Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2cf/r2cf_20.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:53:19 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */
29
30
/*
31
 * This function contains 86 FP additions, 32 FP multiplications,
32
 * (or, 58 additions, 4 multiplications, 28 fused multiply/add),
33
 * 51 stack variables, 4 constants, and 40 memory accesses
34
 */
35
#include "rdft/scalar/r2cf.h"
36
37
static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
40
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
41
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
43
     {
44
    INT i;
45
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
46
         E T3, T1d, TJ, TV, T16, T1k, T1l, T19, Ta, Th, Ti, T1e, T1f, T1g, TP;
47
         E TQ, TX, Tn, Ts, TK, TS, TT, TW, Ty, TD, TL;
48
         {
49
        E T1, T2, TF, TG, TH, TI;
50
        T1 = R0[0];
51
        T2 = R0[WS(rs, 5)];
52
        TF = T1 + T2;
53
        TG = R1[WS(rs, 2)];
54
        TH = R1[WS(rs, 7)];
55
        TI = TG + TH;
56
        T3 = T1 - T2;
57
        T1d = TG - TH;
58
        TJ = TF - TI;
59
        TV = TF + TI;
60
         }
61
         {
62
        E T6, To, Tx, T17, TC, T18, T9, Tj, Td, Tu, Tm, T15, Tr, T14, Tg;
63
        E Tz;
64
        {
65
       E T4, T5, Tv, Tw;
66
       T4 = R0[WS(rs, 2)];
67
       T5 = R0[WS(rs, 7)];
68
       T6 = T4 - T5;
69
       To = T4 + T5;
70
       Tv = R1[WS(rs, 6)];
71
       Tw = R1[WS(rs, 1)];
72
       Tx = Tv + Tw;
73
       T17 = Tw - Tv;
74
        }
75
        {
76
       E TA, TB, T7, T8;
77
       TA = R1[WS(rs, 8)];
78
       TB = R1[WS(rs, 3)];
79
       TC = TA + TB;
80
       T18 = TB - TA;
81
       T7 = R0[WS(rs, 8)];
82
       T8 = R0[WS(rs, 3)];
83
       T9 = T7 - T8;
84
       Tj = T7 + T8;
85
        }
86
        {
87
       E Tb, Tc, Tk, Tl;
88
       Tb = R0[WS(rs, 4)];
89
       Tc = R0[WS(rs, 9)];
90
       Td = Tb - Tc;
91
       Tu = Tb + Tc;
92
       Tk = R1[0];
93
       Tl = R1[WS(rs, 5)];
94
       Tm = Tk + Tl;
95
       T15 = Tl - Tk;
96
        }
97
        {
98
       E Tp, Tq, Te, Tf;
99
       Tp = R1[WS(rs, 4)];
100
       Tq = R1[WS(rs, 9)];
101
       Tr = Tp + Tq;
102
       T14 = Tq - Tp;
103
       Te = R0[WS(rs, 6)];
104
       Tf = R0[WS(rs, 1)];
105
       Tg = Te - Tf;
106
       Tz = Te + Tf;
107
        }
108
        T16 = T14 - T15;
109
        T1k = T6 - T9;
110
        T1l = Td - Tg;
111
        T19 = T17 - T18;
112
        Ta = T6 + T9;
113
        Th = Td + Tg;
114
        Ti = Ta + Th;
115
        T1e = T14 + T15;
116
        T1f = T17 + T18;
117
        T1g = T1e + T1f;
118
        TP = Tu + Tx;
119
        TQ = Tz + TC;
120
        TX = TP + TQ;
121
        Tn = Tj - Tm;
122
        Ts = To - Tr;
123
        TK = Ts + Tn;
124
        TS = To + Tr;
125
        TT = Tj + Tm;
126
        TW = TS + TT;
127
        Ty = Tu - Tx;
128
        TD = Tz - TC;
129
        TL = Ty + TD;
130
         }
131
         Cr[WS(csr, 5)] = T3 + Ti;
132
         Ci[WS(csi, 5)] = T1g - T1d;
133
         {
134
        E Tt, TE, TR, TU;
135
        Tt = Tn - Ts;
136
        TE = Ty - TD;
137
        Ci[WS(csi, 6)] = KP951056516 * (FNMS(KP618033988, TE, Tt));
138
        Ci[WS(csi, 2)] = KP951056516 * (FMA(KP618033988, Tt, TE));
139
        TR = TP - TQ;
140
        TU = TS - TT;
141
        Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP618033988, TU, TR)));
142
        Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, TR, TU));
143
         }
144
         {
145
        E T10, TY, TZ, TO, TM, TN;
146
        T10 = TW - TX;
147
        TY = TW + TX;
148
        TZ = FNMS(KP250000000, TY, TV);
149
        Cr[WS(csr, 4)] = FMA(KP559016994, T10, TZ);
150
        Cr[0] = TV + TY;
151
        Cr[WS(csr, 8)] = FNMS(KP559016994, T10, TZ);
152
        TO = TK - TL;
153
        TM = TK + TL;
154
        TN = FNMS(KP250000000, TM, TJ);
155
        Cr[WS(csr, 2)] = FNMS(KP559016994, TO, TN);
156
        Cr[WS(csr, 10)] = TJ + TM;
157
        Cr[WS(csr, 6)] = FMA(KP559016994, TO, TN);
158
         }
159
         {
160
        E T1a, T1c, T13, T1b, T11, T12;
161
        T1a = FMA(KP618033988, T19, T16);
162
        T1c = FNMS(KP618033988, T16, T19);
163
        T11 = FNMS(KP250000000, Ti, T3);
164
        T12 = Ta - Th;
165
        T13 = FMA(KP559016994, T12, T11);
166
        T1b = FNMS(KP559016994, T12, T11);
167
        Cr[WS(csr, 9)] = FNMS(KP951056516, T1a, T13);
168
        Cr[WS(csr, 7)] = FMA(KP951056516, T1c, T1b);
169
        Cr[WS(csr, 1)] = FMA(KP951056516, T1a, T13);
170
        Cr[WS(csr, 3)] = FNMS(KP951056516, T1c, T1b);
171
         }
172
         {
173
        E T1m, T1o, T1j, T1n, T1h, T1i;
174
        T1m = FMA(KP618033988, T1l, T1k);
175
        T1o = FNMS(KP618033988, T1k, T1l);
176
        T1h = FMA(KP250000000, T1g, T1d);
177
        T1i = T1e - T1f;
178
        T1j = FNMS(KP559016994, T1i, T1h);
179
        T1n = FMA(KP559016994, T1i, T1h);
180
        Ci[WS(csi, 1)] = -(FMA(KP951056516, T1m, T1j));
181
        Ci[WS(csi, 7)] = FMA(KP951056516, T1o, T1n);
182
        Ci[WS(csi, 9)] = FMS(KP951056516, T1m, T1j);
183
        Ci[WS(csi, 3)] = FNMS(KP951056516, T1o, T1n);
184
         }
185
    }
186
     }
187
}
188
189
static const kr2c_desc desc = { 20, "r2cf_20", { 58, 4, 28, 0 }, &GENUS };
190
191
void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc);
192
}
193
194
#else
195
196
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */
197
198
/*
199
 * This function contains 86 FP additions, 24 FP multiplications,
200
 * (or, 74 additions, 12 multiplications, 12 fused multiply/add),
201
 * 51 stack variables, 4 constants, and 40 memory accesses
202
 */
203
#include "rdft/scalar/r2cf.h"
204
205
static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
206
0
{
207
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
208
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
209
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
210
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
211
0
     {
212
0
    INT i;
213
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) {
214
0
         E T3, T1m, TF, T17, Ts, TM, TN, Tz, Ta, Th, Ti, T1g, T1h, T1k, T10;
215
0
         E T13, T19, TG, TH, TI, T1d, T1e, T1j, TT, TW, T18;
216
0
         {
217
0
        E T1, T2, T15, TD, TE, T16;
218
0
        T1 = R0[0];
219
0
        T2 = R0[WS(rs, 5)];
220
0
        T15 = T1 + T2;
221
0
        TD = R1[WS(rs, 7)];
222
0
        TE = R1[WS(rs, 2)];
223
0
        T16 = TE + TD;
224
0
        T3 = T1 - T2;
225
0
        T1m = T15 + T16;
226
0
        TF = TD - TE;
227
0
        T17 = T15 - T16;
228
0
         }
229
0
         {
230
0
        E T6, TU, Tv, T12, Ty, TZ, T9, TR, Td, TY, To, TS, Tr, TV, Tg;
231
0
        E T11;
232
0
        {
233
0
       E T4, T5, Tt, Tu;
234
0
       T4 = R0[WS(rs, 2)];
235
0
       T5 = R0[WS(rs, 7)];
236
0
       T6 = T4 - T5;
237
0
       TU = T4 + T5;
238
0
       Tt = R1[WS(rs, 8)];
239
0
       Tu = R1[WS(rs, 3)];
240
0
       Tv = Tt - Tu;
241
0
       T12 = Tt + Tu;
242
0
        }
243
0
        {
244
0
       E Tw, Tx, T7, T8;
245
0
       Tw = R1[WS(rs, 6)];
246
0
       Tx = R1[WS(rs, 1)];
247
0
       Ty = Tw - Tx;
248
0
       TZ = Tw + Tx;
249
0
       T7 = R0[WS(rs, 8)];
250
0
       T8 = R0[WS(rs, 3)];
251
0
       T9 = T7 - T8;
252
0
       TR = T7 + T8;
253
0
        }
254
0
        {
255
0
       E Tb, Tc, Tm, Tn;
256
0
       Tb = R0[WS(rs, 4)];
257
0
       Tc = R0[WS(rs, 9)];
258
0
       Td = Tb - Tc;
259
0
       TY = Tb + Tc;
260
0
       Tm = R1[0];
261
0
       Tn = R1[WS(rs, 5)];
262
0
       To = Tm - Tn;
263
0
       TS = Tm + Tn;
264
0
        }
265
0
        {
266
0
       E Tp, Tq, Te, Tf;
267
0
       Tp = R1[WS(rs, 4)];
268
0
       Tq = R1[WS(rs, 9)];
269
0
       Tr = Tp - Tq;
270
0
       TV = Tp + Tq;
271
0
       Te = R0[WS(rs, 6)];
272
0
       Tf = R0[WS(rs, 1)];
273
0
       Tg = Te - Tf;
274
0
       T11 = Te + Tf;
275
0
        }
276
0
        Ts = To - Tr;
277
0
        TM = T6 - T9;
278
0
        TN = Td - Tg;
279
0
        Tz = Tv - Ty;
280
0
        Ta = T6 + T9;
281
0
        Th = Td + Tg;
282
0
        Ti = Ta + Th;
283
0
        T1g = TY + TZ;
284
0
        T1h = T11 + T12;
285
0
        T1k = T1g + T1h;
286
0
        T10 = TY - TZ;
287
0
        T13 = T11 - T12;
288
0
        T19 = T10 + T13;
289
0
        TG = Tr + To;
290
0
        TH = Ty + Tv;
291
0
        TI = TG + TH;
292
0
        T1d = TU + TV;
293
0
        T1e = TR + TS;
294
0
        T1j = T1d + T1e;
295
0
        TT = TR - TS;
296
0
        TW = TU - TV;
297
0
        T18 = TW + TT;
298
0
         }
299
0
         Cr[WS(csr, 5)] = T3 + Ti;
300
0
         Ci[WS(csi, 5)] = TF - TI;
301
0
         {
302
0
        E TX, T14, T1f, T1i;
303
0
        TX = TT - TW;
304
0
        T14 = T10 - T13;
305
0
        Ci[WS(csi, 6)] = FNMS(KP587785252, T14, KP951056516 * TX);
306
0
        Ci[WS(csi, 2)] = FMA(KP587785252, TX, KP951056516 * T14);
307
0
        T1f = T1d - T1e;
308
0
        T1i = T1g - T1h;
309
0
        Ci[WS(csi, 8)] = FNMS(KP951056516, T1i, KP587785252 * T1f);
310
0
        Ci[WS(csi, 4)] = FMA(KP951056516, T1f, KP587785252 * T1i);
311
0
         }
312
0
         {
313
0
        E T1l, T1n, T1o, T1c, T1a, T1b;
314
0
        T1l = KP559016994 * (T1j - T1k);
315
0
        T1n = T1j + T1k;
316
0
        T1o = FNMS(KP250000000, T1n, T1m);
317
0
        Cr[WS(csr, 4)] = T1l + T1o;
318
0
        Cr[0] = T1m + T1n;
319
0
        Cr[WS(csr, 8)] = T1o - T1l;
320
0
        T1c = KP559016994 * (T18 - T19);
321
0
        T1a = T18 + T19;
322
0
        T1b = FNMS(KP250000000, T1a, T17);
323
0
        Cr[WS(csr, 2)] = T1b - T1c;
324
0
        Cr[WS(csr, 10)] = T17 + T1a;
325
0
        Cr[WS(csr, 6)] = T1c + T1b;
326
0
         }
327
0
         {
328
0
        E TA, TC, Tl, TB, Tj, Tk;
329
0
        TA = FMA(KP951056516, Ts, KP587785252 * Tz);
330
0
        TC = FNMS(KP587785252, Ts, KP951056516 * Tz);
331
0
        Tj = KP559016994 * (Ta - Th);
332
0
        Tk = FNMS(KP250000000, Ti, T3);
333
0
        Tl = Tj + Tk;
334
0
        TB = Tk - Tj;
335
0
        Cr[WS(csr, 9)] = Tl - TA;
336
0
        Cr[WS(csr, 7)] = TB + TC;
337
0
        Cr[WS(csr, 1)] = Tl + TA;
338
0
        Cr[WS(csr, 3)] = TB - TC;
339
0
         }
340
0
         {
341
0
        E TO, TQ, TL, TP, TJ, TK;
342
0
        TO = FMA(KP951056516, TM, KP587785252 * TN);
343
0
        TQ = FNMS(KP587785252, TM, KP951056516 * TN);
344
0
        TJ = FMA(KP250000000, TI, TF);
345
0
        TK = KP559016994 * (TH - TG);
346
0
        TL = TJ + TK;
347
0
        TP = TK - TJ;
348
0
        Ci[WS(csi, 1)] = TL - TO;
349
0
        Ci[WS(csi, 7)] = TQ + TP;
350
0
        Ci[WS(csi, 9)] = TO + TL;
351
0
        Ci[WS(csi, 3)] = TP - TQ;
352
0
         }
353
0
    }
354
0
     }
355
0
}
356
357
static const kr2c_desc desc = { 20, "r2cf_20", { 74, 12, 12, 0 }, &GENUS };
358
359
1
void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc);
360
1
}
361
362
#endif