Coverage Report

Created: 2025-07-11 06:55

/src/fftw3/rdft/scalar/r2r/e10_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 11 06:54:37 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2r.native -fma -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */
29
30
/*
31
 * This function contains 26 FP additions, 18 FP multiplications,
32
 * (or, 16 additions, 8 multiplications, 10 fused multiply/add),
33
 * 28 stack variables, 9 constants, and 16 memory accesses
34
 */
35
#include "rdft/scalar/r2r.h"
36
37
static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
40
     DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
41
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
42
     DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
43
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44
     DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
45
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
46
     DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
47
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
48
     {
49
    INT i;
50
    for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
51
         E T3, Tj, Te, Tk, Ta, Tn, Tf, Tm;
52
         {
53
        E T1, T2, Tc, Td;
54
        T1 = I[0];
55
        T2 = I[WS(is, 7)];
56
        T3 = T1 - T2;
57
        Tj = T1 + T2;
58
        Tc = I[WS(is, 4)];
59
        Td = I[WS(is, 3)];
60
        Te = Tc - Td;
61
        Tk = Tc + Td;
62
        {
63
       E T4, T5, T6, T7, T8, T9;
64
       T4 = I[WS(is, 2)];
65
       T5 = I[WS(is, 5)];
66
       T6 = T4 - T5;
67
       T7 = I[WS(is, 1)];
68
       T8 = I[WS(is, 6)];
69
       T9 = T7 - T8;
70
       Ta = T6 + T9;
71
       Tn = T7 + T8;
72
       Tf = T6 - T9;
73
       Tm = T4 + T5;
74
        }
75
         }
76
         {
77
        E Tb, Tg, Tp, Tq;
78
        Tb = FNMS(KP707106781, Ta, T3);
79
        Tg = FNMS(KP707106781, Tf, Te);
80
        O[WS(os, 3)] = KP1_662939224 * (FMA(KP668178637, Tg, Tb));
81
        O[WS(os, 5)] = -(KP1_662939224 * (FNMS(KP668178637, Tb, Tg)));
82
        Tp = Tj + Tk;
83
        Tq = Tm + Tn;
84
        O[WS(os, 4)] = KP1_414213562 * (Tp - Tq);
85
        O[0] = KP2_000000000 * (Tp + Tq);
86
         }
87
         {
88
        E Th, Ti, Tl, To;
89
        Th = FMA(KP707106781, Ta, T3);
90
        Ti = FMA(KP707106781, Tf, Te);
91
        O[WS(os, 1)] = KP1_961570560 * (FNMS(KP198912367, Ti, Th));
92
        O[WS(os, 7)] = KP1_961570560 * (FMA(KP198912367, Th, Ti));
93
        Tl = Tj - Tk;
94
        To = Tm - Tn;
95
        O[WS(os, 2)] = KP1_847759065 * (FNMS(KP414213562, To, Tl));
96
        O[WS(os, 6)] = KP1_847759065 * (FMA(KP414213562, Tl, To));
97
         }
98
    }
99
     }
100
}
101
102
static const kr2r_desc desc = { 8, "e10_8", { 16, 8, 10, 0 }, &GENUS, REDFT10 };
103
104
void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc);
105
}
106
107
#else
108
109
/* Generated by: ../../../genfft/gen_r2r.native -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */
110
111
/*
112
 * This function contains 26 FP additions, 16 FP multiplications,
113
 * (or, 20 additions, 10 multiplications, 6 fused multiply/add),
114
 * 28 stack variables, 9 constants, and 16 memory accesses
115
 */
116
#include "rdft/scalar/r2r.h"
117
118
static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs)
119
0
{
120
0
     DK(KP765366864, +0.765366864730179543456919968060797733522689125);
121
0
     DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
122
0
     DK(KP390180644, +0.390180644032256535696569736954044481855383236);
123
0
     DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
124
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
125
0
     DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
126
0
     DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
127
0
     DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
128
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
129
0
     {
130
0
    INT i;
131
0
    for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
132
0
         E T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm;
133
0
         {
134
0
        E T1, T2, Td, Te;
135
0
        T1 = I[0];
136
0
        T2 = I[WS(is, 7)];
137
0
        T3 = T1 - T2;
138
0
        Tj = T1 + T2;
139
0
        Td = I[WS(is, 4)];
140
0
        Te = I[WS(is, 3)];
141
0
        Tf = Td - Te;
142
0
        Tk = Td + Te;
143
0
        {
144
0
       E T4, T5, T6, T7, T8, T9;
145
0
       T4 = I[WS(is, 2)];
146
0
       T5 = I[WS(is, 5)];
147
0
       T6 = T4 - T5;
148
0
       T7 = I[WS(is, 1)];
149
0
       T8 = I[WS(is, 6)];
150
0
       T9 = T7 - T8;
151
0
       Ta = KP707106781 * (T6 + T9);
152
0
       Tn = T7 + T8;
153
0
       Tc = KP707106781 * (T6 - T9);
154
0
       Tm = T4 + T5;
155
0
        }
156
0
         }
157
0
         {
158
0
        E Tb, Tg, Tp, Tq;
159
0
        Tb = T3 - Ta;
160
0
        Tg = Tc - Tf;
161
0
        O[WS(os, 3)] = FNMS(KP1_111140466, Tg, KP1_662939224 * Tb);
162
0
        O[WS(os, 5)] = FMA(KP1_662939224, Tg, KP1_111140466 * Tb);
163
0
        Tp = Tj + Tk;
164
0
        Tq = Tm + Tn;
165
0
        O[WS(os, 4)] = KP1_414213562 * (Tp - Tq);
166
0
        O[0] = KP2_000000000 * (Tp + Tq);
167
0
         }
168
0
         {
169
0
        E Th, Ti, Tl, To;
170
0
        Th = T3 + Ta;
171
0
        Ti = Tf + Tc;
172
0
        O[WS(os, 1)] = FNMS(KP390180644, Ti, KP1_961570560 * Th);
173
0
        O[WS(os, 7)] = FMA(KP1_961570560, Ti, KP390180644 * Th);
174
0
        Tl = Tj - Tk;
175
0
        To = Tm - Tn;
176
0
        O[WS(os, 2)] = FNMS(KP765366864, To, KP1_847759065 * Tl);
177
0
        O[WS(os, 6)] = FMA(KP765366864, Tl, KP1_847759065 * To);
178
0
         }
179
0
    }
180
0
     }
181
0
}
182
183
static const kr2r_desc desc = { 8, "e10_8", { 20, 10, 6, 0 }, &GENUS, REDFT10 };
184
185
1
void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc);
186
1
}
187
188
#endif