/src/fftw3/rdft/scalar/r2cb/r2cb_20.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:54:00 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 86 FP additions, 44 FP multiplications, |
32 | | * (or, 42 additions, 0 multiplications, 44 fused multiply/add), |
33 | | * 50 stack variables, 5 constants, and 40 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
40 | | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
41 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
44 | | { |
45 | | INT i; |
46 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { |
47 | | E T5, TD, Tl, Tr, TO, T1l, T1d, T10, T1k, TT, T11, T1a, Tc, Tj, Tk; |
48 | | E Tw, TB, TC, Tm, Tn, To, TE, TF, TG; |
49 | | { |
50 | | E T4, Tq, T3, Tp, T1, T2; |
51 | | T4 = Cr[WS(csr, 5)]; |
52 | | Tq = Ci[WS(csi, 5)]; |
53 | | T1 = Cr[0]; |
54 | | T2 = Cr[WS(csr, 10)]; |
55 | | T3 = T1 + T2; |
56 | | Tp = T1 - T2; |
57 | | T5 = FNMS(KP2_000000000, T4, T3); |
58 | | TD = FNMS(KP2_000000000, Tq, Tp); |
59 | | Tl = FMA(KP2_000000000, T4, T3); |
60 | | Tr = FMA(KP2_000000000, Tq, Tp); |
61 | | } |
62 | | { |
63 | | E T8, Ts, TR, T19, Tb, T18, Tv, TS, Tf, Tx, TM, T1c, Ti, T1b, TA; |
64 | | E TN; |
65 | | { |
66 | | E T6, T7, TP, TQ; |
67 | | T6 = Cr[WS(csr, 4)]; |
68 | | T7 = Cr[WS(csr, 6)]; |
69 | | T8 = T6 + T7; |
70 | | Ts = T6 - T7; |
71 | | TP = Ci[WS(csi, 4)]; |
72 | | TQ = Ci[WS(csi, 6)]; |
73 | | TR = TP - TQ; |
74 | | T19 = TP + TQ; |
75 | | } |
76 | | { |
77 | | E T9, Ta, Tt, Tu; |
78 | | T9 = Cr[WS(csr, 9)]; |
79 | | Ta = Cr[WS(csr, 1)]; |
80 | | Tb = T9 + Ta; |
81 | | T18 = T9 - Ta; |
82 | | Tt = Ci[WS(csi, 9)]; |
83 | | Tu = Ci[WS(csi, 1)]; |
84 | | Tv = Tt + Tu; |
85 | | TS = Tt - Tu; |
86 | | } |
87 | | { |
88 | | E Td, Te, TK, TL; |
89 | | Td = Cr[WS(csr, 8)]; |
90 | | Te = Cr[WS(csr, 2)]; |
91 | | Tf = Td + Te; |
92 | | Tx = Td - Te; |
93 | | TK = Ci[WS(csi, 8)]; |
94 | | TL = Ci[WS(csi, 2)]; |
95 | | TM = TK - TL; |
96 | | T1c = TK + TL; |
97 | | } |
98 | | { |
99 | | E Tg, Th, Ty, Tz; |
100 | | Tg = Cr[WS(csr, 7)]; |
101 | | Th = Cr[WS(csr, 3)]; |
102 | | Ti = Tg + Th; |
103 | | T1b = Tg - Th; |
104 | | Ty = Ci[WS(csi, 7)]; |
105 | | Tz = Ci[WS(csi, 3)]; |
106 | | TA = Ty + Tz; |
107 | | TN = Tz - Ty; |
108 | | } |
109 | | TO = TM - TN; |
110 | | T1l = T19 - T18; |
111 | | T1d = T1b + T1c; |
112 | | T10 = TS + TR; |
113 | | T1k = T1c - T1b; |
114 | | TT = TR - TS; |
115 | | T11 = TN + TM; |
116 | | T1a = T18 + T19; |
117 | | Tc = T8 - Tb; |
118 | | Tj = Tf - Ti; |
119 | | Tk = Tc + Tj; |
120 | | Tw = Ts + Tv; |
121 | | TB = Tx - TA; |
122 | | TC = Tw + TB; |
123 | | Tm = T8 + Tb; |
124 | | Tn = Tf + Ti; |
125 | | To = Tm + Tn; |
126 | | TE = Ts - Tv; |
127 | | TF = Tx + TA; |
128 | | TG = TE + TF; |
129 | | } |
130 | | R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5); |
131 | | R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr); |
132 | | R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD); |
133 | | R0[0] = FMA(KP2_000000000, To, Tl); |
134 | | { |
135 | | E TU, TW, TJ, TV, TH, TI; |
136 | | TU = FNMS(KP618033988, TT, TO); |
137 | | TW = FMA(KP618033988, TO, TT); |
138 | | TH = FNMS(KP500000000, Tk, T5); |
139 | | TI = Tc - Tj; |
140 | | TJ = FNMS(KP1_118033988, TI, TH); |
141 | | TV = FMA(KP1_118033988, TI, TH); |
142 | | R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ); |
143 | | R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV); |
144 | | R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ); |
145 | | R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV); |
146 | | } |
147 | | { |
148 | | E T1e, T1g, T17, T1f, T15, T16; |
149 | | T1e = FMA(KP618033988, T1d, T1a); |
150 | | T1g = FNMS(KP618033988, T1a, T1d); |
151 | | T15 = FNMS(KP500000000, TG, TD); |
152 | | T16 = TE - TF; |
153 | | T17 = FMA(KP1_118033988, T16, T15); |
154 | | T1f = FNMS(KP1_118033988, T16, T15); |
155 | | R1[0] = FNMS(KP1_902113032, T1e, T17); |
156 | | R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f); |
157 | | R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17); |
158 | | R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f); |
159 | | } |
160 | | { |
161 | | E T1m, T1o, T1j, T1n, T1h, T1i; |
162 | | T1m = FNMS(KP618033988, T1l, T1k); |
163 | | T1o = FMA(KP618033988, T1k, T1l); |
164 | | T1h = FNMS(KP500000000, TC, Tr); |
165 | | T1i = Tw - TB; |
166 | | T1j = FNMS(KP1_118033988, T1i, T1h); |
167 | | T1n = FMA(KP1_118033988, T1i, T1h); |
168 | | R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j); |
169 | | R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n); |
170 | | R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j); |
171 | | R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n); |
172 | | } |
173 | | { |
174 | | E T12, T14, TZ, T13, TX, TY; |
175 | | T12 = FMA(KP618033988, T11, T10); |
176 | | T14 = FNMS(KP618033988, T10, T11); |
177 | | TX = FNMS(KP500000000, To, Tl); |
178 | | TY = Tm - Tn; |
179 | | TZ = FMA(KP1_118033988, TY, TX); |
180 | | T13 = FNMS(KP1_118033988, TY, TX); |
181 | | R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ); |
182 | | R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13); |
183 | | R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ); |
184 | | R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13); |
185 | | } |
186 | | } |
187 | | } |
188 | | } |
189 | | |
190 | | static const kr2c_desc desc = { 20, "r2cb_20", { 42, 0, 44, 0 }, &GENUS }; |
191 | | |
192 | | void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc); |
193 | | } |
194 | | |
195 | | #else |
196 | | |
197 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */ |
198 | | |
199 | | /* |
200 | | * This function contains 86 FP additions, 30 FP multiplications, |
201 | | * (or, 70 additions, 14 multiplications, 16 fused multiply/add), |
202 | | * 50 stack variables, 5 constants, and 40 memory accesses |
203 | | */ |
204 | | #include "rdft/scalar/r2cb.h" |
205 | | |
206 | | static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
207 | 0 | { |
208 | 0 | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
209 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
210 | 0 | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
211 | 0 | DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); |
212 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
213 | 0 | { |
214 | 0 | INT i; |
215 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { |
216 | 0 | E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl; |
217 | 0 | E Ty, TD, TE, Tn, To, Tp, TG, TH, TI; |
218 | 0 | { |
219 | 0 | E T5, Ts, T3, Tq; |
220 | 0 | { |
221 | 0 | E T4, Tr, T1, T2; |
222 | 0 | T4 = Cr[WS(csr, 5)]; |
223 | 0 | T5 = KP2_000000000 * T4; |
224 | 0 | Tr = Ci[WS(csi, 5)]; |
225 | 0 | Ts = KP2_000000000 * Tr; |
226 | 0 | T1 = Cr[0]; |
227 | 0 | T2 = Cr[WS(csr, 10)]; |
228 | 0 | T3 = T1 + T2; |
229 | 0 | Tq = T1 - T2; |
230 | 0 | } |
231 | 0 | T6 = T3 - T5; |
232 | 0 | TF = Tq - Ts; |
233 | 0 | Tm = T3 + T5; |
234 | 0 | Tt = Tq + Ts; |
235 | 0 | } |
236 | 0 | { |
237 | 0 | E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC; |
238 | 0 | E TU; |
239 | 0 | { |
240 | 0 | E T7, T8, TM, TN; |
241 | 0 | T7 = Cr[WS(csr, 4)]; |
242 | 0 | T8 = Cr[WS(csr, 6)]; |
243 | 0 | T9 = T7 + T8; |
244 | 0 | Tu = T7 - T8; |
245 | 0 | TM = Ci[WS(csi, 4)]; |
246 | 0 | TN = Ci[WS(csi, 6)]; |
247 | 0 | TO = TM - TN; |
248 | 0 | T1b = TM + TN; |
249 | 0 | } |
250 | 0 | { |
251 | 0 | E Ta, Tb, Tv, Tw; |
252 | 0 | Ta = Cr[WS(csr, 9)]; |
253 | 0 | Tb = Cr[WS(csr, 1)]; |
254 | 0 | Tc = Ta + Tb; |
255 | 0 | T1a = Ta - Tb; |
256 | 0 | Tv = Ci[WS(csi, 9)]; |
257 | 0 | Tw = Ci[WS(csi, 1)]; |
258 | 0 | Tx = Tv + Tw; |
259 | 0 | TP = Tv - Tw; |
260 | 0 | } |
261 | 0 | { |
262 | 0 | E Te, Tf, TR, TS; |
263 | 0 | Te = Cr[WS(csr, 8)]; |
264 | 0 | Tf = Cr[WS(csr, 2)]; |
265 | 0 | Tg = Te + Tf; |
266 | 0 | Tz = Te - Tf; |
267 | 0 | TR = Ci[WS(csi, 8)]; |
268 | 0 | TS = Ci[WS(csi, 2)]; |
269 | 0 | TT = TR - TS; |
270 | 0 | T1e = TR + TS; |
271 | 0 | } |
272 | 0 | { |
273 | 0 | E Th, Ti, TA, TB; |
274 | 0 | Th = Cr[WS(csr, 7)]; |
275 | 0 | Ti = Cr[WS(csr, 3)]; |
276 | 0 | Tj = Th + Ti; |
277 | 0 | T1d = Th - Ti; |
278 | 0 | TA = Ci[WS(csi, 7)]; |
279 | 0 | TB = Ci[WS(csi, 3)]; |
280 | 0 | TC = TA + TB; |
281 | 0 | TU = TB - TA; |
282 | 0 | } |
283 | 0 | TQ = TO - TP; |
284 | 0 | T1n = T1e - T1d; |
285 | 0 | T1f = T1d + T1e; |
286 | 0 | T12 = TP + TO; |
287 | 0 | T1m = T1b - T1a; |
288 | 0 | TV = TT - TU; |
289 | 0 | T13 = TU + TT; |
290 | 0 | T1c = T1a + T1b; |
291 | 0 | Td = T9 - Tc; |
292 | 0 | Tk = Tg - Tj; |
293 | 0 | Tl = Td + Tk; |
294 | 0 | Ty = Tu + Tx; |
295 | 0 | TD = Tz - TC; |
296 | 0 | TE = Ty + TD; |
297 | 0 | Tn = T9 + Tc; |
298 | 0 | To = Tg + Tj; |
299 | 0 | Tp = Tn + To; |
300 | 0 | TG = Tu - Tx; |
301 | 0 | TH = Tz + TC; |
302 | 0 | TI = TG + TH; |
303 | 0 | } |
304 | 0 | R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6); |
305 | 0 | R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt); |
306 | 0 | R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF); |
307 | 0 | R0[0] = FMA(KP2_000000000, Tp, Tm); |
308 | 0 | { |
309 | 0 | E TW, TY, TL, TX, TJ, TK; |
310 | 0 | TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ); |
311 | 0 | TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV); |
312 | 0 | TJ = FNMS(KP500000000, Tl, T6); |
313 | 0 | TK = KP1_118033988 * (Td - Tk); |
314 | 0 | TL = TJ - TK; |
315 | 0 | TX = TK + TJ; |
316 | 0 | R0[WS(rs, 1)] = TL - TW; |
317 | 0 | R0[WS(rs, 7)] = TX + TY; |
318 | 0 | R0[WS(rs, 9)] = TL + TW; |
319 | 0 | R0[WS(rs, 3)] = TX - TY; |
320 | 0 | } |
321 | 0 | { |
322 | 0 | E T1g, T1i, T19, T1h, T17, T18; |
323 | 0 | T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c); |
324 | 0 | T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f); |
325 | 0 | T17 = FNMS(KP500000000, TI, TF); |
326 | 0 | T18 = KP1_118033988 * (TG - TH); |
327 | 0 | T19 = T17 - T18; |
328 | 0 | T1h = T18 + T17; |
329 | 0 | R1[WS(rs, 8)] = T19 - T1g; |
330 | 0 | R1[WS(rs, 4)] = T1h + T1i; |
331 | 0 | R1[WS(rs, 6)] = T19 + T1g; |
332 | 0 | R1[0] = T1h - T1i; |
333 | 0 | } |
334 | 0 | { |
335 | 0 | E T1o, T1q, T1l, T1p, T1j, T1k; |
336 | 0 | T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m); |
337 | 0 | T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n); |
338 | 0 | T1j = FNMS(KP500000000, TE, Tt); |
339 | 0 | T1k = KP1_118033988 * (Ty - TD); |
340 | 0 | T1l = T1j - T1k; |
341 | 0 | T1p = T1k + T1j; |
342 | 0 | R1[WS(rs, 3)] = T1l - T1o; |
343 | 0 | R1[WS(rs, 9)] = T1p + T1q; |
344 | 0 | R1[WS(rs, 1)] = T1l + T1o; |
345 | 0 | R1[WS(rs, 5)] = T1p - T1q; |
346 | 0 | } |
347 | 0 | { |
348 | 0 | E T14, T16, T11, T15, TZ, T10; |
349 | 0 | T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12); |
350 | 0 | T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13); |
351 | 0 | TZ = FNMS(KP500000000, Tp, Tm); |
352 | 0 | T10 = KP1_118033988 * (Tn - To); |
353 | 0 | T11 = TZ - T10; |
354 | 0 | T15 = T10 + TZ; |
355 | 0 | R0[WS(rs, 6)] = T11 - T14; |
356 | 0 | R0[WS(rs, 2)] = T15 + T16; |
357 | 0 | R0[WS(rs, 4)] = T11 + T14; |
358 | 0 | R0[WS(rs, 8)] = T15 - T16; |
359 | 0 | } |
360 | 0 | } |
361 | 0 | } |
362 | 0 | } |
363 | | |
364 | | static const kr2c_desc desc = { 20, "r2cb_20", { 70, 14, 16, 0 }, &GENUS }; |
365 | | |
366 | 1 | void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc); |
367 | 1 | } |
368 | | |
369 | | #endif |