Coverage Report

Created: 2025-07-18 06:52

/src/fftw3/dft/scalar/codelets/t1_7.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 18 06:49:03 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 72 FP additions, 66 FP multiplications,
32
 * (or, 18 additions, 12 multiplications, 54 fused multiply/add),
33
 * 37 stack variables, 6 constants, and 28 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
40
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
41
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
42
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
43
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
44
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
45
     {
46
    INT m;
47
    for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
48
         E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b;
49
         T1 = ri[0];
50
         T1c = ii[0];
51
         {
52
        E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8;
53
        T3 = ri[WS(rs, 1)];
54
        T6 = ii[WS(rs, 1)];
55
        T2 = W[0];
56
        T4 = T2 * T3;
57
        TN = T2 * T6;
58
        T9 = ri[WS(rs, 6)];
59
        Tc = ii[WS(rs, 6)];
60
        T8 = W[10];
61
        Ta = T8 * T9;
62
        TP = T8 * Tc;
63
        {
64
       E T7, TO, Td, TQ, T5, Tb;
65
       T5 = W[1];
66
       T7 = FMA(T5, T6, T4);
67
       TO = FNMS(T5, T3, TN);
68
       Tb = W[11];
69
       Td = FMA(Tb, Tc, Ta);
70
       TQ = FNMS(Tb, T9, TP);
71
       Te = T7 + Td;
72
       T1h = Td - T7;
73
       TR = TO - TQ;
74
       T19 = TO + TQ;
75
        }
76
         }
77
         {
78
        E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl;
79
        Tg = ri[WS(rs, 2)];
80
        Tj = ii[WS(rs, 2)];
81
        Tf = W[2];
82
        Th = Tf * Tg;
83
        TI = Tf * Tj;
84
        Tm = ri[WS(rs, 5)];
85
        Tp = ii[WS(rs, 5)];
86
        Tl = W[8];
87
        Tn = Tl * Tm;
88
        TK = Tl * Tp;
89
        {
90
       E Tk, TJ, Tq, TL, Ti, To;
91
       Ti = W[3];
92
       Tk = FMA(Ti, Tj, Th);
93
       TJ = FNMS(Ti, Tg, TI);
94
       To = W[9];
95
       Tq = FMA(To, Tp, Tn);
96
       TL = FNMS(To, Tm, TK);
97
       Tr = Tk + Tq;
98
       T1g = Tq - Tk;
99
       TM = TJ - TL;
100
       T1a = TJ + TL;
101
        }
102
         }
103
         {
104
        E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty;
105
        Tt = ri[WS(rs, 3)];
106
        Tw = ii[WS(rs, 3)];
107
        Ts = W[4];
108
        Tu = Ts * Tt;
109
        TS = Ts * Tw;
110
        Tz = ri[WS(rs, 4)];
111
        TC = ii[WS(rs, 4)];
112
        Ty = W[6];
113
        TA = Ty * Tz;
114
        TU = Ty * TC;
115
        {
116
       E Tx, TT, TD, TV, Tv, TB;
117
       Tv = W[5];
118
       Tx = FMA(Tv, Tw, Tu);
119
       TT = FNMS(Tv, Tt, TS);
120
       TB = W[7];
121
       TD = FMA(TB, TC, TA);
122
       TV = FNMS(TB, Tz, TU);
123
       TE = Tx + TD;
124
       T1i = TD - Tx;
125
       TW = TT - TV;
126
       T1b = TT + TV;
127
        }
128
         }
129
         ri[0] = T1 + Te + Tr + TE;
130
         ii[0] = T19 + T1a + T1b + T1c;
131
         {
132
        E TG, TY, TF, TX, TH;
133
        TF = FNMS(KP356895867, Tr, Te);
134
        TG = FNMS(KP692021471, TF, TE);
135
        TX = FMA(KP554958132, TW, TR);
136
        TY = FMA(KP801937735, TX, TM);
137
        TH = FNMS(KP900968867, TG, T1);
138
        ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH);
139
        ri[WS(rs, 1)] = FMA(KP974927912, TY, TH);
140
         }
141
         {
142
        E T1e, T1k, T1d, T1j, T1f;
143
        T1d = FNMS(KP356895867, T1a, T19);
144
        T1e = FNMS(KP692021471, T1d, T1b);
145
        T1j = FMA(KP554958132, T1i, T1h);
146
        T1k = FMA(KP801937735, T1j, T1g);
147
        T1f = FNMS(KP900968867, T1e, T1c);
148
        ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f);
149
        ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f);
150
         }
151
         {
152
        E T10, T13, TZ, T12, T11;
153
        TZ = FNMS(KP356895867, Te, TE);
154
        T10 = FNMS(KP692021471, TZ, Tr);
155
        T12 = FMA(KP554958132, TM, TW);
156
        T13 = FNMS(KP801937735, T12, TR);
157
        T11 = FNMS(KP900968867, T10, T1);
158
        ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11);
159
        ri[WS(rs, 2)] = FMA(KP974927912, T13, T11);
160
         }
161
         {
162
        E T1m, T1p, T1l, T1o, T1n;
163
        T1l = FNMS(KP356895867, T19, T1b);
164
        T1m = FNMS(KP692021471, T1l, T1a);
165
        T1o = FMA(KP554958132, T1g, T1i);
166
        T1p = FNMS(KP801937735, T1o, T1h);
167
        T1n = FNMS(KP900968867, T1m, T1c);
168
        ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n);
169
        ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n);
170
         }
171
         {
172
        E T15, T18, T14, T17, T16;
173
        T14 = FNMS(KP356895867, TE, Tr);
174
        T15 = FNMS(KP692021471, T14, Te);
175
        T17 = FNMS(KP554958132, TR, TM);
176
        T18 = FNMS(KP801937735, T17, TW);
177
        T16 = FNMS(KP900968867, T15, T1);
178
        ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16);
179
        ri[WS(rs, 3)] = FMA(KP974927912, T18, T16);
180
         }
181
         {
182
        E T1r, T1u, T1q, T1t, T1s;
183
        T1q = FNMS(KP356895867, T1b, T1a);
184
        T1r = FNMS(KP692021471, T1q, T19);
185
        T1t = FNMS(KP554958132, T1h, T1g);
186
        T1u = FNMS(KP801937735, T1t, T1i);
187
        T1s = FNMS(KP900968867, T1r, T1c);
188
        ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s);
189
        ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s);
190
         }
191
    }
192
     }
193
}
194
195
static const tw_instr twinstr[] = {
196
     { TW_FULL, 0, 7 },
197
     { TW_NEXT, 1, 0 }
198
};
199
200
static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 18, 12, 54, 0 }, 0, 0, 0 };
201
202
void X(codelet_t1_7) (planner *p) {
203
     X(kdft_dit_register) (p, t1_7, &desc);
204
}
205
#else
206
207
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */
208
209
/*
210
 * This function contains 72 FP additions, 60 FP multiplications,
211
 * (or, 36 additions, 24 multiplications, 36 fused multiply/add),
212
 * 29 stack variables, 6 constants, and 28 memory accesses
213
 */
214
#include "dft/scalar/t.h"
215
216
static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
217
20
{
218
20
     DK(KP222520933, +0.222520933956314404288902564496794759466355569);
219
20
     DK(KP900968867, +0.900968867902419126236102319507445051165919162);
220
20
     DK(KP623489801, +0.623489801858733530525004884004239810632274731);
221
20
     DK(KP433883739, +0.433883739117558120475768332848358754609990728);
222
20
     DK(KP781831482, +0.781831482468029808708444526674057750232334519);
223
20
     DK(KP974927912, +0.974927912181823607018131682993931217232785801);
224
20
     {
225
20
    INT m;
226
334
    for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) {
227
314
         E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ;
228
314
         T1 = ri[0];
229
314
         TR = ii[0];
230
314
         {
231
314
        E T6, TA, Tb, TB;
232
314
        {
233
314
       E T3, T5, T2, T4;
234
314
       T3 = ri[WS(rs, 1)];
235
314
       T5 = ii[WS(rs, 1)];
236
314
       T2 = W[0];
237
314
       T4 = W[1];
238
314
       T6 = FMA(T2, T3, T4 * T5);
239
314
       TA = FNMS(T4, T3, T2 * T5);
240
314
        }
241
314
        {
242
314
       E T8, Ta, T7, T9;
243
314
       T8 = ri[WS(rs, 6)];
244
314
       Ta = ii[WS(rs, 6)];
245
314
       T7 = W[10];
246
314
       T9 = W[11];
247
314
       Tb = FMA(T7, T8, T9 * Ta);
248
314
       TB = FNMS(T9, T8, T7 * Ta);
249
314
        }
250
314
        Tc = T6 + Tb;
251
314
        TS = Tb - T6;
252
314
        TC = TA - TB;
253
314
        TO = TA + TB;
254
314
         }
255
314
         {
256
314
        E Th, TG, Tm, TH;
257
314
        {
258
314
       E Te, Tg, Td, Tf;
259
314
       Te = ri[WS(rs, 2)];
260
314
       Tg = ii[WS(rs, 2)];
261
314
       Td = W[2];
262
314
       Tf = W[3];
263
314
       Th = FMA(Td, Te, Tf * Tg);
264
314
       TG = FNMS(Tf, Te, Td * Tg);
265
314
        }
266
314
        {
267
314
       E Tj, Tl, Ti, Tk;
268
314
       Tj = ri[WS(rs, 5)];
269
314
       Tl = ii[WS(rs, 5)];
270
314
       Ti = W[8];
271
314
       Tk = W[9];
272
314
       Tm = FMA(Ti, Tj, Tk * Tl);
273
314
       TH = FNMS(Tk, Tj, Ti * Tl);
274
314
        }
275
314
        Tn = Th + Tm;
276
314
        TT = Tm - Th;
277
314
        TI = TG - TH;
278
314
        TP = TG + TH;
279
314
         }
280
314
         {
281
314
        E Ts, TD, Tx, TE;
282
314
        {
283
314
       E Tp, Tr, To, Tq;
284
314
       Tp = ri[WS(rs, 3)];
285
314
       Tr = ii[WS(rs, 3)];
286
314
       To = W[4];
287
314
       Tq = W[5];
288
314
       Ts = FMA(To, Tp, Tq * Tr);
289
314
       TD = FNMS(Tq, Tp, To * Tr);
290
314
        }
291
314
        {
292
314
       E Tu, Tw, Tt, Tv;
293
314
       Tu = ri[WS(rs, 4)];
294
314
       Tw = ii[WS(rs, 4)];
295
314
       Tt = W[6];
296
314
       Tv = W[7];
297
314
       Tx = FMA(Tt, Tu, Tv * Tw);
298
314
       TE = FNMS(Tv, Tu, Tt * Tw);
299
314
        }
300
314
        Ty = Ts + Tx;
301
314
        TU = Tx - Ts;
302
314
        TF = TD - TE;
303
314
        TQ = TD + TE;
304
314
         }
305
314
         ri[0] = T1 + Tc + Tn + Ty;
306
314
         ii[0] = TO + TP + TQ + TR;
307
314
         {
308
314
        E TJ, Tz, TX, TY;
309
314
        TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI);
310
314
        Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc);
311
314
        ri[WS(rs, 5)] = Tz - TJ;
312
314
        ri[WS(rs, 2)] = Tz + TJ;
313
314
        TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT);
314
314
        TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO);
315
314
        ii[WS(rs, 2)] = TX + TY;
316
314
        ii[WS(rs, 5)] = TY - TX;
317
314
         }
318
314
         {
319
314
        E TL, TK, TV, TW;
320
314
        TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF);
321
314
        TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn);
322
314
        ri[WS(rs, 6)] = TK - TL;
323
314
        ri[WS(rs, 1)] = TK + TL;
324
314
        TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU);
325
314
        TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP);
326
314
        ii[WS(rs, 1)] = TV + TW;
327
314
        ii[WS(rs, 6)] = TW - TV;
328
314
         }
329
314
         {
330
314
        E TN, TM, TZ, T10;
331
314
        TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI);
332
314
        TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc);
333
314
        ri[WS(rs, 4)] = TM - TN;
334
314
        ri[WS(rs, 3)] = TM + TN;
335
314
        TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT);
336
314
        T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO);
337
314
        ii[WS(rs, 3)] = TZ + T10;
338
314
        ii[WS(rs, 4)] = T10 - TZ;
339
314
         }
340
314
    }
341
20
     }
342
20
}
343
344
static const tw_instr twinstr[] = {
345
     { TW_FULL, 0, 7 },
346
     { TW_NEXT, 1, 0 }
347
};
348
349
static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 36, 24, 36, 0 }, 0, 0, 0 };
350
351
1
void X(codelet_t1_7) (planner *p) {
352
1
     X(kdft_dit_register) (p, t1_7, &desc);
353
1
}
354
#endif