Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2cb/r2cb_20.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:54:00 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 86 FP additions, 44 FP multiplications,
32
 * (or, 42 additions, 0 multiplications, 44 fused multiply/add),
33
 * 50 stack variables, 5 constants, and 40 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
40
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
41
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44
     {
45
    INT i;
46
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
47
         E T5, TD, Tl, Tr, TO, T1l, T1d, T10, T1k, TT, T11, T1a, Tc, Tj, Tk;
48
         E Tw, TB, TC, Tm, Tn, To, TE, TF, TG;
49
         {
50
        E T4, Tq, T3, Tp, T1, T2;
51
        T4 = Cr[WS(csr, 5)];
52
        Tq = Ci[WS(csi, 5)];
53
        T1 = Cr[0];
54
        T2 = Cr[WS(csr, 10)];
55
        T3 = T1 + T2;
56
        Tp = T1 - T2;
57
        T5 = FNMS(KP2_000000000, T4, T3);
58
        TD = FNMS(KP2_000000000, Tq, Tp);
59
        Tl = FMA(KP2_000000000, T4, T3);
60
        Tr = FMA(KP2_000000000, Tq, Tp);
61
         }
62
         {
63
        E T8, Ts, TR, T19, Tb, T18, Tv, TS, Tf, Tx, TM, T1c, Ti, T1b, TA;
64
        E TN;
65
        {
66
       E T6, T7, TP, TQ;
67
       T6 = Cr[WS(csr, 4)];
68
       T7 = Cr[WS(csr, 6)];
69
       T8 = T6 + T7;
70
       Ts = T6 - T7;
71
       TP = Ci[WS(csi, 4)];
72
       TQ = Ci[WS(csi, 6)];
73
       TR = TP - TQ;
74
       T19 = TP + TQ;
75
        }
76
        {
77
       E T9, Ta, Tt, Tu;
78
       T9 = Cr[WS(csr, 9)];
79
       Ta = Cr[WS(csr, 1)];
80
       Tb = T9 + Ta;
81
       T18 = T9 - Ta;
82
       Tt = Ci[WS(csi, 9)];
83
       Tu = Ci[WS(csi, 1)];
84
       Tv = Tt + Tu;
85
       TS = Tt - Tu;
86
        }
87
        {
88
       E Td, Te, TK, TL;
89
       Td = Cr[WS(csr, 8)];
90
       Te = Cr[WS(csr, 2)];
91
       Tf = Td + Te;
92
       Tx = Td - Te;
93
       TK = Ci[WS(csi, 8)];
94
       TL = Ci[WS(csi, 2)];
95
       TM = TK - TL;
96
       T1c = TK + TL;
97
        }
98
        {
99
       E Tg, Th, Ty, Tz;
100
       Tg = Cr[WS(csr, 7)];
101
       Th = Cr[WS(csr, 3)];
102
       Ti = Tg + Th;
103
       T1b = Tg - Th;
104
       Ty = Ci[WS(csi, 7)];
105
       Tz = Ci[WS(csi, 3)];
106
       TA = Ty + Tz;
107
       TN = Tz - Ty;
108
        }
109
        TO = TM - TN;
110
        T1l = T19 - T18;
111
        T1d = T1b + T1c;
112
        T10 = TS + TR;
113
        T1k = T1c - T1b;
114
        TT = TR - TS;
115
        T11 = TN + TM;
116
        T1a = T18 + T19;
117
        Tc = T8 - Tb;
118
        Tj = Tf - Ti;
119
        Tk = Tc + Tj;
120
        Tw = Ts + Tv;
121
        TB = Tx - TA;
122
        TC = Tw + TB;
123
        Tm = T8 + Tb;
124
        Tn = Tf + Ti;
125
        To = Tm + Tn;
126
        TE = Ts - Tv;
127
        TF = Tx + TA;
128
        TG = TE + TF;
129
         }
130
         R0[WS(rs, 5)] = FMA(KP2_000000000, Tk, T5);
131
         R1[WS(rs, 7)] = FMA(KP2_000000000, TC, Tr);
132
         R1[WS(rs, 2)] = FMA(KP2_000000000, TG, TD);
133
         R0[0] = FMA(KP2_000000000, To, Tl);
134
         {
135
        E TU, TW, TJ, TV, TH, TI;
136
        TU = FNMS(KP618033988, TT, TO);
137
        TW = FMA(KP618033988, TO, TT);
138
        TH = FNMS(KP500000000, Tk, T5);
139
        TI = Tc - Tj;
140
        TJ = FNMS(KP1_118033988, TI, TH);
141
        TV = FMA(KP1_118033988, TI, TH);
142
        R0[WS(rs, 9)] = FNMS(KP1_902113032, TU, TJ);
143
        R0[WS(rs, 7)] = FMA(KP1_902113032, TW, TV);
144
        R0[WS(rs, 1)] = FMA(KP1_902113032, TU, TJ);
145
        R0[WS(rs, 3)] = FNMS(KP1_902113032, TW, TV);
146
         }
147
         {
148
        E T1e, T1g, T17, T1f, T15, T16;
149
        T1e = FMA(KP618033988, T1d, T1a);
150
        T1g = FNMS(KP618033988, T1a, T1d);
151
        T15 = FNMS(KP500000000, TG, TD);
152
        T16 = TE - TF;
153
        T17 = FMA(KP1_118033988, T16, T15);
154
        T1f = FNMS(KP1_118033988, T16, T15);
155
        R1[0] = FNMS(KP1_902113032, T1e, T17);
156
        R1[WS(rs, 8)] = FMA(KP1_902113032, T1g, T1f);
157
        R1[WS(rs, 4)] = FMA(KP1_902113032, T1e, T17);
158
        R1[WS(rs, 6)] = FNMS(KP1_902113032, T1g, T1f);
159
         }
160
         {
161
        E T1m, T1o, T1j, T1n, T1h, T1i;
162
        T1m = FNMS(KP618033988, T1l, T1k);
163
        T1o = FMA(KP618033988, T1k, T1l);
164
        T1h = FNMS(KP500000000, TC, Tr);
165
        T1i = Tw - TB;
166
        T1j = FNMS(KP1_118033988, T1i, T1h);
167
        T1n = FMA(KP1_118033988, T1i, T1h);
168
        R1[WS(rs, 1)] = FNMS(KP1_902113032, T1m, T1j);
169
        R1[WS(rs, 9)] = FMA(KP1_902113032, T1o, T1n);
170
        R1[WS(rs, 3)] = FMA(KP1_902113032, T1m, T1j);
171
        R1[WS(rs, 5)] = FNMS(KP1_902113032, T1o, T1n);
172
         }
173
         {
174
        E T12, T14, TZ, T13, TX, TY;
175
        T12 = FMA(KP618033988, T11, T10);
176
        T14 = FNMS(KP618033988, T10, T11);
177
        TX = FNMS(KP500000000, To, Tl);
178
        TY = Tm - Tn;
179
        TZ = FMA(KP1_118033988, TY, TX);
180
        T13 = FNMS(KP1_118033988, TY, TX);
181
        R0[WS(rs, 8)] = FNMS(KP1_902113032, T12, TZ);
182
        R0[WS(rs, 6)] = FMA(KP1_902113032, T14, T13);
183
        R0[WS(rs, 2)] = FMA(KP1_902113032, T12, TZ);
184
        R0[WS(rs, 4)] = FNMS(KP1_902113032, T14, T13);
185
         }
186
    }
187
     }
188
}
189
190
static const kr2c_desc desc = { 20, "r2cb_20", { 42, 0, 44, 0 }, &GENUS };
191
192
void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc);
193
}
194
195
#else
196
197
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -name r2cb_20 -include rdft/scalar/r2cb.h */
198
199
/*
200
 * This function contains 86 FP additions, 30 FP multiplications,
201
 * (or, 70 additions, 14 multiplications, 16 fused multiply/add),
202
 * 50 stack variables, 5 constants, and 40 memory accesses
203
 */
204
#include "rdft/scalar/r2cb.h"
205
206
static void r2cb_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
207
0
{
208
0
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
209
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
210
0
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
211
0
     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
212
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
213
0
     {
214
0
    INT i;
215
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
216
0
         E T6, TF, Tm, Tt, TQ, T1n, T1f, T12, T1m, TV, T13, T1c, Td, Tk, Tl;
217
0
         E Ty, TD, TE, Tn, To, Tp, TG, TH, TI;
218
0
         {
219
0
        E T5, Ts, T3, Tq;
220
0
        {
221
0
       E T4, Tr, T1, T2;
222
0
       T4 = Cr[WS(csr, 5)];
223
0
       T5 = KP2_000000000 * T4;
224
0
       Tr = Ci[WS(csi, 5)];
225
0
       Ts = KP2_000000000 * Tr;
226
0
       T1 = Cr[0];
227
0
       T2 = Cr[WS(csr, 10)];
228
0
       T3 = T1 + T2;
229
0
       Tq = T1 - T2;
230
0
        }
231
0
        T6 = T3 - T5;
232
0
        TF = Tq - Ts;
233
0
        Tm = T3 + T5;
234
0
        Tt = Tq + Ts;
235
0
         }
236
0
         {
237
0
        E T9, Tu, TO, T1b, Tc, T1a, Tx, TP, Tg, Tz, TT, T1e, Tj, T1d, TC;
238
0
        E TU;
239
0
        {
240
0
       E T7, T8, TM, TN;
241
0
       T7 = Cr[WS(csr, 4)];
242
0
       T8 = Cr[WS(csr, 6)];
243
0
       T9 = T7 + T8;
244
0
       Tu = T7 - T8;
245
0
       TM = Ci[WS(csi, 4)];
246
0
       TN = Ci[WS(csi, 6)];
247
0
       TO = TM - TN;
248
0
       T1b = TM + TN;
249
0
        }
250
0
        {
251
0
       E Ta, Tb, Tv, Tw;
252
0
       Ta = Cr[WS(csr, 9)];
253
0
       Tb = Cr[WS(csr, 1)];
254
0
       Tc = Ta + Tb;
255
0
       T1a = Ta - Tb;
256
0
       Tv = Ci[WS(csi, 9)];
257
0
       Tw = Ci[WS(csi, 1)];
258
0
       Tx = Tv + Tw;
259
0
       TP = Tv - Tw;
260
0
        }
261
0
        {
262
0
       E Te, Tf, TR, TS;
263
0
       Te = Cr[WS(csr, 8)];
264
0
       Tf = Cr[WS(csr, 2)];
265
0
       Tg = Te + Tf;
266
0
       Tz = Te - Tf;
267
0
       TR = Ci[WS(csi, 8)];
268
0
       TS = Ci[WS(csi, 2)];
269
0
       TT = TR - TS;
270
0
       T1e = TR + TS;
271
0
        }
272
0
        {
273
0
       E Th, Ti, TA, TB;
274
0
       Th = Cr[WS(csr, 7)];
275
0
       Ti = Cr[WS(csr, 3)];
276
0
       Tj = Th + Ti;
277
0
       T1d = Th - Ti;
278
0
       TA = Ci[WS(csi, 7)];
279
0
       TB = Ci[WS(csi, 3)];
280
0
       TC = TA + TB;
281
0
       TU = TB - TA;
282
0
        }
283
0
        TQ = TO - TP;
284
0
        T1n = T1e - T1d;
285
0
        T1f = T1d + T1e;
286
0
        T12 = TP + TO;
287
0
        T1m = T1b - T1a;
288
0
        TV = TT - TU;
289
0
        T13 = TU + TT;
290
0
        T1c = T1a + T1b;
291
0
        Td = T9 - Tc;
292
0
        Tk = Tg - Tj;
293
0
        Tl = Td + Tk;
294
0
        Ty = Tu + Tx;
295
0
        TD = Tz - TC;
296
0
        TE = Ty + TD;
297
0
        Tn = T9 + Tc;
298
0
        To = Tg + Tj;
299
0
        Tp = Tn + To;
300
0
        TG = Tu - Tx;
301
0
        TH = Tz + TC;
302
0
        TI = TG + TH;
303
0
         }
304
0
         R0[WS(rs, 5)] = FMA(KP2_000000000, Tl, T6);
305
0
         R1[WS(rs, 7)] = FMA(KP2_000000000, TE, Tt);
306
0
         R1[WS(rs, 2)] = FMA(KP2_000000000, TI, TF);
307
0
         R0[0] = FMA(KP2_000000000, Tp, Tm);
308
0
         {
309
0
        E TW, TY, TL, TX, TJ, TK;
310
0
        TW = FNMS(KP1_902113032, TV, KP1_175570504 * TQ);
311
0
        TY = FMA(KP1_902113032, TQ, KP1_175570504 * TV);
312
0
        TJ = FNMS(KP500000000, Tl, T6);
313
0
        TK = KP1_118033988 * (Td - Tk);
314
0
        TL = TJ - TK;
315
0
        TX = TK + TJ;
316
0
        R0[WS(rs, 1)] = TL - TW;
317
0
        R0[WS(rs, 7)] = TX + TY;
318
0
        R0[WS(rs, 9)] = TL + TW;
319
0
        R0[WS(rs, 3)] = TX - TY;
320
0
         }
321
0
         {
322
0
        E T1g, T1i, T19, T1h, T17, T18;
323
0
        T1g = FNMS(KP1_902113032, T1f, KP1_175570504 * T1c);
324
0
        T1i = FMA(KP1_902113032, T1c, KP1_175570504 * T1f);
325
0
        T17 = FNMS(KP500000000, TI, TF);
326
0
        T18 = KP1_118033988 * (TG - TH);
327
0
        T19 = T17 - T18;
328
0
        T1h = T18 + T17;
329
0
        R1[WS(rs, 8)] = T19 - T1g;
330
0
        R1[WS(rs, 4)] = T1h + T1i;
331
0
        R1[WS(rs, 6)] = T19 + T1g;
332
0
        R1[0] = T1h - T1i;
333
0
         }
334
0
         {
335
0
        E T1o, T1q, T1l, T1p, T1j, T1k;
336
0
        T1o = FNMS(KP1_902113032, T1n, KP1_175570504 * T1m);
337
0
        T1q = FMA(KP1_902113032, T1m, KP1_175570504 * T1n);
338
0
        T1j = FNMS(KP500000000, TE, Tt);
339
0
        T1k = KP1_118033988 * (Ty - TD);
340
0
        T1l = T1j - T1k;
341
0
        T1p = T1k + T1j;
342
0
        R1[WS(rs, 3)] = T1l - T1o;
343
0
        R1[WS(rs, 9)] = T1p + T1q;
344
0
        R1[WS(rs, 1)] = T1l + T1o;
345
0
        R1[WS(rs, 5)] = T1p - T1q;
346
0
         }
347
0
         {
348
0
        E T14, T16, T11, T15, TZ, T10;
349
0
        T14 = FNMS(KP1_902113032, T13, KP1_175570504 * T12);
350
0
        T16 = FMA(KP1_902113032, T12, KP1_175570504 * T13);
351
0
        TZ = FNMS(KP500000000, Tp, Tm);
352
0
        T10 = KP1_118033988 * (Tn - To);
353
0
        T11 = TZ - T10;
354
0
        T15 = T10 + TZ;
355
0
        R0[WS(rs, 6)] = T11 - T14;
356
0
        R0[WS(rs, 2)] = T15 + T16;
357
0
        R0[WS(rs, 4)] = T11 + T14;
358
0
        R0[WS(rs, 8)] = T15 - T16;
359
0
         }
360
0
    }
361
0
     }
362
0
}
363
364
static const kr2c_desc desc = { 20, "r2cb_20", { 70, 14, 16, 0 }, &GENUS };
365
366
1
void X(codelet_r2cb_20) (planner *p) { X(kr2c_register) (p, r2cb_20, &desc);
367
1
}
368
369
#endif