Coverage Report

Created: 2025-07-18 06:52

/src/fftw3/dft/scalar/codelets/t1_12.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 18 06:49:04 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 118 FP additions, 68 FP multiplications,
32
 * (or, 72 additions, 22 multiplications, 46 fused multiply/add),
33
 * 47 stack variables, 2 constants, and 48 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
44
         E T1, T2i, Tl, T2e, T10, T1Y, TG, T1S, Ty, T2r, T1s, T2f, T1d, T21, T1H;
45
         E T1Z, Te, T2o, T1l, T2h, TT, T1V, T1A, T1T;
46
         T1 = ri[0];
47
         T2i = ii[0];
48
         {
49
        E Th, Tk, Ti, T2d, Tg, Tj;
50
        Th = ri[WS(rs, 6)];
51
        Tk = ii[WS(rs, 6)];
52
        Tg = W[10];
53
        Ti = Tg * Th;
54
        T2d = Tg * Tk;
55
        Tj = W[11];
56
        Tl = FMA(Tj, Tk, Ti);
57
        T2e = FNMS(Tj, Th, T2d);
58
         }
59
         {
60
        E TW, TZ, TX, T1X, TV, TY;
61
        TW = ri[WS(rs, 9)];
62
        TZ = ii[WS(rs, 9)];
63
        TV = W[16];
64
        TX = TV * TW;
65
        T1X = TV * TZ;
66
        TY = W[17];
67
        T10 = FMA(TY, TZ, TX);
68
        T1Y = FNMS(TY, TW, T1X);
69
         }
70
         {
71
        E TC, TF, TD, T1R, TB, TE;
72
        TC = ri[WS(rs, 3)];
73
        TF = ii[WS(rs, 3)];
74
        TB = W[4];
75
        TD = TB * TC;
76
        T1R = TB * TF;
77
        TE = W[5];
78
        TG = FMA(TE, TF, TD);
79
        T1S = FNMS(TE, TC, T1R);
80
         }
81
         {
82
        E Tn, Tq, To, T1o, Tt, Tw, Tu, T1q, Tm, Ts;
83
        Tn = ri[WS(rs, 10)];
84
        Tq = ii[WS(rs, 10)];
85
        Tm = W[18];
86
        To = Tm * Tn;
87
        T1o = Tm * Tq;
88
        Tt = ri[WS(rs, 2)];
89
        Tw = ii[WS(rs, 2)];
90
        Ts = W[2];
91
        Tu = Ts * Tt;
92
        T1q = Ts * Tw;
93
        {
94
       E Tr, T1p, Tx, T1r, Tp, Tv;
95
       Tp = W[19];
96
       Tr = FMA(Tp, Tq, To);
97
       T1p = FNMS(Tp, Tn, T1o);
98
       Tv = W[3];
99
       Tx = FMA(Tv, Tw, Tu);
100
       T1r = FNMS(Tv, Tt, T1q);
101
       Ty = Tr + Tx;
102
       T2r = Tx - Tr;
103
       T1s = T1p - T1r;
104
       T2f = T1p + T1r;
105
        }
106
         }
107
         {
108
        E T12, T15, T13, T1D, T18, T1b, T19, T1F, T11, T17;
109
        T12 = ri[WS(rs, 1)];
110
        T15 = ii[WS(rs, 1)];
111
        T11 = W[0];
112
        T13 = T11 * T12;
113
        T1D = T11 * T15;
114
        T18 = ri[WS(rs, 5)];
115
        T1b = ii[WS(rs, 5)];
116
        T17 = W[8];
117
        T19 = T17 * T18;
118
        T1F = T17 * T1b;
119
        {
120
       E T16, T1E, T1c, T1G, T14, T1a;
121
       T14 = W[1];
122
       T16 = FMA(T14, T15, T13);
123
       T1E = FNMS(T14, T12, T1D);
124
       T1a = W[9];
125
       T1c = FMA(T1a, T1b, T19);
126
       T1G = FNMS(T1a, T18, T1F);
127
       T1d = T16 + T1c;
128
       T21 = T1c - T16;
129
       T1H = T1E - T1G;
130
       T1Z = T1E + T1G;
131
        }
132
         }
133
         {
134
        E T3, T6, T4, T1h, T9, Tc, Ta, T1j, T2, T8;
135
        T3 = ri[WS(rs, 4)];
136
        T6 = ii[WS(rs, 4)];
137
        T2 = W[6];
138
        T4 = T2 * T3;
139
        T1h = T2 * T6;
140
        T9 = ri[WS(rs, 8)];
141
        Tc = ii[WS(rs, 8)];
142
        T8 = W[14];
143
        Ta = T8 * T9;
144
        T1j = T8 * Tc;
145
        {
146
       E T7, T1i, Td, T1k, T5, Tb;
147
       T5 = W[7];
148
       T7 = FMA(T5, T6, T4);
149
       T1i = FNMS(T5, T3, T1h);
150
       Tb = W[15];
151
       Td = FMA(Tb, Tc, Ta);
152
       T1k = FNMS(Tb, T9, T1j);
153
       Te = T7 + Td;
154
       T2o = Td - T7;
155
       T1l = T1i - T1k;
156
       T2h = T1i + T1k;
157
        }
158
         }
159
         {
160
        E TI, TL, TJ, T1w, TO, TR, TP, T1y, TH, TN;
161
        TI = ri[WS(rs, 7)];
162
        TL = ii[WS(rs, 7)];
163
        TH = W[12];
164
        TJ = TH * TI;
165
        T1w = TH * TL;
166
        TO = ri[WS(rs, 11)];
167
        TR = ii[WS(rs, 11)];
168
        TN = W[20];
169
        TP = TN * TO;
170
        T1y = TN * TR;
171
        {
172
       E TM, T1x, TS, T1z, TK, TQ;
173
       TK = W[13];
174
       TM = FMA(TK, TL, TJ);
175
       T1x = FNMS(TK, TI, T1w);
176
       TQ = W[21];
177
       TS = FMA(TQ, TR, TP);
178
       T1z = FNMS(TQ, TO, T1y);
179
       TT = TM + TS;
180
       T1V = TS - TM;
181
       T1A = T1x - T1z;
182
       T1T = T1x + T1z;
183
        }
184
         }
185
         {
186
        E TA, T28, T2k, T2m, T1f, T2l, T2b, T2c;
187
        {
188
       E Tf, Tz, T2g, T2j;
189
       Tf = T1 + Te;
190
       Tz = Tl + Ty;
191
       TA = Tf + Tz;
192
       T28 = Tf - Tz;
193
       T2g = T2e + T2f;
194
       T2j = T2h + T2i;
195
       T2k = T2g + T2j;
196
       T2m = T2j - T2g;
197
        }
198
        {
199
       E TU, T1e, T29, T2a;
200
       TU = TG + TT;
201
       T1e = T10 + T1d;
202
       T1f = TU + T1e;
203
       T2l = TU - T1e;
204
       T29 = T1S + T1T;
205
       T2a = T1Y + T1Z;
206
       T2b = T29 - T2a;
207
       T2c = T29 + T2a;
208
        }
209
        ri[WS(rs, 6)] = TA - T1f;
210
        ii[WS(rs, 6)] = T2k - T2c;
211
        ri[0] = TA + T1f;
212
        ii[0] = T2c + T2k;
213
        ri[WS(rs, 3)] = T28 - T2b;
214
        ii[WS(rs, 3)] = T2l + T2m;
215
        ri[WS(rs, 9)] = T28 + T2b;
216
        ii[WS(rs, 9)] = T2m - T2l;
217
         }
218
         {
219
        E T1m, T1K, T2p, T2y, T2s, T2x, T1t, T1L, T1B, T1N, T1W, T25, T22, T26, T1I;
220
        E T1O;
221
        {
222
       E T1g, T2n, T2q, T1n;
223
       T1g = FNMS(KP500000000, Te, T1);
224
       T1m = FNMS(KP866025403, T1l, T1g);
225
       T1K = FMA(KP866025403, T1l, T1g);
226
       T2n = FNMS(KP500000000, T2h, T2i);
227
       T2p = FMA(KP866025403, T2o, T2n);
228
       T2y = FNMS(KP866025403, T2o, T2n);
229
       T2q = FNMS(KP500000000, T2f, T2e);
230
       T2s = FMA(KP866025403, T2r, T2q);
231
       T2x = FNMS(KP866025403, T2r, T2q);
232
       T1n = FNMS(KP500000000, Ty, Tl);
233
       T1t = FNMS(KP866025403, T1s, T1n);
234
       T1L = FMA(KP866025403, T1s, T1n);
235
        }
236
        {
237
       E T1v, T1U, T20, T1C;
238
       T1v = FNMS(KP500000000, TT, TG);
239
       T1B = FNMS(KP866025403, T1A, T1v);
240
       T1N = FMA(KP866025403, T1A, T1v);
241
       T1U = FNMS(KP500000000, T1T, T1S);
242
       T1W = FMA(KP866025403, T1V, T1U);
243
       T25 = FNMS(KP866025403, T1V, T1U);
244
       T20 = FNMS(KP500000000, T1Z, T1Y);
245
       T22 = FMA(KP866025403, T21, T20);
246
       T26 = FNMS(KP866025403, T21, T20);
247
       T1C = FNMS(KP500000000, T1d, T10);
248
       T1I = FNMS(KP866025403, T1H, T1C);
249
       T1O = FMA(KP866025403, T1H, T1C);
250
        }
251
        {
252
       E T1u, T1J, T2z, T2A;
253
       T1u = T1m + T1t;
254
       T1J = T1B + T1I;
255
       ri[WS(rs, 2)] = T1u - T1J;
256
       ri[WS(rs, 8)] = T1u + T1J;
257
       T2z = T2x + T2y;
258
       T2A = T25 + T26;
259
       ii[WS(rs, 2)] = T2z - T2A;
260
       ii[WS(rs, 8)] = T2A + T2z;
261
        }
262
        {
263
       E T1M, T1P, T2v, T2w;
264
       T1M = T1K + T1L;
265
       T1P = T1N + T1O;
266
       ri[WS(rs, 10)] = T1M - T1P;
267
       ri[WS(rs, 4)] = T1M + T1P;
268
       T2v = T1W + T22;
269
       T2w = T2s + T2p;
270
       ii[WS(rs, 4)] = T2v + T2w;
271
       ii[WS(rs, 10)] = T2w - T2v;
272
        }
273
        {
274
       E T1Q, T23, T2t, T2u;
275
       T1Q = T1K - T1L;
276
       T23 = T1W - T22;
277
       ri[WS(rs, 7)] = T1Q - T23;
278
       ri[WS(rs, 1)] = T1Q + T23;
279
       T2t = T2p - T2s;
280
       T2u = T1N - T1O;
281
       ii[WS(rs, 1)] = T2t - T2u;
282
       ii[WS(rs, 7)] = T2u + T2t;
283
        }
284
        {
285
       E T24, T27, T2B, T2C;
286
       T24 = T1m - T1t;
287
       T27 = T25 - T26;
288
       ri[WS(rs, 11)] = T24 - T27;
289
       ri[WS(rs, 5)] = T24 + T27;
290
       T2B = T2y - T2x;
291
       T2C = T1B - T1I;
292
       ii[WS(rs, 5)] = T2B - T2C;
293
       ii[WS(rs, 11)] = T2C + T2B;
294
        }
295
         }
296
    }
297
     }
298
}
299
300
static const tw_instr twinstr[] = {
301
     { TW_FULL, 0, 12 },
302
     { TW_NEXT, 1, 0 }
303
};
304
305
static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, { 72, 22, 46, 0 }, 0, 0, 0 };
306
307
void X(codelet_t1_12) (planner *p) {
308
     X(kdft_dit_register) (p, t1_12, &desc);
309
}
310
#else
311
312
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 12 -name t1_12 -include dft/scalar/t.h */
313
314
/*
315
 * This function contains 118 FP additions, 60 FP multiplications,
316
 * (or, 88 additions, 30 multiplications, 30 fused multiply/add),
317
 * 47 stack variables, 2 constants, and 48 memory accesses
318
 */
319
#include "dft/scalar/t.h"
320
321
static void t1_12(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
322
5
{
323
5
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
324
5
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
325
5
     {
326
5
    INT m;
327
54
    for (m = mb, W = W + (mb * 22); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 22, MAKE_VOLATILE_STRIDE(24, rs)) {
328
49
         E T1, T1W, T18, T21, Tc, T15, T1V, T22, TR, T1E, T1o, T1D, T12, T1l, T1F;
329
49
         E T1G, Ti, T1S, T1d, T24, Tt, T1a, T1T, T25, TA, T1z, T1j, T1y, TL, T1g;
330
49
         E T1A, T1B;
331
49
         {
332
49
        E T6, T16, Tb, T17;
333
49
        T1 = ri[0];
334
49
        T1W = ii[0];
335
49
        {
336
49
       E T3, T5, T2, T4;
337
49
       T3 = ri[WS(rs, 4)];
338
49
       T5 = ii[WS(rs, 4)];
339
49
       T2 = W[6];
340
49
       T4 = W[7];
341
49
       T6 = FMA(T2, T3, T4 * T5);
342
49
       T16 = FNMS(T4, T3, T2 * T5);
343
49
        }
344
49
        {
345
49
       E T8, Ta, T7, T9;
346
49
       T8 = ri[WS(rs, 8)];
347
49
       Ta = ii[WS(rs, 8)];
348
49
       T7 = W[14];
349
49
       T9 = W[15];
350
49
       Tb = FMA(T7, T8, T9 * Ta);
351
49
       T17 = FNMS(T9, T8, T7 * Ta);
352
49
        }
353
49
        T18 = KP866025403 * (T16 - T17);
354
49
        T21 = KP866025403 * (Tb - T6);
355
49
        Tc = T6 + Tb;
356
49
        T15 = FNMS(KP500000000, Tc, T1);
357
49
        T1V = T16 + T17;
358
49
        T22 = FNMS(KP500000000, T1V, T1W);
359
49
         }
360
49
         {
361
49
        E T11, T1n, TW, T1m;
362
49
        {
363
49
       E TO, TQ, TN, TP;
364
49
       TO = ri[WS(rs, 9)];
365
49
       TQ = ii[WS(rs, 9)];
366
49
       TN = W[16];
367
49
       TP = W[17];
368
49
       TR = FMA(TN, TO, TP * TQ);
369
49
       T1E = FNMS(TP, TO, TN * TQ);
370
49
        }
371
49
        {
372
49
       E TY, T10, TX, TZ;
373
49
       TY = ri[WS(rs, 5)];
374
49
       T10 = ii[WS(rs, 5)];
375
49
       TX = W[8];
376
49
       TZ = W[9];
377
49
       T11 = FMA(TX, TY, TZ * T10);
378
49
       T1n = FNMS(TZ, TY, TX * T10);
379
49
        }
380
49
        {
381
49
       E TT, TV, TS, TU;
382
49
       TT = ri[WS(rs, 1)];
383
49
       TV = ii[WS(rs, 1)];
384
49
       TS = W[0];
385
49
       TU = W[1];
386
49
       TW = FMA(TS, TT, TU * TV);
387
49
       T1m = FNMS(TU, TT, TS * TV);
388
49
        }
389
49
        T1o = KP866025403 * (T1m - T1n);
390
49
        T1D = KP866025403 * (T11 - TW);
391
49
        T12 = TW + T11;
392
49
        T1l = FNMS(KP500000000, T12, TR);
393
49
        T1F = T1m + T1n;
394
49
        T1G = FNMS(KP500000000, T1F, T1E);
395
49
         }
396
49
         {
397
49
        E Ts, T1c, Tn, T1b;
398
49
        {
399
49
       E Tf, Th, Te, Tg;
400
49
       Tf = ri[WS(rs, 6)];
401
49
       Th = ii[WS(rs, 6)];
402
49
       Te = W[10];
403
49
       Tg = W[11];
404
49
       Ti = FMA(Te, Tf, Tg * Th);
405
49
       T1S = FNMS(Tg, Tf, Te * Th);
406
49
        }
407
49
        {
408
49
       E Tp, Tr, To, Tq;
409
49
       Tp = ri[WS(rs, 2)];
410
49
       Tr = ii[WS(rs, 2)];
411
49
       To = W[2];
412
49
       Tq = W[3];
413
49
       Ts = FMA(To, Tp, Tq * Tr);
414
49
       T1c = FNMS(Tq, Tp, To * Tr);
415
49
        }
416
49
        {
417
49
       E Tk, Tm, Tj, Tl;
418
49
       Tk = ri[WS(rs, 10)];
419
49
       Tm = ii[WS(rs, 10)];
420
49
       Tj = W[18];
421
49
       Tl = W[19];
422
49
       Tn = FMA(Tj, Tk, Tl * Tm);
423
49
       T1b = FNMS(Tl, Tk, Tj * Tm);
424
49
        }
425
49
        T1d = KP866025403 * (T1b - T1c);
426
49
        T24 = KP866025403 * (Ts - Tn);
427
49
        Tt = Tn + Ts;
428
49
        T1a = FNMS(KP500000000, Tt, Ti);
429
49
        T1T = T1b + T1c;
430
49
        T25 = FNMS(KP500000000, T1T, T1S);
431
49
         }
432
49
         {
433
49
        E TK, T1i, TF, T1h;
434
49
        {
435
49
       E Tx, Tz, Tw, Ty;
436
49
       Tx = ri[WS(rs, 3)];
437
49
       Tz = ii[WS(rs, 3)];
438
49
       Tw = W[4];
439
49
       Ty = W[5];
440
49
       TA = FMA(Tw, Tx, Ty * Tz);
441
49
       T1z = FNMS(Ty, Tx, Tw * Tz);
442
49
        }
443
49
        {
444
49
       E TH, TJ, TG, TI;
445
49
       TH = ri[WS(rs, 11)];
446
49
       TJ = ii[WS(rs, 11)];
447
49
       TG = W[20];
448
49
       TI = W[21];
449
49
       TK = FMA(TG, TH, TI * TJ);
450
49
       T1i = FNMS(TI, TH, TG * TJ);
451
49
        }
452
49
        {
453
49
       E TC, TE, TB, TD;
454
49
       TC = ri[WS(rs, 7)];
455
49
       TE = ii[WS(rs, 7)];
456
49
       TB = W[12];
457
49
       TD = W[13];
458
49
       TF = FMA(TB, TC, TD * TE);
459
49
       T1h = FNMS(TD, TC, TB * TE);
460
49
        }
461
49
        T1j = KP866025403 * (T1h - T1i);
462
49
        T1y = KP866025403 * (TK - TF);
463
49
        TL = TF + TK;
464
49
        T1g = FNMS(KP500000000, TL, TA);
465
49
        T1A = T1h + T1i;
466
49
        T1B = FNMS(KP500000000, T1A, T1z);
467
49
         }
468
49
         {
469
49
        E Tv, T1N, T1Y, T20, T14, T1Z, T1Q, T1R;
470
49
        {
471
49
       E Td, Tu, T1U, T1X;
472
49
       Td = T1 + Tc;
473
49
       Tu = Ti + Tt;
474
49
       Tv = Td + Tu;
475
49
       T1N = Td - Tu;
476
49
       T1U = T1S + T1T;
477
49
       T1X = T1V + T1W;
478
49
       T1Y = T1U + T1X;
479
49
       T20 = T1X - T1U;
480
49
        }
481
49
        {
482
49
       E TM, T13, T1O, T1P;
483
49
       TM = TA + TL;
484
49
       T13 = TR + T12;
485
49
       T14 = TM + T13;
486
49
       T1Z = TM - T13;
487
49
       T1O = T1z + T1A;
488
49
       T1P = T1E + T1F;
489
49
       T1Q = T1O - T1P;
490
49
       T1R = T1O + T1P;
491
49
        }
492
49
        ri[WS(rs, 6)] = Tv - T14;
493
49
        ii[WS(rs, 6)] = T1Y - T1R;
494
49
        ri[0] = Tv + T14;
495
49
        ii[0] = T1R + T1Y;
496
49
        ri[WS(rs, 3)] = T1N - T1Q;
497
49
        ii[WS(rs, 3)] = T1Z + T20;
498
49
        ri[WS(rs, 9)] = T1N + T1Q;
499
49
        ii[WS(rs, 9)] = T20 - T1Z;
500
49
         }
501
49
         {
502
49
        E T1t, T1x, T27, T2a, T1w, T28, T1I, T29;
503
49
        {
504
49
       E T1r, T1s, T23, T26;
505
49
       T1r = T15 + T18;
506
49
       T1s = T1a + T1d;
507
49
       T1t = T1r + T1s;
508
49
       T1x = T1r - T1s;
509
49
       T23 = T21 + T22;
510
49
       T26 = T24 + T25;
511
49
       T27 = T23 - T26;
512
49
       T2a = T26 + T23;
513
49
        }
514
49
        {
515
49
       E T1u, T1v, T1C, T1H;
516
49
       T1u = T1g + T1j;
517
49
       T1v = T1l + T1o;
518
49
       T1w = T1u + T1v;
519
49
       T28 = T1u - T1v;
520
49
       T1C = T1y + T1B;
521
49
       T1H = T1D + T1G;
522
49
       T1I = T1C - T1H;
523
49
       T29 = T1C + T1H;
524
49
        }
525
49
        ri[WS(rs, 10)] = T1t - T1w;
526
49
        ii[WS(rs, 10)] = T2a - T29;
527
49
        ri[WS(rs, 4)] = T1t + T1w;
528
49
        ii[WS(rs, 4)] = T29 + T2a;
529
49
        ri[WS(rs, 7)] = T1x - T1I;
530
49
        ii[WS(rs, 7)] = T28 + T27;
531
49
        ri[WS(rs, 1)] = T1x + T1I;
532
49
        ii[WS(rs, 1)] = T27 - T28;
533
49
         }
534
49
         {
535
49
        E T1f, T1J, T2d, T2f, T1q, T2g, T1M, T2e;
536
49
        {
537
49
       E T19, T1e, T2b, T2c;
538
49
       T19 = T15 - T18;
539
49
       T1e = T1a - T1d;
540
49
       T1f = T19 + T1e;
541
49
       T1J = T19 - T1e;
542
49
       T2b = T25 - T24;
543
49
       T2c = T22 - T21;
544
49
       T2d = T2b + T2c;
545
49
       T2f = T2c - T2b;
546
49
        }
547
49
        {
548
49
       E T1k, T1p, T1K, T1L;
549
49
       T1k = T1g - T1j;
550
49
       T1p = T1l - T1o;
551
49
       T1q = T1k + T1p;
552
49
       T2g = T1k - T1p;
553
49
       T1K = T1B - T1y;
554
49
       T1L = T1G - T1D;
555
49
       T1M = T1K - T1L;
556
49
       T2e = T1K + T1L;
557
49
        }
558
49
        ri[WS(rs, 2)] = T1f - T1q;
559
49
        ii[WS(rs, 2)] = T2d - T2e;
560
49
        ri[WS(rs, 8)] = T1f + T1q;
561
49
        ii[WS(rs, 8)] = T2e + T2d;
562
49
        ri[WS(rs, 11)] = T1J - T1M;
563
49
        ii[WS(rs, 11)] = T2g + T2f;
564
49
        ri[WS(rs, 5)] = T1J + T1M;
565
49
        ii[WS(rs, 5)] = T2f - T2g;
566
49
         }
567
49
    }
568
5
     }
569
5
}
570
571
static const tw_instr twinstr[] = {
572
     { TW_FULL, 0, 12 },
573
     { TW_NEXT, 1, 0 }
574
};
575
576
static const ct_desc desc = { 12, "t1_12", twinstr, &GENUS, { 88, 30, 30, 0 }, 0, 0, 0 };
577
578
1
void X(codelet_t1_12) (planner *p) {
579
1
     X(kdft_dit_register) (p, t1_12, &desc);
580
1
}
581
#endif