/src/fftw3/rdft/scalar/r2cf/r2cf_20.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:53:19 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 86 FP additions, 32 FP multiplications, |
32 | | * (or, 58 additions, 4 multiplications, 28 fused multiply/add), |
33 | | * 51 stack variables, 4 constants, and 40 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
40 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
43 | | { |
44 | | INT i; |
45 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { |
46 | | E T3, T1d, TJ, TV, T16, T1k, T1l, T19, Ta, Th, Ti, T1e, T1f, T1g, TP; |
47 | | E TQ, TX, Tn, Ts, TK, TS, TT, TW, Ty, TD, TL; |
48 | | { |
49 | | E T1, T2, TF, TG, TH, TI; |
50 | | T1 = R0[0]; |
51 | | T2 = R0[WS(rs, 5)]; |
52 | | TF = T1 + T2; |
53 | | TG = R1[WS(rs, 2)]; |
54 | | TH = R1[WS(rs, 7)]; |
55 | | TI = TG + TH; |
56 | | T3 = T1 - T2; |
57 | | T1d = TG - TH; |
58 | | TJ = TF - TI; |
59 | | TV = TF + TI; |
60 | | } |
61 | | { |
62 | | E T6, To, Tx, T17, TC, T18, T9, Tj, Td, Tu, Tm, T15, Tr, T14, Tg; |
63 | | E Tz; |
64 | | { |
65 | | E T4, T5, Tv, Tw; |
66 | | T4 = R0[WS(rs, 2)]; |
67 | | T5 = R0[WS(rs, 7)]; |
68 | | T6 = T4 - T5; |
69 | | To = T4 + T5; |
70 | | Tv = R1[WS(rs, 6)]; |
71 | | Tw = R1[WS(rs, 1)]; |
72 | | Tx = Tv + Tw; |
73 | | T17 = Tw - Tv; |
74 | | } |
75 | | { |
76 | | E TA, TB, T7, T8; |
77 | | TA = R1[WS(rs, 8)]; |
78 | | TB = R1[WS(rs, 3)]; |
79 | | TC = TA + TB; |
80 | | T18 = TB - TA; |
81 | | T7 = R0[WS(rs, 8)]; |
82 | | T8 = R0[WS(rs, 3)]; |
83 | | T9 = T7 - T8; |
84 | | Tj = T7 + T8; |
85 | | } |
86 | | { |
87 | | E Tb, Tc, Tk, Tl; |
88 | | Tb = R0[WS(rs, 4)]; |
89 | | Tc = R0[WS(rs, 9)]; |
90 | | Td = Tb - Tc; |
91 | | Tu = Tb + Tc; |
92 | | Tk = R1[0]; |
93 | | Tl = R1[WS(rs, 5)]; |
94 | | Tm = Tk + Tl; |
95 | | T15 = Tl - Tk; |
96 | | } |
97 | | { |
98 | | E Tp, Tq, Te, Tf; |
99 | | Tp = R1[WS(rs, 4)]; |
100 | | Tq = R1[WS(rs, 9)]; |
101 | | Tr = Tp + Tq; |
102 | | T14 = Tq - Tp; |
103 | | Te = R0[WS(rs, 6)]; |
104 | | Tf = R0[WS(rs, 1)]; |
105 | | Tg = Te - Tf; |
106 | | Tz = Te + Tf; |
107 | | } |
108 | | T16 = T14 - T15; |
109 | | T1k = T6 - T9; |
110 | | T1l = Td - Tg; |
111 | | T19 = T17 - T18; |
112 | | Ta = T6 + T9; |
113 | | Th = Td + Tg; |
114 | | Ti = Ta + Th; |
115 | | T1e = T14 + T15; |
116 | | T1f = T17 + T18; |
117 | | T1g = T1e + T1f; |
118 | | TP = Tu + Tx; |
119 | | TQ = Tz + TC; |
120 | | TX = TP + TQ; |
121 | | Tn = Tj - Tm; |
122 | | Ts = To - Tr; |
123 | | TK = Ts + Tn; |
124 | | TS = To + Tr; |
125 | | TT = Tj + Tm; |
126 | | TW = TS + TT; |
127 | | Ty = Tu - Tx; |
128 | | TD = Tz - TC; |
129 | | TL = Ty + TD; |
130 | | } |
131 | | Cr[WS(csr, 5)] = T3 + Ti; |
132 | | Ci[WS(csi, 5)] = T1g - T1d; |
133 | | { |
134 | | E Tt, TE, TR, TU; |
135 | | Tt = Tn - Ts; |
136 | | TE = Ty - TD; |
137 | | Ci[WS(csi, 6)] = KP951056516 * (FNMS(KP618033988, TE, Tt)); |
138 | | Ci[WS(csi, 2)] = KP951056516 * (FMA(KP618033988, Tt, TE)); |
139 | | TR = TP - TQ; |
140 | | TU = TS - TT; |
141 | | Ci[WS(csi, 8)] = -(KP951056516 * (FNMS(KP618033988, TU, TR))); |
142 | | Ci[WS(csi, 4)] = KP951056516 * (FMA(KP618033988, TR, TU)); |
143 | | } |
144 | | { |
145 | | E T10, TY, TZ, TO, TM, TN; |
146 | | T10 = TW - TX; |
147 | | TY = TW + TX; |
148 | | TZ = FNMS(KP250000000, TY, TV); |
149 | | Cr[WS(csr, 4)] = FMA(KP559016994, T10, TZ); |
150 | | Cr[0] = TV + TY; |
151 | | Cr[WS(csr, 8)] = FNMS(KP559016994, T10, TZ); |
152 | | TO = TK - TL; |
153 | | TM = TK + TL; |
154 | | TN = FNMS(KP250000000, TM, TJ); |
155 | | Cr[WS(csr, 2)] = FNMS(KP559016994, TO, TN); |
156 | | Cr[WS(csr, 10)] = TJ + TM; |
157 | | Cr[WS(csr, 6)] = FMA(KP559016994, TO, TN); |
158 | | } |
159 | | { |
160 | | E T1a, T1c, T13, T1b, T11, T12; |
161 | | T1a = FMA(KP618033988, T19, T16); |
162 | | T1c = FNMS(KP618033988, T16, T19); |
163 | | T11 = FNMS(KP250000000, Ti, T3); |
164 | | T12 = Ta - Th; |
165 | | T13 = FMA(KP559016994, T12, T11); |
166 | | T1b = FNMS(KP559016994, T12, T11); |
167 | | Cr[WS(csr, 9)] = FNMS(KP951056516, T1a, T13); |
168 | | Cr[WS(csr, 7)] = FMA(KP951056516, T1c, T1b); |
169 | | Cr[WS(csr, 1)] = FMA(KP951056516, T1a, T13); |
170 | | Cr[WS(csr, 3)] = FNMS(KP951056516, T1c, T1b); |
171 | | } |
172 | | { |
173 | | E T1m, T1o, T1j, T1n, T1h, T1i; |
174 | | T1m = FMA(KP618033988, T1l, T1k); |
175 | | T1o = FNMS(KP618033988, T1k, T1l); |
176 | | T1h = FMA(KP250000000, T1g, T1d); |
177 | | T1i = T1e - T1f; |
178 | | T1j = FNMS(KP559016994, T1i, T1h); |
179 | | T1n = FMA(KP559016994, T1i, T1h); |
180 | | Ci[WS(csi, 1)] = -(FMA(KP951056516, T1m, T1j)); |
181 | | Ci[WS(csi, 7)] = FMA(KP951056516, T1o, T1n); |
182 | | Ci[WS(csi, 9)] = FMS(KP951056516, T1m, T1j); |
183 | | Ci[WS(csi, 3)] = FNMS(KP951056516, T1o, T1n); |
184 | | } |
185 | | } |
186 | | } |
187 | | } |
188 | | |
189 | | static const kr2c_desc desc = { 20, "r2cf_20", { 58, 4, 28, 0 }, &GENUS }; |
190 | | |
191 | | void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc); |
192 | | } |
193 | | |
194 | | #else |
195 | | |
196 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 20 -name r2cf_20 -include rdft/scalar/r2cf.h */ |
197 | | |
198 | | /* |
199 | | * This function contains 86 FP additions, 24 FP multiplications, |
200 | | * (or, 74 additions, 12 multiplications, 12 fused multiply/add), |
201 | | * 51 stack variables, 4 constants, and 40 memory accesses |
202 | | */ |
203 | | #include "rdft/scalar/r2cf.h" |
204 | | |
205 | | static void r2cf_20(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
206 | 0 | { |
207 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
208 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
209 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
210 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
211 | 0 | { |
212 | 0 | INT i; |
213 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(80, rs), MAKE_VOLATILE_STRIDE(80, csr), MAKE_VOLATILE_STRIDE(80, csi)) { |
214 | 0 | E T3, T1m, TF, T17, Ts, TM, TN, Tz, Ta, Th, Ti, T1g, T1h, T1k, T10; |
215 | 0 | E T13, T19, TG, TH, TI, T1d, T1e, T1j, TT, TW, T18; |
216 | 0 | { |
217 | 0 | E T1, T2, T15, TD, TE, T16; |
218 | 0 | T1 = R0[0]; |
219 | 0 | T2 = R0[WS(rs, 5)]; |
220 | 0 | T15 = T1 + T2; |
221 | 0 | TD = R1[WS(rs, 7)]; |
222 | 0 | TE = R1[WS(rs, 2)]; |
223 | 0 | T16 = TE + TD; |
224 | 0 | T3 = T1 - T2; |
225 | 0 | T1m = T15 + T16; |
226 | 0 | TF = TD - TE; |
227 | 0 | T17 = T15 - T16; |
228 | 0 | } |
229 | 0 | { |
230 | 0 | E T6, TU, Tv, T12, Ty, TZ, T9, TR, Td, TY, To, TS, Tr, TV, Tg; |
231 | 0 | E T11; |
232 | 0 | { |
233 | 0 | E T4, T5, Tt, Tu; |
234 | 0 | T4 = R0[WS(rs, 2)]; |
235 | 0 | T5 = R0[WS(rs, 7)]; |
236 | 0 | T6 = T4 - T5; |
237 | 0 | TU = T4 + T5; |
238 | 0 | Tt = R1[WS(rs, 8)]; |
239 | 0 | Tu = R1[WS(rs, 3)]; |
240 | 0 | Tv = Tt - Tu; |
241 | 0 | T12 = Tt + Tu; |
242 | 0 | } |
243 | 0 | { |
244 | 0 | E Tw, Tx, T7, T8; |
245 | 0 | Tw = R1[WS(rs, 6)]; |
246 | 0 | Tx = R1[WS(rs, 1)]; |
247 | 0 | Ty = Tw - Tx; |
248 | 0 | TZ = Tw + Tx; |
249 | 0 | T7 = R0[WS(rs, 8)]; |
250 | 0 | T8 = R0[WS(rs, 3)]; |
251 | 0 | T9 = T7 - T8; |
252 | 0 | TR = T7 + T8; |
253 | 0 | } |
254 | 0 | { |
255 | 0 | E Tb, Tc, Tm, Tn; |
256 | 0 | Tb = R0[WS(rs, 4)]; |
257 | 0 | Tc = R0[WS(rs, 9)]; |
258 | 0 | Td = Tb - Tc; |
259 | 0 | TY = Tb + Tc; |
260 | 0 | Tm = R1[0]; |
261 | 0 | Tn = R1[WS(rs, 5)]; |
262 | 0 | To = Tm - Tn; |
263 | 0 | TS = Tm + Tn; |
264 | 0 | } |
265 | 0 | { |
266 | 0 | E Tp, Tq, Te, Tf; |
267 | 0 | Tp = R1[WS(rs, 4)]; |
268 | 0 | Tq = R1[WS(rs, 9)]; |
269 | 0 | Tr = Tp - Tq; |
270 | 0 | TV = Tp + Tq; |
271 | 0 | Te = R0[WS(rs, 6)]; |
272 | 0 | Tf = R0[WS(rs, 1)]; |
273 | 0 | Tg = Te - Tf; |
274 | 0 | T11 = Te + Tf; |
275 | 0 | } |
276 | 0 | Ts = To - Tr; |
277 | 0 | TM = T6 - T9; |
278 | 0 | TN = Td - Tg; |
279 | 0 | Tz = Tv - Ty; |
280 | 0 | Ta = T6 + T9; |
281 | 0 | Th = Td + Tg; |
282 | 0 | Ti = Ta + Th; |
283 | 0 | T1g = TY + TZ; |
284 | 0 | T1h = T11 + T12; |
285 | 0 | T1k = T1g + T1h; |
286 | 0 | T10 = TY - TZ; |
287 | 0 | T13 = T11 - T12; |
288 | 0 | T19 = T10 + T13; |
289 | 0 | TG = Tr + To; |
290 | 0 | TH = Ty + Tv; |
291 | 0 | TI = TG + TH; |
292 | 0 | T1d = TU + TV; |
293 | 0 | T1e = TR + TS; |
294 | 0 | T1j = T1d + T1e; |
295 | 0 | TT = TR - TS; |
296 | 0 | TW = TU - TV; |
297 | 0 | T18 = TW + TT; |
298 | 0 | } |
299 | 0 | Cr[WS(csr, 5)] = T3 + Ti; |
300 | 0 | Ci[WS(csi, 5)] = TF - TI; |
301 | 0 | { |
302 | 0 | E TX, T14, T1f, T1i; |
303 | 0 | TX = TT - TW; |
304 | 0 | T14 = T10 - T13; |
305 | 0 | Ci[WS(csi, 6)] = FNMS(KP587785252, T14, KP951056516 * TX); |
306 | 0 | Ci[WS(csi, 2)] = FMA(KP587785252, TX, KP951056516 * T14); |
307 | 0 | T1f = T1d - T1e; |
308 | 0 | T1i = T1g - T1h; |
309 | 0 | Ci[WS(csi, 8)] = FNMS(KP951056516, T1i, KP587785252 * T1f); |
310 | 0 | Ci[WS(csi, 4)] = FMA(KP951056516, T1f, KP587785252 * T1i); |
311 | 0 | } |
312 | 0 | { |
313 | 0 | E T1l, T1n, T1o, T1c, T1a, T1b; |
314 | 0 | T1l = KP559016994 * (T1j - T1k); |
315 | 0 | T1n = T1j + T1k; |
316 | 0 | T1o = FNMS(KP250000000, T1n, T1m); |
317 | 0 | Cr[WS(csr, 4)] = T1l + T1o; |
318 | 0 | Cr[0] = T1m + T1n; |
319 | 0 | Cr[WS(csr, 8)] = T1o - T1l; |
320 | 0 | T1c = KP559016994 * (T18 - T19); |
321 | 0 | T1a = T18 + T19; |
322 | 0 | T1b = FNMS(KP250000000, T1a, T17); |
323 | 0 | Cr[WS(csr, 2)] = T1b - T1c; |
324 | 0 | Cr[WS(csr, 10)] = T17 + T1a; |
325 | 0 | Cr[WS(csr, 6)] = T1c + T1b; |
326 | 0 | } |
327 | 0 | { |
328 | 0 | E TA, TC, Tl, TB, Tj, Tk; |
329 | 0 | TA = FMA(KP951056516, Ts, KP587785252 * Tz); |
330 | 0 | TC = FNMS(KP587785252, Ts, KP951056516 * Tz); |
331 | 0 | Tj = KP559016994 * (Ta - Th); |
332 | 0 | Tk = FNMS(KP250000000, Ti, T3); |
333 | 0 | Tl = Tj + Tk; |
334 | 0 | TB = Tk - Tj; |
335 | 0 | Cr[WS(csr, 9)] = Tl - TA; |
336 | 0 | Cr[WS(csr, 7)] = TB + TC; |
337 | 0 | Cr[WS(csr, 1)] = Tl + TA; |
338 | 0 | Cr[WS(csr, 3)] = TB - TC; |
339 | 0 | } |
340 | 0 | { |
341 | 0 | E TO, TQ, TL, TP, TJ, TK; |
342 | 0 | TO = FMA(KP951056516, TM, KP587785252 * TN); |
343 | 0 | TQ = FNMS(KP587785252, TM, KP951056516 * TN); |
344 | 0 | TJ = FMA(KP250000000, TI, TF); |
345 | 0 | TK = KP559016994 * (TH - TG); |
346 | 0 | TL = TJ + TK; |
347 | 0 | TP = TK - TJ; |
348 | 0 | Ci[WS(csi, 1)] = TL - TO; |
349 | 0 | Ci[WS(csi, 7)] = TQ + TP; |
350 | 0 | Ci[WS(csi, 9)] = TO + TL; |
351 | 0 | Ci[WS(csi, 3)] = TP - TQ; |
352 | 0 | } |
353 | 0 | } |
354 | 0 | } |
355 | 0 | } |
356 | | |
357 | | static const kr2c_desc desc = { 20, "r2cf_20", { 74, 12, 12, 0 }, &GENUS }; |
358 | | |
359 | 1 | void X(codelet_r2cf_20) (planner *p) { X(kr2c_register) (p, r2cf_20, &desc); |
360 | 1 | } |
361 | | |
362 | | #endif |