/src/fftw3/rdft/scalar/r2cf/hc2cf_12.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:53:40 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cf_12 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 118 FP additions, 68 FP multiplications, |
32 | | * (or, 72 additions, 22 multiplications, 46 fused multiply/add), |
33 | | * 47 stack variables, 2 constants, and 48 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cf_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { |
44 | | E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2s, T1s, T2f, T1d, T21, T1H; |
45 | | E T1Z, Te, T2p, T1l, T2h, TT, T1V, T1A, T1T; |
46 | | T1 = Rp[0]; |
47 | | T2i = Rm[0]; |
48 | | { |
49 | | E Th, Tk, Ti, T2d, Tg, Tj; |
50 | | Th = Rp[WS(rs, 3)]; |
51 | | Tk = Rm[WS(rs, 3)]; |
52 | | Tg = W[10]; |
53 | | Ti = Tg * Th; |
54 | | T2d = Tg * Tk; |
55 | | Tj = W[11]; |
56 | | Tl = FMA(Tj, Tk, Ti); |
57 | | T2e = FNMS(Tj, Th, T2d); |
58 | | } |
59 | | { |
60 | | E TW, TZ, TX, T1X, TV, TY; |
61 | | TW = Ip[WS(rs, 4)]; |
62 | | TZ = Im[WS(rs, 4)]; |
63 | | TV = W[16]; |
64 | | TX = TV * TW; |
65 | | T1X = TV * TZ; |
66 | | TY = W[17]; |
67 | | T10 = FMA(TY, TZ, TX); |
68 | | T1Y = FNMS(TY, TW, T1X); |
69 | | } |
70 | | { |
71 | | E TC, TF, TD, T1R, TB, TE; |
72 | | TC = Ip[WS(rs, 1)]; |
73 | | TF = Im[WS(rs, 1)]; |
74 | | TB = W[4]; |
75 | | TD = TB * TC; |
76 | | T1R = TB * TF; |
77 | | TE = W[5]; |
78 | | TG = FMA(TE, TF, TD); |
79 | | T1S = FNMS(TE, TC, T1R); |
80 | | } |
81 | | { |
82 | | E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts; |
83 | | Tn = Rp[WS(rs, 5)]; |
84 | | Tq = Rm[WS(rs, 5)]; |
85 | | Tm = W[18]; |
86 | | To = Tm * Tn; |
87 | | T1o = Tm * Tq; |
88 | | Tt = Rp[WS(rs, 1)]; |
89 | | Tw = Rm[WS(rs, 1)]; |
90 | | Ts = W[2]; |
91 | | Tu = Ts * Tt; |
92 | | T1q = Ts * Tw; |
93 | | { |
94 | | E Tr, T1p, Tx, T1r, Tp, Tv; |
95 | | Tp = W[19]; |
96 | | Tr = FMA(Tp, Tq, To); |
97 | | T1p = FNMS(Tp, Tn, T1o); |
98 | | Tv = W[3]; |
99 | | Tx = FMA(Tv, Tw, Tu); |
100 | | T1r = FNMS(Tv, Tt, T1q); |
101 | | Ty = Tr + Tx; |
102 | | T2s = Tx - Tr; |
103 | | T1s = T1p - T1r; |
104 | | T2f = T1p + T1r; |
105 | | } |
106 | | } |
107 | | { |
108 | | E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17; |
109 | | T12 = Ip[0]; |
110 | | T15 = Im[0]; |
111 | | T11 = W[0]; |
112 | | T13 = T11 * T12; |
113 | | T1D = T11 * T15; |
114 | | T18 = Ip[WS(rs, 2)]; |
115 | | T1b = Im[WS(rs, 2)]; |
116 | | T17 = W[8]; |
117 | | T19 = T17 * T18; |
118 | | T1F = T17 * T1b; |
119 | | { |
120 | | E T16, T1E, T1c, T1G, T14, T1a; |
121 | | T14 = W[1]; |
122 | | T16 = FMA(T14, T15, T13); |
123 | | T1E = FNMS(T14, T12, T1D); |
124 | | T1a = W[9]; |
125 | | T1c = FMA(T1a, T1b, T19); |
126 | | T1G = FNMS(T1a, T18, T1F); |
127 | | T1d = T16 + T1c; |
128 | | T21 = T1c - T16; |
129 | | T1H = T1E - T1G; |
130 | | T1Z = T1E + T1G; |
131 | | } |
132 | | } |
133 | | { |
134 | | E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8; |
135 | | T3 = Rp[WS(rs, 2)]; |
136 | | T6 = Rm[WS(rs, 2)]; |
137 | | T2 = W[6]; |
138 | | T4 = T2 * T3; |
139 | | T1h = T2 * T6; |
140 | | T9 = Rp[WS(rs, 4)]; |
141 | | Tc = Rm[WS(rs, 4)]; |
142 | | T8 = W[14]; |
143 | | Ta = T8 * T9; |
144 | | T1j = T8 * Tc; |
145 | | { |
146 | | E T7, T1i, Td, T1k, T5, Tb; |
147 | | T5 = W[7]; |
148 | | T7 = FMA(T5, T6, T4); |
149 | | T1i = FNMS(T5, T3, T1h); |
150 | | Tb = W[15]; |
151 | | Td = FMA(Tb, Tc, Ta); |
152 | | T1k = FNMS(Tb, T9, T1j); |
153 | | Te = T7 + Td; |
154 | | T2p = Td - T7; |
155 | | T1l = T1i - T1k; |
156 | | T2h = T1i + T1k; |
157 | | } |
158 | | } |
159 | | { |
160 | | E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN; |
161 | | TI = Ip[WS(rs, 3)]; |
162 | | TL = Im[WS(rs, 3)]; |
163 | | TH = W[12]; |
164 | | TJ = TH * TI; |
165 | | T1w = TH * TL; |
166 | | TO = Ip[WS(rs, 5)]; |
167 | | TR = Im[WS(rs, 5)]; |
168 | | TN = W[20]; |
169 | | TP = TN * TO; |
170 | | T1y = TN * TR; |
171 | | { |
172 | | E TM, T1x, TS, T1z, TK, TQ; |
173 | | TK = W[13]; |
174 | | TM = FMA(TK, TL, TJ); |
175 | | T1x = FNMS(TK, TI, T1w); |
176 | | TQ = W[21]; |
177 | | TS = FMA(TQ, TR, TP); |
178 | | T1z = FNMS(TQ, TO, T1y); |
179 | | TT = TM + TS; |
180 | | T1V = TS - TM; |
181 | | T1A = T1x - T1z; |
182 | | T1T = T1x + T1z; |
183 | | } |
184 | | } |
185 | | { |
186 | | E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c; |
187 | | { |
188 | | E Tf, Tz, T2g, T2j; |
189 | | Tf = T1 + Te; |
190 | | Tz = Tl + Ty; |
191 | | TA = Tf + Tz; |
192 | | T28 = Tf - Tz; |
193 | | T2g = T2e + T2f; |
194 | | T2j = T2h + T2i; |
195 | | T2k = T2g + T2j; |
196 | | T2m = T2j - T2g; |
197 | | } |
198 | | { |
199 | | E TU, T1e, T29, T2a; |
200 | | TU = TG + TT; |
201 | | T1e = T10 + T1d; |
202 | | T1f = TU + T1e; |
203 | | T2l = TU - T1e; |
204 | | T29 = T1S + T1T; |
205 | | T2a = T1Y + T1Z; |
206 | | T2b = T29 - T2a; |
207 | | T2c = T29 + T2a; |
208 | | } |
209 | | Rm[WS(rs, 5)] = TA - T1f; |
210 | | Im[WS(rs, 5)] = T2c - T2k; |
211 | | Rp[0] = TA + T1f; |
212 | | Ip[0] = T2c + T2k; |
213 | | Rp[WS(rs, 3)] = T28 - T2b; |
214 | | Ip[WS(rs, 3)] = T2l + T2m; |
215 | | Rm[WS(rs, 2)] = T28 + T2b; |
216 | | Im[WS(rs, 2)] = T2l - T2m; |
217 | | } |
218 | | { |
219 | | E T1m, T1K, T2q, T2z, T2t, T2y, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I; |
220 | | E T1O; |
221 | | { |
222 | | E T1g, T2o, T2r, T1n; |
223 | | T1g = FNMS(KP500000000, Te, T1); |
224 | | T1m = FNMS(KP866025403, T1l, T1g); |
225 | | T1K = FMA(KP866025403, T1l, T1g); |
226 | | T2o = FNMS(KP500000000, T2h, T2i); |
227 | | T2q = FMA(KP866025403, T2p, T2o); |
228 | | T2z = FNMS(KP866025403, T2p, T2o); |
229 | | T2r = FNMS(KP500000000, T2f, T2e); |
230 | | T2t = FMA(KP866025403, T2s, T2r); |
231 | | T2y = FNMS(KP866025403, T2s, T2r); |
232 | | T1n = FNMS(KP500000000, Ty, Tl); |
233 | | T1t = FNMS(KP866025403, T1s, T1n); |
234 | | T1L = FMA(KP866025403, T1s, T1n); |
235 | | } |
236 | | { |
237 | | E T1v, T1U, T20, T1C; |
238 | | T1v = FNMS(KP500000000, TT, TG); |
239 | | T1B = FNMS(KP866025403, T1A, T1v); |
240 | | T1N = FMA(KP866025403, T1A, T1v); |
241 | | T1U = FNMS(KP500000000, T1T, T1S); |
242 | | T1W = FNMS(KP866025403, T1V, T1U); |
243 | | T25 = FMA(KP866025403, T1V, T1U); |
244 | | T20 = FNMS(KP500000000, T1Z, T1Y); |
245 | | T22 = FNMS(KP866025403, T21, T20); |
246 | | T26 = FMA(KP866025403, T21, T20); |
247 | | T1C = FNMS(KP500000000, T1d, T10); |
248 | | T1I = FNMS(KP866025403, T1H, T1C); |
249 | | T1O = FMA(KP866025403, T1H, T1C); |
250 | | } |
251 | | { |
252 | | E T1u, T1J, T2x, T2A; |
253 | | T1u = T1m + T1t; |
254 | | T1J = T1B + T1I; |
255 | | Rp[WS(rs, 2)] = T1u - T1J; |
256 | | Rm[WS(rs, 3)] = T1u + T1J; |
257 | | T2x = T1W + T22; |
258 | | T2A = T2y + T2z; |
259 | | Im[WS(rs, 3)] = -(T2x + T2A); |
260 | | Ip[WS(rs, 2)] = T2A - T2x; |
261 | | } |
262 | | { |
263 | | E T1M, T1P, T2v, T2w; |
264 | | T1M = T1K + T1L; |
265 | | T1P = T1N + T1O; |
266 | | Rm[WS(rs, 1)] = T1M - T1P; |
267 | | Rp[WS(rs, 4)] = T1M + T1P; |
268 | | T2v = T25 + T26; |
269 | | T2w = T2t + T2q; |
270 | | Im[WS(rs, 1)] = T2v - T2w; |
271 | | Ip[WS(rs, 4)] = T2v + T2w; |
272 | | } |
273 | | { |
274 | | E T1Q, T23, T2B, T2C; |
275 | | T1Q = T1m - T1t; |
276 | | T23 = T1W - T22; |
277 | | Rm[0] = T1Q - T23; |
278 | | Rp[WS(rs, 5)] = T1Q + T23; |
279 | | T2B = T1I - T1B; |
280 | | T2C = T2z - T2y; |
281 | | Im[0] = T2B - T2C; |
282 | | Ip[WS(rs, 5)] = T2B + T2C; |
283 | | } |
284 | | { |
285 | | E T24, T27, T2n, T2u; |
286 | | T24 = T1K - T1L; |
287 | | T27 = T25 - T26; |
288 | | Rm[WS(rs, 4)] = T24 - T27; |
289 | | Rp[WS(rs, 1)] = T24 + T27; |
290 | | T2n = T1O - T1N; |
291 | | T2u = T2q - T2t; |
292 | | Im[WS(rs, 4)] = T2n - T2u; |
293 | | Ip[WS(rs, 1)] = T2n + T2u; |
294 | | } |
295 | | } |
296 | | } |
297 | | } |
298 | | } |
299 | | |
300 | | static const tw_instr twinstr[] = { |
301 | | { TW_FULL, 1, 12 }, |
302 | | { TW_NEXT, 1, 0 } |
303 | | }; |
304 | | |
305 | | static const hc2c_desc desc = { 12, "hc2cf_12", twinstr, &GENUS, { 72, 22, 46, 0 } }; |
306 | | |
307 | | void X(codelet_hc2cf_12) (planner *p) { |
308 | | X(khc2c_register) (p, hc2cf_12, &desc, HC2C_VIA_RDFT); |
309 | | } |
310 | | #else |
311 | | |
312 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cf_12 -include rdft/scalar/hc2cf.h */ |
313 | | |
314 | | /* |
315 | | * This function contains 118 FP additions, 60 FP multiplications, |
316 | | * (or, 88 additions, 30 multiplications, 30 fused multiply/add), |
317 | | * 47 stack variables, 2 constants, and 48 memory accesses |
318 | | */ |
319 | | #include "rdft/scalar/hc2cf.h" |
320 | | |
321 | | static void hc2cf_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
322 | 0 | { |
323 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
324 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
325 | 0 | { |
326 | 0 | INT m; |
327 | 0 | for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) { |
328 | 0 | E T1, T1W, T18, T22, Tc, T15, T1V, T23, TR, T1E, T1o, T1D, T12, T1l, T1F; |
329 | 0 | E T1G, Ti, T1S, T1d, T25, Tt, T1a, T1T, T26, TA, T1y, T1j, T1B, TL, T1g; |
330 | 0 | E T1z, T1A; |
331 | 0 | { |
332 | 0 | E T6, T16, Tb, T17; |
333 | 0 | T1 = Rp[0]; |
334 | 0 | T1W = Rm[0]; |
335 | 0 | { |
336 | 0 | E T3, T5, T2, T4; |
337 | 0 | T3 = Rp[WS(rs, 2)]; |
338 | 0 | T5 = Rm[WS(rs, 2)]; |
339 | 0 | T2 = W[6]; |
340 | 0 | T4 = W[7]; |
341 | 0 | T6 = FMA(T2, T3, T4 * T5); |
342 | 0 | T16 = FNMS(T4, T3, T2 * T5); |
343 | 0 | } |
344 | 0 | { |
345 | 0 | E T8, Ta, T7, T9; |
346 | 0 | T8 = Rp[WS(rs, 4)]; |
347 | 0 | Ta = Rm[WS(rs, 4)]; |
348 | 0 | T7 = W[14]; |
349 | 0 | T9 = W[15]; |
350 | 0 | Tb = FMA(T7, T8, T9 * Ta); |
351 | 0 | T17 = FNMS(T9, T8, T7 * Ta); |
352 | 0 | } |
353 | 0 | T18 = KP866025403 * (T16 - T17); |
354 | 0 | T22 = KP866025403 * (Tb - T6); |
355 | 0 | Tc = T6 + Tb; |
356 | 0 | T15 = FNMS(KP500000000, Tc, T1); |
357 | 0 | T1V = T16 + T17; |
358 | 0 | T23 = FNMS(KP500000000, T1V, T1W); |
359 | 0 | } |
360 | 0 | { |
361 | 0 | E T11, T1n, TW, T1m; |
362 | 0 | { |
363 | 0 | E TO, TQ, TN, TP; |
364 | 0 | TO = Ip[WS(rs, 4)]; |
365 | 0 | TQ = Im[WS(rs, 4)]; |
366 | 0 | TN = W[16]; |
367 | 0 | TP = W[17]; |
368 | 0 | TR = FMA(TN, TO, TP * TQ); |
369 | 0 | T1E = FNMS(TP, TO, TN * TQ); |
370 | 0 | } |
371 | 0 | { |
372 | 0 | E TY, T10, TX, TZ; |
373 | 0 | TY = Ip[WS(rs, 2)]; |
374 | 0 | T10 = Im[WS(rs, 2)]; |
375 | 0 | TX = W[8]; |
376 | 0 | TZ = W[9]; |
377 | 0 | T11 = FMA(TX, TY, TZ * T10); |
378 | 0 | T1n = FNMS(TZ, TY, TX * T10); |
379 | 0 | } |
380 | 0 | { |
381 | 0 | E TT, TV, TS, TU; |
382 | 0 | TT = Ip[0]; |
383 | 0 | TV = Im[0]; |
384 | 0 | TS = W[0]; |
385 | 0 | TU = W[1]; |
386 | 0 | TW = FMA(TS, TT, TU * TV); |
387 | 0 | T1m = FNMS(TU, TT, TS * TV); |
388 | 0 | } |
389 | 0 | T1o = KP866025403 * (T1m - T1n); |
390 | 0 | T1D = KP866025403 * (T11 - TW); |
391 | 0 | T12 = TW + T11; |
392 | 0 | T1l = FNMS(KP500000000, T12, TR); |
393 | 0 | T1F = T1m + T1n; |
394 | 0 | T1G = FNMS(KP500000000, T1F, T1E); |
395 | 0 | } |
396 | 0 | { |
397 | 0 | E Ts, T1c, Tn, T1b; |
398 | 0 | { |
399 | 0 | E Tf, Th, Te, Tg; |
400 | 0 | Tf = Rp[WS(rs, 3)]; |
401 | 0 | Th = Rm[WS(rs, 3)]; |
402 | 0 | Te = W[10]; |
403 | 0 | Tg = W[11]; |
404 | 0 | Ti = FMA(Te, Tf, Tg * Th); |
405 | 0 | T1S = FNMS(Tg, Tf, Te * Th); |
406 | 0 | } |
407 | 0 | { |
408 | 0 | E Tp, Tr, To, Tq; |
409 | 0 | Tp = Rp[WS(rs, 1)]; |
410 | 0 | Tr = Rm[WS(rs, 1)]; |
411 | 0 | To = W[2]; |
412 | 0 | Tq = W[3]; |
413 | 0 | Ts = FMA(To, Tp, Tq * Tr); |
414 | 0 | T1c = FNMS(Tq, Tp, To * Tr); |
415 | 0 | } |
416 | 0 | { |
417 | 0 | E Tk, Tm, Tj, Tl; |
418 | 0 | Tk = Rp[WS(rs, 5)]; |
419 | 0 | Tm = Rm[WS(rs, 5)]; |
420 | 0 | Tj = W[18]; |
421 | 0 | Tl = W[19]; |
422 | 0 | Tn = FMA(Tj, Tk, Tl * Tm); |
423 | 0 | T1b = FNMS(Tl, Tk, Tj * Tm); |
424 | 0 | } |
425 | 0 | T1d = KP866025403 * (T1b - T1c); |
426 | 0 | T25 = KP866025403 * (Ts - Tn); |
427 | 0 | Tt = Tn + Ts; |
428 | 0 | T1a = FNMS(KP500000000, Tt, Ti); |
429 | 0 | T1T = T1b + T1c; |
430 | 0 | T26 = FNMS(KP500000000, T1T, T1S); |
431 | 0 | } |
432 | 0 | { |
433 | 0 | E TK, T1i, TF, T1h; |
434 | 0 | { |
435 | 0 | E Tx, Tz, Tw, Ty; |
436 | 0 | Tx = Ip[WS(rs, 1)]; |
437 | 0 | Tz = Im[WS(rs, 1)]; |
438 | 0 | Tw = W[4]; |
439 | 0 | Ty = W[5]; |
440 | 0 | TA = FMA(Tw, Tx, Ty * Tz); |
441 | 0 | T1y = FNMS(Ty, Tx, Tw * Tz); |
442 | 0 | } |
443 | 0 | { |
444 | 0 | E TH, TJ, TG, TI; |
445 | 0 | TH = Ip[WS(rs, 5)]; |
446 | 0 | TJ = Im[WS(rs, 5)]; |
447 | 0 | TG = W[20]; |
448 | 0 | TI = W[21]; |
449 | 0 | TK = FMA(TG, TH, TI * TJ); |
450 | 0 | T1i = FNMS(TI, TH, TG * TJ); |
451 | 0 | } |
452 | 0 | { |
453 | 0 | E TC, TE, TB, TD; |
454 | 0 | TC = Ip[WS(rs, 3)]; |
455 | 0 | TE = Im[WS(rs, 3)]; |
456 | 0 | TB = W[12]; |
457 | 0 | TD = W[13]; |
458 | 0 | TF = FMA(TB, TC, TD * TE); |
459 | 0 | T1h = FNMS(TD, TC, TB * TE); |
460 | 0 | } |
461 | 0 | T1j = KP866025403 * (T1h - T1i); |
462 | 0 | T1B = KP866025403 * (TK - TF); |
463 | 0 | TL = TF + TK; |
464 | 0 | T1g = FNMS(KP500000000, TL, TA); |
465 | 0 | T1z = T1h + T1i; |
466 | 0 | T1A = FNMS(KP500000000, T1z, T1y); |
467 | 0 | } |
468 | 0 | { |
469 | 0 | E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R; |
470 | 0 | { |
471 | 0 | E Td, Tu, T1U, T1X; |
472 | 0 | Td = T1 + Tc; |
473 | 0 | Tu = Ti + Tt; |
474 | 0 | Tv = Td + Tu; |
475 | 0 | T1N = Td - Tu; |
476 | 0 | T1U = T1S + T1T; |
477 | 0 | T1X = T1V + T1W; |
478 | 0 | T1Y = T1U + T1X; |
479 | 0 | T20 = T1X - T1U; |
480 | 0 | } |
481 | 0 | { |
482 | 0 | E TM, T13, T1O, T1P; |
483 | 0 | TM = TA + TL; |
484 | 0 | T13 = TR + T12; |
485 | 0 | T14 = TM + T13; |
486 | 0 | T1Z = TM - T13; |
487 | 0 | T1O = T1y + T1z; |
488 | 0 | T1P = T1E + T1F; |
489 | 0 | T1Q = T1O - T1P; |
490 | 0 | T1R = T1O + T1P; |
491 | 0 | } |
492 | 0 | Rm[WS(rs, 5)] = Tv - T14; |
493 | 0 | Im[WS(rs, 5)] = T1R - T1Y; |
494 | 0 | Rp[0] = Tv + T14; |
495 | 0 | Ip[0] = T1R + T1Y; |
496 | 0 | Rp[WS(rs, 3)] = T1N - T1Q; |
497 | 0 | Ip[WS(rs, 3)] = T1Z + T20; |
498 | 0 | Rm[WS(rs, 2)] = T1N + T1Q; |
499 | 0 | Im[WS(rs, 2)] = T1Z - T20; |
500 | 0 | } |
501 | 0 | { |
502 | 0 | E T1t, T1J, T28, T2a, T1w, T21, T1M, T29; |
503 | 0 | { |
504 | 0 | E T1r, T1s, T24, T27; |
505 | 0 | T1r = T15 + T18; |
506 | 0 | T1s = T1a + T1d; |
507 | 0 | T1t = T1r + T1s; |
508 | 0 | T1J = T1r - T1s; |
509 | 0 | T24 = T22 + T23; |
510 | 0 | T27 = T25 + T26; |
511 | 0 | T28 = T24 - T27; |
512 | 0 | T2a = T27 + T24; |
513 | 0 | } |
514 | 0 | { |
515 | 0 | E T1u, T1v, T1K, T1L; |
516 | 0 | T1u = T1g + T1j; |
517 | 0 | T1v = T1l + T1o; |
518 | 0 | T1w = T1u + T1v; |
519 | 0 | T21 = T1v - T1u; |
520 | 0 | T1K = T1B + T1A; |
521 | 0 | T1L = T1D + T1G; |
522 | 0 | T1M = T1K - T1L; |
523 | 0 | T29 = T1K + T1L; |
524 | 0 | } |
525 | 0 | Rm[WS(rs, 1)] = T1t - T1w; |
526 | 0 | Im[WS(rs, 1)] = T29 - T2a; |
527 | 0 | Rp[WS(rs, 4)] = T1t + T1w; |
528 | 0 | Ip[WS(rs, 4)] = T29 + T2a; |
529 | 0 | Rm[WS(rs, 4)] = T1J - T1M; |
530 | 0 | Im[WS(rs, 4)] = T21 - T28; |
531 | 0 | Rp[WS(rs, 1)] = T1J + T1M; |
532 | 0 | Ip[WS(rs, 1)] = T21 + T28; |
533 | 0 | } |
534 | 0 | { |
535 | 0 | E T1f, T1x, T2e, T2g, T1q, T2f, T1I, T2b; |
536 | 0 | { |
537 | 0 | E T19, T1e, T2c, T2d; |
538 | 0 | T19 = T15 - T18; |
539 | 0 | T1e = T1a - T1d; |
540 | 0 | T1f = T19 + T1e; |
541 | 0 | T1x = T19 - T1e; |
542 | 0 | T2c = T26 - T25; |
543 | 0 | T2d = T23 - T22; |
544 | 0 | T2e = T2c + T2d; |
545 | 0 | T2g = T2d - T2c; |
546 | 0 | } |
547 | 0 | { |
548 | 0 | E T1k, T1p, T1C, T1H; |
549 | 0 | T1k = T1g - T1j; |
550 | 0 | T1p = T1l - T1o; |
551 | 0 | T1q = T1k + T1p; |
552 | 0 | T2f = T1p - T1k; |
553 | 0 | T1C = T1A - T1B; |
554 | 0 | T1H = T1D - T1G; |
555 | 0 | T1I = T1C + T1H; |
556 | 0 | T2b = T1H - T1C; |
557 | 0 | } |
558 | 0 | Rp[WS(rs, 2)] = T1f - T1q; |
559 | 0 | Ip[WS(rs, 2)] = T2b + T2e; |
560 | 0 | Rm[WS(rs, 3)] = T1f + T1q; |
561 | 0 | Im[WS(rs, 3)] = T2b - T2e; |
562 | 0 | Rm[0] = T1x - T1I; |
563 | 0 | Im[0] = T2f - T2g; |
564 | 0 | Rp[WS(rs, 5)] = T1x + T1I; |
565 | 0 | Ip[WS(rs, 5)] = T2f + T2g; |
566 | 0 | } |
567 | 0 | } |
568 | 0 | } |
569 | 0 | } |
570 | | |
571 | | static const tw_instr twinstr[] = { |
572 | | { TW_FULL, 1, 12 }, |
573 | | { TW_NEXT, 1, 0 } |
574 | | }; |
575 | | |
576 | | static const hc2c_desc desc = { 12, "hc2cf_12", twinstr, &GENUS, { 88, 30, 30, 0 } }; |
577 | | |
578 | 1 | void X(codelet_hc2cf_12) (planner *p) { |
579 | 1 | X(khc2c_register) (p, hc2cf_12, &desc, HC2C_VIA_RDFT); |
580 | 1 | } |
581 | | #endif |