/src/fftw3/dft/scalar/codelets/t1_7.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 18 06:49:03 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 72 FP additions, 66 FP multiplications, |
32 | | * (or, 18 additions, 12 multiplications, 54 fused multiply/add), |
33 | | * 37 stack variables, 6 constants, and 28 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
40 | | DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
41 | | DK(KP801937735, +0.801937735804838252472204639014890102331838324); |
42 | | DK(KP554958132, +0.554958132087371191422194871006410481067288862); |
43 | | DK(KP692021471, +0.692021471630095869627814897002069140197260599); |
44 | | DK(KP356895867, +0.356895867892209443894399510021300583399127187); |
45 | | { |
46 | | INT m; |
47 | | for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { |
48 | | E T1, T1c, Te, T1h, TR, T19, Tr, T1g, TM, T1a, TE, T1i, TW, T1b; |
49 | | T1 = ri[0]; |
50 | | T1c = ii[0]; |
51 | | { |
52 | | E T3, T6, T4, TN, T9, Tc, Ta, TP, T2, T8; |
53 | | T3 = ri[WS(rs, 1)]; |
54 | | T6 = ii[WS(rs, 1)]; |
55 | | T2 = W[0]; |
56 | | T4 = T2 * T3; |
57 | | TN = T2 * T6; |
58 | | T9 = ri[WS(rs, 6)]; |
59 | | Tc = ii[WS(rs, 6)]; |
60 | | T8 = W[10]; |
61 | | Ta = T8 * T9; |
62 | | TP = T8 * Tc; |
63 | | { |
64 | | E T7, TO, Td, TQ, T5, Tb; |
65 | | T5 = W[1]; |
66 | | T7 = FMA(T5, T6, T4); |
67 | | TO = FNMS(T5, T3, TN); |
68 | | Tb = W[11]; |
69 | | Td = FMA(Tb, Tc, Ta); |
70 | | TQ = FNMS(Tb, T9, TP); |
71 | | Te = T7 + Td; |
72 | | T1h = Td - T7; |
73 | | TR = TO - TQ; |
74 | | T19 = TO + TQ; |
75 | | } |
76 | | } |
77 | | { |
78 | | E Tg, Tj, Th, TI, Tm, Tp, Tn, TK, Tf, Tl; |
79 | | Tg = ri[WS(rs, 2)]; |
80 | | Tj = ii[WS(rs, 2)]; |
81 | | Tf = W[2]; |
82 | | Th = Tf * Tg; |
83 | | TI = Tf * Tj; |
84 | | Tm = ri[WS(rs, 5)]; |
85 | | Tp = ii[WS(rs, 5)]; |
86 | | Tl = W[8]; |
87 | | Tn = Tl * Tm; |
88 | | TK = Tl * Tp; |
89 | | { |
90 | | E Tk, TJ, Tq, TL, Ti, To; |
91 | | Ti = W[3]; |
92 | | Tk = FMA(Ti, Tj, Th); |
93 | | TJ = FNMS(Ti, Tg, TI); |
94 | | To = W[9]; |
95 | | Tq = FMA(To, Tp, Tn); |
96 | | TL = FNMS(To, Tm, TK); |
97 | | Tr = Tk + Tq; |
98 | | T1g = Tq - Tk; |
99 | | TM = TJ - TL; |
100 | | T1a = TJ + TL; |
101 | | } |
102 | | } |
103 | | { |
104 | | E Tt, Tw, Tu, TS, Tz, TC, TA, TU, Ts, Ty; |
105 | | Tt = ri[WS(rs, 3)]; |
106 | | Tw = ii[WS(rs, 3)]; |
107 | | Ts = W[4]; |
108 | | Tu = Ts * Tt; |
109 | | TS = Ts * Tw; |
110 | | Tz = ri[WS(rs, 4)]; |
111 | | TC = ii[WS(rs, 4)]; |
112 | | Ty = W[6]; |
113 | | TA = Ty * Tz; |
114 | | TU = Ty * TC; |
115 | | { |
116 | | E Tx, TT, TD, TV, Tv, TB; |
117 | | Tv = W[5]; |
118 | | Tx = FMA(Tv, Tw, Tu); |
119 | | TT = FNMS(Tv, Tt, TS); |
120 | | TB = W[7]; |
121 | | TD = FMA(TB, TC, TA); |
122 | | TV = FNMS(TB, Tz, TU); |
123 | | TE = Tx + TD; |
124 | | T1i = TD - Tx; |
125 | | TW = TT - TV; |
126 | | T1b = TT + TV; |
127 | | } |
128 | | } |
129 | | ri[0] = T1 + Te + Tr + TE; |
130 | | ii[0] = T19 + T1a + T1b + T1c; |
131 | | { |
132 | | E TG, TY, TF, TX, TH; |
133 | | TF = FNMS(KP356895867, Tr, Te); |
134 | | TG = FNMS(KP692021471, TF, TE); |
135 | | TX = FMA(KP554958132, TW, TR); |
136 | | TY = FMA(KP801937735, TX, TM); |
137 | | TH = FNMS(KP900968867, TG, T1); |
138 | | ri[WS(rs, 6)] = FNMS(KP974927912, TY, TH); |
139 | | ri[WS(rs, 1)] = FMA(KP974927912, TY, TH); |
140 | | } |
141 | | { |
142 | | E T1e, T1k, T1d, T1j, T1f; |
143 | | T1d = FNMS(KP356895867, T1a, T19); |
144 | | T1e = FNMS(KP692021471, T1d, T1b); |
145 | | T1j = FMA(KP554958132, T1i, T1h); |
146 | | T1k = FMA(KP801937735, T1j, T1g); |
147 | | T1f = FNMS(KP900968867, T1e, T1c); |
148 | | ii[WS(rs, 1)] = FMA(KP974927912, T1k, T1f); |
149 | | ii[WS(rs, 6)] = FNMS(KP974927912, T1k, T1f); |
150 | | } |
151 | | { |
152 | | E T10, T13, TZ, T12, T11; |
153 | | TZ = FNMS(KP356895867, Te, TE); |
154 | | T10 = FNMS(KP692021471, TZ, Tr); |
155 | | T12 = FMA(KP554958132, TM, TW); |
156 | | T13 = FNMS(KP801937735, T12, TR); |
157 | | T11 = FNMS(KP900968867, T10, T1); |
158 | | ri[WS(rs, 5)] = FNMS(KP974927912, T13, T11); |
159 | | ri[WS(rs, 2)] = FMA(KP974927912, T13, T11); |
160 | | } |
161 | | { |
162 | | E T1m, T1p, T1l, T1o, T1n; |
163 | | T1l = FNMS(KP356895867, T19, T1b); |
164 | | T1m = FNMS(KP692021471, T1l, T1a); |
165 | | T1o = FMA(KP554958132, T1g, T1i); |
166 | | T1p = FNMS(KP801937735, T1o, T1h); |
167 | | T1n = FNMS(KP900968867, T1m, T1c); |
168 | | ii[WS(rs, 2)] = FMA(KP974927912, T1p, T1n); |
169 | | ii[WS(rs, 5)] = FNMS(KP974927912, T1p, T1n); |
170 | | } |
171 | | { |
172 | | E T15, T18, T14, T17, T16; |
173 | | T14 = FNMS(KP356895867, TE, Tr); |
174 | | T15 = FNMS(KP692021471, T14, Te); |
175 | | T17 = FNMS(KP554958132, TR, TM); |
176 | | T18 = FNMS(KP801937735, T17, TW); |
177 | | T16 = FNMS(KP900968867, T15, T1); |
178 | | ri[WS(rs, 4)] = FNMS(KP974927912, T18, T16); |
179 | | ri[WS(rs, 3)] = FMA(KP974927912, T18, T16); |
180 | | } |
181 | | { |
182 | | E T1r, T1u, T1q, T1t, T1s; |
183 | | T1q = FNMS(KP356895867, T1b, T1a); |
184 | | T1r = FNMS(KP692021471, T1q, T19); |
185 | | T1t = FNMS(KP554958132, T1h, T1g); |
186 | | T1u = FNMS(KP801937735, T1t, T1i); |
187 | | T1s = FNMS(KP900968867, T1r, T1c); |
188 | | ii[WS(rs, 3)] = FMA(KP974927912, T1u, T1s); |
189 | | ii[WS(rs, 4)] = FNMS(KP974927912, T1u, T1s); |
190 | | } |
191 | | } |
192 | | } |
193 | | } |
194 | | |
195 | | static const tw_instr twinstr[] = { |
196 | | { TW_FULL, 0, 7 }, |
197 | | { TW_NEXT, 1, 0 } |
198 | | }; |
199 | | |
200 | | static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 18, 12, 54, 0 }, 0, 0, 0 }; |
201 | | |
202 | | void X(codelet_t1_7) (planner *p) { |
203 | | X(kdft_dit_register) (p, t1_7, &desc); |
204 | | } |
205 | | #else |
206 | | |
207 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 7 -name t1_7 -include dft/scalar/t.h */ |
208 | | |
209 | | /* |
210 | | * This function contains 72 FP additions, 60 FP multiplications, |
211 | | * (or, 36 additions, 24 multiplications, 36 fused multiply/add), |
212 | | * 29 stack variables, 6 constants, and 28 memory accesses |
213 | | */ |
214 | | #include "dft/scalar/t.h" |
215 | | |
216 | | static void t1_7(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
217 | 20 | { |
218 | 20 | DK(KP222520933, +0.222520933956314404288902564496794759466355569); |
219 | 20 | DK(KP900968867, +0.900968867902419126236102319507445051165919162); |
220 | 20 | DK(KP623489801, +0.623489801858733530525004884004239810632274731); |
221 | 20 | DK(KP433883739, +0.433883739117558120475768332848358754609990728); |
222 | 20 | DK(KP781831482, +0.781831482468029808708444526674057750232334519); |
223 | 20 | DK(KP974927912, +0.974927912181823607018131682993931217232785801); |
224 | 20 | { |
225 | 20 | INT m; |
226 | 334 | for (m = mb, W = W + (mb * 12); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 12, MAKE_VOLATILE_STRIDE(14, rs)) { |
227 | 314 | E T1, TR, Tc, TS, TC, TO, Tn, TT, TI, TP, Ty, TU, TF, TQ; |
228 | 314 | T1 = ri[0]; |
229 | 314 | TR = ii[0]; |
230 | 314 | { |
231 | 314 | E T6, TA, Tb, TB; |
232 | 314 | { |
233 | 314 | E T3, T5, T2, T4; |
234 | 314 | T3 = ri[WS(rs, 1)]; |
235 | 314 | T5 = ii[WS(rs, 1)]; |
236 | 314 | T2 = W[0]; |
237 | 314 | T4 = W[1]; |
238 | 314 | T6 = FMA(T2, T3, T4 * T5); |
239 | 314 | TA = FNMS(T4, T3, T2 * T5); |
240 | 314 | } |
241 | 314 | { |
242 | 314 | E T8, Ta, T7, T9; |
243 | 314 | T8 = ri[WS(rs, 6)]; |
244 | 314 | Ta = ii[WS(rs, 6)]; |
245 | 314 | T7 = W[10]; |
246 | 314 | T9 = W[11]; |
247 | 314 | Tb = FMA(T7, T8, T9 * Ta); |
248 | 314 | TB = FNMS(T9, T8, T7 * Ta); |
249 | 314 | } |
250 | 314 | Tc = T6 + Tb; |
251 | 314 | TS = Tb - T6; |
252 | 314 | TC = TA - TB; |
253 | 314 | TO = TA + TB; |
254 | 314 | } |
255 | 314 | { |
256 | 314 | E Th, TG, Tm, TH; |
257 | 314 | { |
258 | 314 | E Te, Tg, Td, Tf; |
259 | 314 | Te = ri[WS(rs, 2)]; |
260 | 314 | Tg = ii[WS(rs, 2)]; |
261 | 314 | Td = W[2]; |
262 | 314 | Tf = W[3]; |
263 | 314 | Th = FMA(Td, Te, Tf * Tg); |
264 | 314 | TG = FNMS(Tf, Te, Td * Tg); |
265 | 314 | } |
266 | 314 | { |
267 | 314 | E Tj, Tl, Ti, Tk; |
268 | 314 | Tj = ri[WS(rs, 5)]; |
269 | 314 | Tl = ii[WS(rs, 5)]; |
270 | 314 | Ti = W[8]; |
271 | 314 | Tk = W[9]; |
272 | 314 | Tm = FMA(Ti, Tj, Tk * Tl); |
273 | 314 | TH = FNMS(Tk, Tj, Ti * Tl); |
274 | 314 | } |
275 | 314 | Tn = Th + Tm; |
276 | 314 | TT = Tm - Th; |
277 | 314 | TI = TG - TH; |
278 | 314 | TP = TG + TH; |
279 | 314 | } |
280 | 314 | { |
281 | 314 | E Ts, TD, Tx, TE; |
282 | 314 | { |
283 | 314 | E Tp, Tr, To, Tq; |
284 | 314 | Tp = ri[WS(rs, 3)]; |
285 | 314 | Tr = ii[WS(rs, 3)]; |
286 | 314 | To = W[4]; |
287 | 314 | Tq = W[5]; |
288 | 314 | Ts = FMA(To, Tp, Tq * Tr); |
289 | 314 | TD = FNMS(Tq, Tp, To * Tr); |
290 | 314 | } |
291 | 314 | { |
292 | 314 | E Tu, Tw, Tt, Tv; |
293 | 314 | Tu = ri[WS(rs, 4)]; |
294 | 314 | Tw = ii[WS(rs, 4)]; |
295 | 314 | Tt = W[6]; |
296 | 314 | Tv = W[7]; |
297 | 314 | Tx = FMA(Tt, Tu, Tv * Tw); |
298 | 314 | TE = FNMS(Tv, Tu, Tt * Tw); |
299 | 314 | } |
300 | 314 | Ty = Ts + Tx; |
301 | 314 | TU = Tx - Ts; |
302 | 314 | TF = TD - TE; |
303 | 314 | TQ = TD + TE; |
304 | 314 | } |
305 | 314 | ri[0] = T1 + Tc + Tn + Ty; |
306 | 314 | ii[0] = TO + TP + TQ + TR; |
307 | 314 | { |
308 | 314 | E TJ, Tz, TX, TY; |
309 | 314 | TJ = FNMS(KP781831482, TF, KP974927912 * TC) - (KP433883739 * TI); |
310 | 314 | Tz = FMA(KP623489801, Ty, T1) + FNMA(KP900968867, Tn, KP222520933 * Tc); |
311 | 314 | ri[WS(rs, 5)] = Tz - TJ; |
312 | 314 | ri[WS(rs, 2)] = Tz + TJ; |
313 | 314 | TX = FNMS(KP781831482, TU, KP974927912 * TS) - (KP433883739 * TT); |
314 | 314 | TY = FMA(KP623489801, TQ, TR) + FNMA(KP900968867, TP, KP222520933 * TO); |
315 | 314 | ii[WS(rs, 2)] = TX + TY; |
316 | 314 | ii[WS(rs, 5)] = TY - TX; |
317 | 314 | } |
318 | 314 | { |
319 | 314 | E TL, TK, TV, TW; |
320 | 314 | TL = FMA(KP781831482, TC, KP974927912 * TI) + (KP433883739 * TF); |
321 | 314 | TK = FMA(KP623489801, Tc, T1) + FNMA(KP900968867, Ty, KP222520933 * Tn); |
322 | 314 | ri[WS(rs, 6)] = TK - TL; |
323 | 314 | ri[WS(rs, 1)] = TK + TL; |
324 | 314 | TV = FMA(KP781831482, TS, KP974927912 * TT) + (KP433883739 * TU); |
325 | 314 | TW = FMA(KP623489801, TO, TR) + FNMA(KP900968867, TQ, KP222520933 * TP); |
326 | 314 | ii[WS(rs, 1)] = TV + TW; |
327 | 314 | ii[WS(rs, 6)] = TW - TV; |
328 | 314 | } |
329 | 314 | { |
330 | 314 | E TN, TM, TZ, T10; |
331 | 314 | TN = FMA(KP433883739, TC, KP974927912 * TF) - (KP781831482 * TI); |
332 | 314 | TM = FMA(KP623489801, Tn, T1) + FNMA(KP222520933, Ty, KP900968867 * Tc); |
333 | 314 | ri[WS(rs, 4)] = TM - TN; |
334 | 314 | ri[WS(rs, 3)] = TM + TN; |
335 | 314 | TZ = FMA(KP433883739, TS, KP974927912 * TU) - (KP781831482 * TT); |
336 | 314 | T10 = FMA(KP623489801, TP, TR) + FNMA(KP222520933, TQ, KP900968867 * TO); |
337 | 314 | ii[WS(rs, 3)] = TZ + T10; |
338 | 314 | ii[WS(rs, 4)] = T10 - TZ; |
339 | 314 | } |
340 | 314 | } |
341 | 20 | } |
342 | 20 | } |
343 | | |
344 | | static const tw_instr twinstr[] = { |
345 | | { TW_FULL, 0, 7 }, |
346 | | { TW_NEXT, 1, 0 } |
347 | | }; |
348 | | |
349 | | static const ct_desc desc = { 7, "t1_7", twinstr, &GENUS, { 36, 24, 36, 0 }, 0, 0, 0 }; |
350 | | |
351 | 1 | void X(codelet_t1_7) (planner *p) { |
352 | 1 | X(kdft_dit_register) (p, t1_7, &desc); |
353 | 1 | } |
354 | | #endif |