1941 | | { TW_FULL, 1, 32 }, |
1942 | | { TW_NEXT, 1, 0 } |
1943 | | }; |
1944 | | |
1945 | | static const hc2c_desc desc = { 32, "hc2cbdft_32", twinstr, &GENUS, { 404, 114, 94, 0 } }; |
1946 | | |
1947 | 1 | void X(codelet_hc2cbdft_32) (planner *p) { |
1948 | 1 | X(khc2c_register) (p, hc2cbdft_32, &desc, HC2C_VIA_DFT); |
1949 | 1 | } |
1950 | | #endif |