/src/fftw3/rdft/scalar/r2r/e10_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 11 06:54:37 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2r.native -fma -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 26 FP additions, 18 FP multiplications, |
32 | | * (or, 16 additions, 8 multiplications, 10 fused multiply/add), |
33 | | * 28 stack variables, 9 constants, and 16 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2r.h" |
36 | | |
37 | | static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
40 | | DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); |
41 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
42 | | DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); |
43 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
44 | | DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); |
45 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
46 | | DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); |
47 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
48 | | { |
49 | | INT i; |
50 | | for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { |
51 | | E T3, Tj, Te, Tk, Ta, Tn, Tf, Tm; |
52 | | { |
53 | | E T1, T2, Tc, Td; |
54 | | T1 = I[0]; |
55 | | T2 = I[WS(is, 7)]; |
56 | | T3 = T1 - T2; |
57 | | Tj = T1 + T2; |
58 | | Tc = I[WS(is, 4)]; |
59 | | Td = I[WS(is, 3)]; |
60 | | Te = Tc - Td; |
61 | | Tk = Tc + Td; |
62 | | { |
63 | | E T4, T5, T6, T7, T8, T9; |
64 | | T4 = I[WS(is, 2)]; |
65 | | T5 = I[WS(is, 5)]; |
66 | | T6 = T4 - T5; |
67 | | T7 = I[WS(is, 1)]; |
68 | | T8 = I[WS(is, 6)]; |
69 | | T9 = T7 - T8; |
70 | | Ta = T6 + T9; |
71 | | Tn = T7 + T8; |
72 | | Tf = T6 - T9; |
73 | | Tm = T4 + T5; |
74 | | } |
75 | | } |
76 | | { |
77 | | E Tb, Tg, Tp, Tq; |
78 | | Tb = FNMS(KP707106781, Ta, T3); |
79 | | Tg = FNMS(KP707106781, Tf, Te); |
80 | | O[WS(os, 3)] = KP1_662939224 * (FMA(KP668178637, Tg, Tb)); |
81 | | O[WS(os, 5)] = -(KP1_662939224 * (FNMS(KP668178637, Tb, Tg))); |
82 | | Tp = Tj + Tk; |
83 | | Tq = Tm + Tn; |
84 | | O[WS(os, 4)] = KP1_414213562 * (Tp - Tq); |
85 | | O[0] = KP2_000000000 * (Tp + Tq); |
86 | | } |
87 | | { |
88 | | E Th, Ti, Tl, To; |
89 | | Th = FMA(KP707106781, Ta, T3); |
90 | | Ti = FMA(KP707106781, Tf, Te); |
91 | | O[WS(os, 1)] = KP1_961570560 * (FNMS(KP198912367, Ti, Th)); |
92 | | O[WS(os, 7)] = KP1_961570560 * (FMA(KP198912367, Th, Ti)); |
93 | | Tl = Tj - Tk; |
94 | | To = Tm - Tn; |
95 | | O[WS(os, 2)] = KP1_847759065 * (FNMS(KP414213562, To, Tl)); |
96 | | O[WS(os, 6)] = KP1_847759065 * (FMA(KP414213562, Tl, To)); |
97 | | } |
98 | | } |
99 | | } |
100 | | } |
101 | | |
102 | | static const kr2r_desc desc = { 8, "e10_8", { 16, 8, 10, 0 }, &GENUS, REDFT10 }; |
103 | | |
104 | | void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc); |
105 | | } |
106 | | |
107 | | #else |
108 | | |
109 | | /* Generated by: ../../../genfft/gen_r2r.native -compact -variables 4 -pipeline-latency 4 -redft10 -n 8 -name e10_8 -include rdft/scalar/r2r.h */ |
110 | | |
111 | | /* |
112 | | * This function contains 26 FP additions, 16 FP multiplications, |
113 | | * (or, 20 additions, 10 multiplications, 6 fused multiply/add), |
114 | | * 28 stack variables, 9 constants, and 16 memory accesses |
115 | | */ |
116 | | #include "rdft/scalar/r2r.h" |
117 | | |
118 | | static void e10_8(const R *I, R *O, stride is, stride os, INT v, INT ivs, INT ovs) |
119 | 0 | { |
120 | 0 | DK(KP765366864, +0.765366864730179543456919968060797733522689125); |
121 | 0 | DK(KP1_847759065, +1.847759065022573512256366378793576573644833252); |
122 | 0 | DK(KP390180644, +0.390180644032256535696569736954044481855383236); |
123 | 0 | DK(KP1_961570560, +1.961570560806460898252364472268478073947867462); |
124 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
125 | 0 | DK(KP1_414213562, +1.414213562373095048801688724209698078569671875); |
126 | 0 | DK(KP1_111140466, +1.111140466039204449485661627897065748749874382); |
127 | 0 | DK(KP1_662939224, +1.662939224605090474157576755235811513477121624); |
128 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
129 | 0 | { |
130 | 0 | INT i; |
131 | 0 | for (i = v; i > 0; i = i - 1, I = I + ivs, O = O + ovs, MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) { |
132 | 0 | E T3, Tj, Tf, Tk, Ta, Tn, Tc, Tm; |
133 | 0 | { |
134 | 0 | E T1, T2, Td, Te; |
135 | 0 | T1 = I[0]; |
136 | 0 | T2 = I[WS(is, 7)]; |
137 | 0 | T3 = T1 - T2; |
138 | 0 | Tj = T1 + T2; |
139 | 0 | Td = I[WS(is, 4)]; |
140 | 0 | Te = I[WS(is, 3)]; |
141 | 0 | Tf = Td - Te; |
142 | 0 | Tk = Td + Te; |
143 | 0 | { |
144 | 0 | E T4, T5, T6, T7, T8, T9; |
145 | 0 | T4 = I[WS(is, 2)]; |
146 | 0 | T5 = I[WS(is, 5)]; |
147 | 0 | T6 = T4 - T5; |
148 | 0 | T7 = I[WS(is, 1)]; |
149 | 0 | T8 = I[WS(is, 6)]; |
150 | 0 | T9 = T7 - T8; |
151 | 0 | Ta = KP707106781 * (T6 + T9); |
152 | 0 | Tn = T7 + T8; |
153 | 0 | Tc = KP707106781 * (T6 - T9); |
154 | 0 | Tm = T4 + T5; |
155 | 0 | } |
156 | 0 | } |
157 | 0 | { |
158 | 0 | E Tb, Tg, Tp, Tq; |
159 | 0 | Tb = T3 - Ta; |
160 | 0 | Tg = Tc - Tf; |
161 | 0 | O[WS(os, 3)] = FNMS(KP1_111140466, Tg, KP1_662939224 * Tb); |
162 | 0 | O[WS(os, 5)] = FMA(KP1_662939224, Tg, KP1_111140466 * Tb); |
163 | 0 | Tp = Tj + Tk; |
164 | 0 | Tq = Tm + Tn; |
165 | 0 | O[WS(os, 4)] = KP1_414213562 * (Tp - Tq); |
166 | 0 | O[0] = KP2_000000000 * (Tp + Tq); |
167 | 0 | } |
168 | 0 | { |
169 | 0 | E Th, Ti, Tl, To; |
170 | 0 | Th = T3 + Ta; |
171 | 0 | Ti = Tf + Tc; |
172 | 0 | O[WS(os, 1)] = FNMS(KP390180644, Ti, KP1_961570560 * Th); |
173 | 0 | O[WS(os, 7)] = FMA(KP1_961570560, Ti, KP390180644 * Th); |
174 | 0 | Tl = Tj - Tk; |
175 | 0 | To = Tm - Tn; |
176 | 0 | O[WS(os, 2)] = FNMS(KP765366864, To, KP1_847759065 * Tl); |
177 | 0 | O[WS(os, 6)] = FMA(KP765366864, Tl, KP1_847759065 * To); |
178 | 0 | } |
179 | 0 | } |
180 | 0 | } |
181 | 0 | } |
182 | | |
183 | | static const kr2r_desc desc = { 8, "e10_8", { 20, 10, 6, 0 }, &GENUS, REDFT10 }; |
184 | | |
185 | 1 | void X(codelet_e10_8) (planner *p) { X(kr2r_register) (p, e10_8, &desc); |
186 | 1 | } |
187 | | |
188 | | #endif |