Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2cf/hc2cf_12.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:53:40 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cf_12 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 118 FP additions, 68 FP multiplications,
32
 * (or, 72 additions, 22 multiplications, 46 fused multiply/add),
33
 * 47 stack variables, 2 constants, and 48 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cf_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
44
         E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2s, T1s, T2f, T1d, T21, T1H;
45
         E T1Z, Te, T2p, T1l, T2h, TT, T1V, T1A, T1T;
46
         T1 = Rp[0];
47
         T2i = Rm[0];
48
         {
49
        E Th, Tk, Ti, T2d, Tg, Tj;
50
        Th = Rp[WS(rs, 3)];
51
        Tk = Rm[WS(rs, 3)];
52
        Tg = W[10];
53
        Ti = Tg * Th;
54
        T2d = Tg * Tk;
55
        Tj = W[11];
56
        Tl = FMA(Tj, Tk, Ti);
57
        T2e = FNMS(Tj, Th, T2d);
58
         }
59
         {
60
        E TW, TZ, TX, T1X, TV, TY;
61
        TW = Ip[WS(rs, 4)];
62
        TZ = Im[WS(rs, 4)];
63
        TV = W[16];
64
        TX = TV * TW;
65
        T1X = TV * TZ;
66
        TY = W[17];
67
        T10 = FMA(TY, TZ, TX);
68
        T1Y = FNMS(TY, TW, T1X);
69
         }
70
         {
71
        E TC, TF, TD, T1R, TB, TE;
72
        TC = Ip[WS(rs, 1)];
73
        TF = Im[WS(rs, 1)];
74
        TB = W[4];
75
        TD = TB * TC;
76
        T1R = TB * TF;
77
        TE = W[5];
78
        TG = FMA(TE, TF, TD);
79
        T1S = FNMS(TE, TC, T1R);
80
         }
81
         {
82
        E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts;
83
        Tn = Rp[WS(rs, 5)];
84
        Tq = Rm[WS(rs, 5)];
85
        Tm = W[18];
86
        To = Tm * Tn;
87
        T1o = Tm * Tq;
88
        Tt = Rp[WS(rs, 1)];
89
        Tw = Rm[WS(rs, 1)];
90
        Ts = W[2];
91
        Tu = Ts * Tt;
92
        T1q = Ts * Tw;
93
        {
94
       E Tr, T1p, Tx, T1r, Tp, Tv;
95
       Tp = W[19];
96
       Tr = FMA(Tp, Tq, To);
97
       T1p = FNMS(Tp, Tn, T1o);
98
       Tv = W[3];
99
       Tx = FMA(Tv, Tw, Tu);
100
       T1r = FNMS(Tv, Tt, T1q);
101
       Ty = Tr + Tx;
102
       T2s = Tx - Tr;
103
       T1s = T1p - T1r;
104
       T2f = T1p + T1r;
105
        }
106
         }
107
         {
108
        E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17;
109
        T12 = Ip[0];
110
        T15 = Im[0];
111
        T11 = W[0];
112
        T13 = T11 * T12;
113
        T1D = T11 * T15;
114
        T18 = Ip[WS(rs, 2)];
115
        T1b = Im[WS(rs, 2)];
116
        T17 = W[8];
117
        T19 = T17 * T18;
118
        T1F = T17 * T1b;
119
        {
120
       E T16, T1E, T1c, T1G, T14, T1a;
121
       T14 = W[1];
122
       T16 = FMA(T14, T15, T13);
123
       T1E = FNMS(T14, T12, T1D);
124
       T1a = W[9];
125
       T1c = FMA(T1a, T1b, T19);
126
       T1G = FNMS(T1a, T18, T1F);
127
       T1d = T16 + T1c;
128
       T21 = T1c - T16;
129
       T1H = T1E - T1G;
130
       T1Z = T1E + T1G;
131
        }
132
         }
133
         {
134
        E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8;
135
        T3 = Rp[WS(rs, 2)];
136
        T6 = Rm[WS(rs, 2)];
137
        T2 = W[6];
138
        T4 = T2 * T3;
139
        T1h = T2 * T6;
140
        T9 = Rp[WS(rs, 4)];
141
        Tc = Rm[WS(rs, 4)];
142
        T8 = W[14];
143
        Ta = T8 * T9;
144
        T1j = T8 * Tc;
145
        {
146
       E T7, T1i, Td, T1k, T5, Tb;
147
       T5 = W[7];
148
       T7 = FMA(T5, T6, T4);
149
       T1i = FNMS(T5, T3, T1h);
150
       Tb = W[15];
151
       Td = FMA(Tb, Tc, Ta);
152
       T1k = FNMS(Tb, T9, T1j);
153
       Te = T7 + Td;
154
       T2p = Td - T7;
155
       T1l = T1i - T1k;
156
       T2h = T1i + T1k;
157
        }
158
         }
159
         {
160
        E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN;
161
        TI = Ip[WS(rs, 3)];
162
        TL = Im[WS(rs, 3)];
163
        TH = W[12];
164
        TJ = TH * TI;
165
        T1w = TH * TL;
166
        TO = Ip[WS(rs, 5)];
167
        TR = Im[WS(rs, 5)];
168
        TN = W[20];
169
        TP = TN * TO;
170
        T1y = TN * TR;
171
        {
172
       E TM, T1x, TS, T1z, TK, TQ;
173
       TK = W[13];
174
       TM = FMA(TK, TL, TJ);
175
       T1x = FNMS(TK, TI, T1w);
176
       TQ = W[21];
177
       TS = FMA(TQ, TR, TP);
178
       T1z = FNMS(TQ, TO, T1y);
179
       TT = TM + TS;
180
       T1V = TS - TM;
181
       T1A = T1x - T1z;
182
       T1T = T1x + T1z;
183
        }
184
         }
185
         {
186
        E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c;
187
        {
188
       E Tf, Tz, T2g, T2j;
189
       Tf = T1 + Te;
190
       Tz = Tl + Ty;
191
       TA = Tf + Tz;
192
       T28 = Tf - Tz;
193
       T2g = T2e + T2f;
194
       T2j = T2h + T2i;
195
       T2k = T2g + T2j;
196
       T2m = T2j - T2g;
197
        }
198
        {
199
       E TU, T1e, T29, T2a;
200
       TU = TG + TT;
201
       T1e = T10 + T1d;
202
       T1f = TU + T1e;
203
       T2l = TU - T1e;
204
       T29 = T1S + T1T;
205
       T2a = T1Y + T1Z;
206
       T2b = T29 - T2a;
207
       T2c = T29 + T2a;
208
        }
209
        Rm[WS(rs, 5)] = TA - T1f;
210
        Im[WS(rs, 5)] = T2c - T2k;
211
        Rp[0] = TA + T1f;
212
        Ip[0] = T2c + T2k;
213
        Rp[WS(rs, 3)] = T28 - T2b;
214
        Ip[WS(rs, 3)] = T2l + T2m;
215
        Rm[WS(rs, 2)] = T28 + T2b;
216
        Im[WS(rs, 2)] = T2l - T2m;
217
         }
218
         {
219
        E T1m, T1K, T2q, T2z, T2t, T2y, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I;
220
        E T1O;
221
        {
222
       E T1g, T2o, T2r, T1n;
223
       T1g = FNMS(KP500000000, Te, T1);
224
       T1m = FNMS(KP866025403, T1l, T1g);
225
       T1K = FMA(KP866025403, T1l, T1g);
226
       T2o = FNMS(KP500000000, T2h, T2i);
227
       T2q = FMA(KP866025403, T2p, T2o);
228
       T2z = FNMS(KP866025403, T2p, T2o);
229
       T2r = FNMS(KP500000000, T2f, T2e);
230
       T2t = FMA(KP866025403, T2s, T2r);
231
       T2y = FNMS(KP866025403, T2s, T2r);
232
       T1n = FNMS(KP500000000, Ty, Tl);
233
       T1t = FNMS(KP866025403, T1s, T1n);
234
       T1L = FMA(KP866025403, T1s, T1n);
235
        }
236
        {
237
       E T1v, T1U, T20, T1C;
238
       T1v = FNMS(KP500000000, TT, TG);
239
       T1B = FNMS(KP866025403, T1A, T1v);
240
       T1N = FMA(KP866025403, T1A, T1v);
241
       T1U = FNMS(KP500000000, T1T, T1S);
242
       T1W = FNMS(KP866025403, T1V, T1U);
243
       T25 = FMA(KP866025403, T1V, T1U);
244
       T20 = FNMS(KP500000000, T1Z, T1Y);
245
       T22 = FNMS(KP866025403, T21, T20);
246
       T26 = FMA(KP866025403, T21, T20);
247
       T1C = FNMS(KP500000000, T1d, T10);
248
       T1I = FNMS(KP866025403, T1H, T1C);
249
       T1O = FMA(KP866025403, T1H, T1C);
250
        }
251
        {
252
       E T1u, T1J, T2x, T2A;
253
       T1u = T1m + T1t;
254
       T1J = T1B + T1I;
255
       Rp[WS(rs, 2)] = T1u - T1J;
256
       Rm[WS(rs, 3)] = T1u + T1J;
257
       T2x = T1W + T22;
258
       T2A = T2y + T2z;
259
       Im[WS(rs, 3)] = -(T2x + T2A);
260
       Ip[WS(rs, 2)] = T2A - T2x;
261
        }
262
        {
263
       E T1M, T1P, T2v, T2w;
264
       T1M = T1K + T1L;
265
       T1P = T1N + T1O;
266
       Rm[WS(rs, 1)] = T1M - T1P;
267
       Rp[WS(rs, 4)] = T1M + T1P;
268
       T2v = T25 + T26;
269
       T2w = T2t + T2q;
270
       Im[WS(rs, 1)] = T2v - T2w;
271
       Ip[WS(rs, 4)] = T2v + T2w;
272
        }
273
        {
274
       E T1Q, T23, T2B, T2C;
275
       T1Q = T1m - T1t;
276
       T23 = T1W - T22;
277
       Rm[0] = T1Q - T23;
278
       Rp[WS(rs, 5)] = T1Q + T23;
279
       T2B = T1I - T1B;
280
       T2C = T2z - T2y;
281
       Im[0] = T2B - T2C;
282
       Ip[WS(rs, 5)] = T2B + T2C;
283
        }
284
        {
285
       E T24, T27, T2n, T2u;
286
       T24 = T1K - T1L;
287
       T27 = T25 - T26;
288
       Rm[WS(rs, 4)] = T24 - T27;
289
       Rp[WS(rs, 1)] = T24 + T27;
290
       T2n = T1O - T1N;
291
       T2u = T2q - T2t;
292
       Im[WS(rs, 4)] = T2n - T2u;
293
       Ip[WS(rs, 1)] = T2n + T2u;
294
        }
295
         }
296
    }
297
     }
298
}
299
300
static const tw_instr twinstr[] = {
301
     { TW_FULL, 1, 12 },
302
     { TW_NEXT, 1, 0 }
303
};
304
305
static const hc2c_desc desc = { 12, "hc2cf_12", twinstr, &GENUS, { 72, 22, 46, 0 } };
306
307
void X(codelet_hc2cf_12) (planner *p) {
308
     X(khc2c_register) (p, hc2cf_12, &desc, HC2C_VIA_RDFT);
309
}
310
#else
311
312
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 12 -dit -name hc2cf_12 -include rdft/scalar/hc2cf.h */
313
314
/*
315
 * This function contains 118 FP additions, 60 FP multiplications,
316
 * (or, 88 additions, 30 multiplications, 30 fused multiply/add),
317
 * 47 stack variables, 2 constants, and 48 memory accesses
318
 */
319
#include "rdft/scalar/hc2cf.h"
320
321
static void hc2cf_12(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
322
0
{
323
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
324
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
325
0
     {
326
0
    INT m;
327
0
    for (m = mb, W = W + ((mb - 1) * 22); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 22, MAKE_VOLATILE_STRIDE(48, rs)) {
328
0
         E T1, T1W, T18, T22, Tc, T15, T1V, T23, TR, T1E, T1o, T1D, T12, T1l, T1F;
329
0
         E T1G, Ti, T1S, T1d, T25, Tt, T1a, T1T, T26, TA, T1y, T1j, T1B, TL, T1g;
330
0
         E T1z, T1A;
331
0
         {
332
0
        E T6, T16, Tb, T17;
333
0
        T1 = Rp[0];
334
0
        T1W = Rm[0];
335
0
        {
336
0
       E T3, T5, T2, T4;
337
0
       T3 = Rp[WS(rs, 2)];
338
0
       T5 = Rm[WS(rs, 2)];
339
0
       T2 = W[6];
340
0
       T4 = W[7];
341
0
       T6 = FMA(T2, T3, T4 * T5);
342
0
       T16 = FNMS(T4, T3, T2 * T5);
343
0
        }
344
0
        {
345
0
       E T8, Ta, T7, T9;
346
0
       T8 = Rp[WS(rs, 4)];
347
0
       Ta = Rm[WS(rs, 4)];
348
0
       T7 = W[14];
349
0
       T9 = W[15];
350
0
       Tb = FMA(T7, T8, T9 * Ta);
351
0
       T17 = FNMS(T9, T8, T7 * Ta);
352
0
        }
353
0
        T18 = KP866025403 * (T16 - T17);
354
0
        T22 = KP866025403 * (Tb - T6);
355
0
        Tc = T6 + Tb;
356
0
        T15 = FNMS(KP500000000, Tc, T1);
357
0
        T1V = T16 + T17;
358
0
        T23 = FNMS(KP500000000, T1V, T1W);
359
0
         }
360
0
         {
361
0
        E T11, T1n, TW, T1m;
362
0
        {
363
0
       E TO, TQ, TN, TP;
364
0
       TO = Ip[WS(rs, 4)];
365
0
       TQ = Im[WS(rs, 4)];
366
0
       TN = W[16];
367
0
       TP = W[17];
368
0
       TR = FMA(TN, TO, TP * TQ);
369
0
       T1E = FNMS(TP, TO, TN * TQ);
370
0
        }
371
0
        {
372
0
       E TY, T10, TX, TZ;
373
0
       TY = Ip[WS(rs, 2)];
374
0
       T10 = Im[WS(rs, 2)];
375
0
       TX = W[8];
376
0
       TZ = W[9];
377
0
       T11 = FMA(TX, TY, TZ * T10);
378
0
       T1n = FNMS(TZ, TY, TX * T10);
379
0
        }
380
0
        {
381
0
       E TT, TV, TS, TU;
382
0
       TT = Ip[0];
383
0
       TV = Im[0];
384
0
       TS = W[0];
385
0
       TU = W[1];
386
0
       TW = FMA(TS, TT, TU * TV);
387
0
       T1m = FNMS(TU, TT, TS * TV);
388
0
        }
389
0
        T1o = KP866025403 * (T1m - T1n);
390
0
        T1D = KP866025403 * (T11 - TW);
391
0
        T12 = TW + T11;
392
0
        T1l = FNMS(KP500000000, T12, TR);
393
0
        T1F = T1m + T1n;
394
0
        T1G = FNMS(KP500000000, T1F, T1E);
395
0
         }
396
0
         {
397
0
        E Ts, T1c, Tn, T1b;
398
0
        {
399
0
       E Tf, Th, Te, Tg;
400
0
       Tf = Rp[WS(rs, 3)];
401
0
       Th = Rm[WS(rs, 3)];
402
0
       Te = W[10];
403
0
       Tg = W[11];
404
0
       Ti = FMA(Te, Tf, Tg * Th);
405
0
       T1S = FNMS(Tg, Tf, Te * Th);
406
0
        }
407
0
        {
408
0
       E Tp, Tr, To, Tq;
409
0
       Tp = Rp[WS(rs, 1)];
410
0
       Tr = Rm[WS(rs, 1)];
411
0
       To = W[2];
412
0
       Tq = W[3];
413
0
       Ts = FMA(To, Tp, Tq * Tr);
414
0
       T1c = FNMS(Tq, Tp, To * Tr);
415
0
        }
416
0
        {
417
0
       E Tk, Tm, Tj, Tl;
418
0
       Tk = Rp[WS(rs, 5)];
419
0
       Tm = Rm[WS(rs, 5)];
420
0
       Tj = W[18];
421
0
       Tl = W[19];
422
0
       Tn = FMA(Tj, Tk, Tl * Tm);
423
0
       T1b = FNMS(Tl, Tk, Tj * Tm);
424
0
        }
425
0
        T1d = KP866025403 * (T1b - T1c);
426
0
        T25 = KP866025403 * (Ts - Tn);
427
0
        Tt = Tn + Ts;
428
0
        T1a = FNMS(KP500000000, Tt, Ti);
429
0
        T1T = T1b + T1c;
430
0
        T26 = FNMS(KP500000000, T1T, T1S);
431
0
         }
432
0
         {
433
0
        E TK, T1i, TF, T1h;
434
0
        {
435
0
       E Tx, Tz, Tw, Ty;
436
0
       Tx = Ip[WS(rs, 1)];
437
0
       Tz = Im[WS(rs, 1)];
438
0
       Tw = W[4];
439
0
       Ty = W[5];
440
0
       TA = FMA(Tw, Tx, Ty * Tz);
441
0
       T1y = FNMS(Ty, Tx, Tw * Tz);
442
0
        }
443
0
        {
444
0
       E TH, TJ, TG, TI;
445
0
       TH = Ip[WS(rs, 5)];
446
0
       TJ = Im[WS(rs, 5)];
447
0
       TG = W[20];
448
0
       TI = W[21];
449
0
       TK = FMA(TG, TH, TI * TJ);
450
0
       T1i = FNMS(TI, TH, TG * TJ);
451
0
        }
452
0
        {
453
0
       E TC, TE, TB, TD;
454
0
       TC = Ip[WS(rs, 3)];
455
0
       TE = Im[WS(rs, 3)];
456
0
       TB = W[12];
457
0
       TD = W[13];
458
0
       TF = FMA(TB, TC, TD * TE);
459
0
       T1h = FNMS(TD, TC, TB * TE);
460
0
        }
461
0
        T1j = KP866025403 * (T1h - T1i);
462
0
        T1B = KP866025403 * (TK - TF);
463
0
        TL = TF + TK;
464
0
        T1g = FNMS(KP500000000, TL, TA);
465
0
        T1z = T1h + T1i;
466
0
        T1A = FNMS(KP500000000, T1z, T1y);
467
0
         }
468
0
         {
469
0
        E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R;
470
0
        {
471
0
       E Td, Tu, T1U, T1X;
472
0
       Td = T1 + Tc;
473
0
       Tu = Ti + Tt;
474
0
       Tv = Td + Tu;
475
0
       T1N = Td - Tu;
476
0
       T1U = T1S + T1T;
477
0
       T1X = T1V + T1W;
478
0
       T1Y = T1U + T1X;
479
0
       T20 = T1X - T1U;
480
0
        }
481
0
        {
482
0
       E TM, T13, T1O, T1P;
483
0
       TM = TA + TL;
484
0
       T13 = TR + T12;
485
0
       T14 = TM + T13;
486
0
       T1Z = TM - T13;
487
0
       T1O = T1y + T1z;
488
0
       T1P = T1E + T1F;
489
0
       T1Q = T1O - T1P;
490
0
       T1R = T1O + T1P;
491
0
        }
492
0
        Rm[WS(rs, 5)] = Tv - T14;
493
0
        Im[WS(rs, 5)] = T1R - T1Y;
494
0
        Rp[0] = Tv + T14;
495
0
        Ip[0] = T1R + T1Y;
496
0
        Rp[WS(rs, 3)] = T1N - T1Q;
497
0
        Ip[WS(rs, 3)] = T1Z + T20;
498
0
        Rm[WS(rs, 2)] = T1N + T1Q;
499
0
        Im[WS(rs, 2)] = T1Z - T20;
500
0
         }
501
0
         {
502
0
        E T1t, T1J, T28, T2a, T1w, T21, T1M, T29;
503
0
        {
504
0
       E T1r, T1s, T24, T27;
505
0
       T1r = T15 + T18;
506
0
       T1s = T1a + T1d;
507
0
       T1t = T1r + T1s;
508
0
       T1J = T1r - T1s;
509
0
       T24 = T22 + T23;
510
0
       T27 = T25 + T26;
511
0
       T28 = T24 - T27;
512
0
       T2a = T27 + T24;
513
0
        }
514
0
        {
515
0
       E T1u, T1v, T1K, T1L;
516
0
       T1u = T1g + T1j;
517
0
       T1v = T1l + T1o;
518
0
       T1w = T1u + T1v;
519
0
       T21 = T1v - T1u;
520
0
       T1K = T1B + T1A;
521
0
       T1L = T1D + T1G;
522
0
       T1M = T1K - T1L;
523
0
       T29 = T1K + T1L;
524
0
        }
525
0
        Rm[WS(rs, 1)] = T1t - T1w;
526
0
        Im[WS(rs, 1)] = T29 - T2a;
527
0
        Rp[WS(rs, 4)] = T1t + T1w;
528
0
        Ip[WS(rs, 4)] = T29 + T2a;
529
0
        Rm[WS(rs, 4)] = T1J - T1M;
530
0
        Im[WS(rs, 4)] = T21 - T28;
531
0
        Rp[WS(rs, 1)] = T1J + T1M;
532
0
        Ip[WS(rs, 1)] = T21 + T28;
533
0
         }
534
0
         {
535
0
        E T1f, T1x, T2e, T2g, T1q, T2f, T1I, T2b;
536
0
        {
537
0
       E T19, T1e, T2c, T2d;
538
0
       T19 = T15 - T18;
539
0
       T1e = T1a - T1d;
540
0
       T1f = T19 + T1e;
541
0
       T1x = T19 - T1e;
542
0
       T2c = T26 - T25;
543
0
       T2d = T23 - T22;
544
0
       T2e = T2c + T2d;
545
0
       T2g = T2d - T2c;
546
0
        }
547
0
        {
548
0
       E T1k, T1p, T1C, T1H;
549
0
       T1k = T1g - T1j;
550
0
       T1p = T1l - T1o;
551
0
       T1q = T1k + T1p;
552
0
       T2f = T1p - T1k;
553
0
       T1C = T1A - T1B;
554
0
       T1H = T1D - T1G;
555
0
       T1I = T1C + T1H;
556
0
       T2b = T1H - T1C;
557
0
        }
558
0
        Rp[WS(rs, 2)] = T1f - T1q;
559
0
        Ip[WS(rs, 2)] = T2b + T2e;
560
0
        Rm[WS(rs, 3)] = T1f + T1q;
561
0
        Im[WS(rs, 3)] = T2b - T2e;
562
0
        Rm[0] = T1x - T1I;
563
0
        Im[0] = T2f - T2g;
564
0
        Rp[WS(rs, 5)] = T1x + T1I;
565
0
        Ip[WS(rs, 5)] = T2f + T2g;
566
0
         }
567
0
    }
568
0
     }
569
0
}
570
571
static const tw_instr twinstr[] = {
572
     { TW_FULL, 1, 12 },
573
     { TW_NEXT, 1, 0 }
574
};
575
576
static const hc2c_desc desc = { 12, "hc2cf_12", twinstr, &GENUS, { 88, 30, 30, 0 } };
577
578
1
void X(codelet_hc2cf_12) (planner *p) {
579
1
     X(khc2c_register) (p, hc2cf_12, &desc, HC2C_VIA_RDFT);
580
1
}
581
#endif