/src/fftw3/rdft/scalar/r2cb/hc2cb2_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 18 06:51:53 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 74 FP additions, 50 FP multiplications, |
32 | | * (or, 44 additions, 20 multiplications, 30 fused multiply/add), |
33 | | * 47 stack variables, 1 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { |
43 | | E Tf, Tg, Tl, Tp, Ti, Tj, Tk, T1b, T1u, T1e, T1o, To, Tq, TK; |
44 | | { |
45 | | E Th, T1n, T1t, Tn, Tm, TJ; |
46 | | Tf = W[0]; |
47 | | Tg = W[2]; |
48 | | Th = Tf * Tg; |
49 | | Tl = W[4]; |
50 | | T1n = Tf * Tl; |
51 | | Tp = W[5]; |
52 | | T1t = Tf * Tp; |
53 | | Ti = W[1]; |
54 | | Tj = W[3]; |
55 | | Tn = Tf * Tj; |
56 | | Tk = FMA(Ti, Tj, Th); |
57 | | T1b = FNMS(Ti, Tj, Th); |
58 | | T1u = FNMS(Ti, Tl, T1t); |
59 | | T1e = FMA(Ti, Tg, Tn); |
60 | | T1o = FMA(Ti, Tp, T1n); |
61 | | Tm = Tk * Tl; |
62 | | TJ = Tk * Tp; |
63 | | To = FNMS(Ti, Tg, Tn); |
64 | | Tq = FMA(To, Tp, Tm); |
65 | | TK = FNMS(To, Tl, TJ); |
66 | | } |
67 | | { |
68 | | E T7, T1p, T1v, Tv, TP, T13, T1h, TZ, Te, T1k, T1w, T1q, TQ, TR, T10; |
69 | | E TG, T14; |
70 | | { |
71 | | E T3, Tr, TO, T1f, T6, TL, Tu, T1g; |
72 | | { |
73 | | E T1, T2, TM, TN; |
74 | | T1 = Rp[0]; |
75 | | T2 = Rm[WS(rs, 3)]; |
76 | | T3 = T1 + T2; |
77 | | Tr = T1 - T2; |
78 | | TM = Ip[0]; |
79 | | TN = Im[WS(rs, 3)]; |
80 | | TO = TM + TN; |
81 | | T1f = TM - TN; |
82 | | } |
83 | | { |
84 | | E T4, T5, Ts, Tt; |
85 | | T4 = Rp[WS(rs, 2)]; |
86 | | T5 = Rm[WS(rs, 1)]; |
87 | | T6 = T4 + T5; |
88 | | TL = T4 - T5; |
89 | | Ts = Ip[WS(rs, 2)]; |
90 | | Tt = Im[WS(rs, 1)]; |
91 | | Tu = Ts + Tt; |
92 | | T1g = Ts - Tt; |
93 | | } |
94 | | T7 = T3 + T6; |
95 | | T1p = T3 - T6; |
96 | | T1v = T1f - T1g; |
97 | | Tv = Tr - Tu; |
98 | | TP = TL + TO; |
99 | | T13 = TO - TL; |
100 | | T1h = T1f + T1g; |
101 | | TZ = Tr + Tu; |
102 | | } |
103 | | { |
104 | | E Ta, Tw, Tz, T1i, Td, TB, TE, T1j, TA, TF; |
105 | | { |
106 | | E T8, T9, Tx, Ty; |
107 | | T8 = Rp[WS(rs, 1)]; |
108 | | T9 = Rm[WS(rs, 2)]; |
109 | | Ta = T8 + T9; |
110 | | Tw = T8 - T9; |
111 | | Tx = Ip[WS(rs, 1)]; |
112 | | Ty = Im[WS(rs, 2)]; |
113 | | Tz = Tx + Ty; |
114 | | T1i = Tx - Ty; |
115 | | } |
116 | | { |
117 | | E Tb, Tc, TC, TD; |
118 | | Tb = Rm[0]; |
119 | | Tc = Rp[WS(rs, 3)]; |
120 | | Td = Tb + Tc; |
121 | | TB = Tb - Tc; |
122 | | TC = Ip[WS(rs, 3)]; |
123 | | TD = Im[0]; |
124 | | TE = TC + TD; |
125 | | T1j = TC - TD; |
126 | | } |
127 | | Te = Ta + Td; |
128 | | T1k = T1i + T1j; |
129 | | T1w = Ta - Td; |
130 | | T1q = T1j - T1i; |
131 | | TQ = Tw + Tz; |
132 | | TR = TB + TE; |
133 | | T10 = TQ + TR; |
134 | | TA = Tw - Tz; |
135 | | TF = TB - TE; |
136 | | TG = TA + TF; |
137 | | T14 = TA - TF; |
138 | | } |
139 | | Rp[0] = T7 + Te; |
140 | | Rm[0] = T1h + T1k; |
141 | | { |
142 | | E T11, T12, T15, T16; |
143 | | T11 = FNMS(KP707106781, T10, TZ); |
144 | | T12 = Tg * T11; |
145 | | T15 = FMA(KP707106781, T14, T13); |
146 | | T16 = Tg * T15; |
147 | | Ip[WS(rs, 1)] = FNMS(Tj, T15, T12); |
148 | | Im[WS(rs, 1)] = FMA(Tj, T11, T16); |
149 | | } |
150 | | { |
151 | | E T1z, T1A, T1B, T1C; |
152 | | T1z = T1p + T1q; |
153 | | T1A = Tk * T1z; |
154 | | T1B = T1w + T1v; |
155 | | T1C = Tk * T1B; |
156 | | Rp[WS(rs, 1)] = FNMS(To, T1B, T1A); |
157 | | Rm[WS(rs, 1)] = FMA(To, T1z, T1C); |
158 | | } |
159 | | { |
160 | | E T17, T18, T19, T1a; |
161 | | T17 = FMA(KP707106781, T10, TZ); |
162 | | T18 = Tl * T17; |
163 | | T19 = FNMS(KP707106781, T14, T13); |
164 | | T1a = Tl * T19; |
165 | | Ip[WS(rs, 3)] = FNMS(Tp, T19, T18); |
166 | | Im[WS(rs, 3)] = FMA(Tp, T17, T1a); |
167 | | } |
168 | | { |
169 | | E T1l, T1d, T1m, T1c; |
170 | | T1l = T1h - T1k; |
171 | | T1c = T7 - Te; |
172 | | T1d = T1b * T1c; |
173 | | T1m = T1e * T1c; |
174 | | Rp[WS(rs, 2)] = FNMS(T1e, T1l, T1d); |
175 | | Rm[WS(rs, 2)] = FMA(T1b, T1l, T1m); |
176 | | } |
177 | | { |
178 | | E T1r, T1s, T1x, T1y; |
179 | | T1r = T1p - T1q; |
180 | | T1s = T1o * T1r; |
181 | | T1x = T1v - T1w; |
182 | | T1y = T1o * T1x; |
183 | | Rp[WS(rs, 3)] = FNMS(T1u, T1x, T1s); |
184 | | Rm[WS(rs, 3)] = FMA(T1u, T1r, T1y); |
185 | | } |
186 | | { |
187 | | E TT, TX, TW, TY, TI, TU, TS, TV, TH; |
188 | | TS = TQ - TR; |
189 | | TT = FNMS(KP707106781, TS, TP); |
190 | | TX = FMA(KP707106781, TS, TP); |
191 | | TV = FMA(KP707106781, TG, Tv); |
192 | | TW = Tf * TV; |
193 | | TY = Ti * TV; |
194 | | TH = FNMS(KP707106781, TG, Tv); |
195 | | TI = Tq * TH; |
196 | | TU = TK * TH; |
197 | | Ip[WS(rs, 2)] = FNMS(TK, TT, TI); |
198 | | Im[WS(rs, 2)] = FMA(Tq, TT, TU); |
199 | | Ip[0] = FNMS(Ti, TX, TW); |
200 | | Im[0] = FMA(Tf, TX, TY); |
201 | | } |
202 | | } |
203 | | } |
204 | | } |
205 | | } |
206 | | |
207 | | static const tw_instr twinstr[] = { |
208 | | { TW_CEXP, 1, 1 }, |
209 | | { TW_CEXP, 1, 3 }, |
210 | | { TW_CEXP, 1, 7 }, |
211 | | { TW_NEXT, 1, 0 } |
212 | | }; |
213 | | |
214 | | static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, { 44, 20, 30, 0 } }; |
215 | | |
216 | | void X(codelet_hc2cb2_8) (planner *p) { |
217 | | X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); |
218 | | } |
219 | | #else |
220 | | |
221 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 8 -dif -name hc2cb2_8 -include rdft/scalar/hc2cb.h */ |
222 | | |
223 | | /* |
224 | | * This function contains 74 FP additions, 44 FP multiplications, |
225 | | * (or, 56 additions, 26 multiplications, 18 fused multiply/add), |
226 | | * 46 stack variables, 1 constants, and 32 memory accesses |
227 | | */ |
228 | | #include "rdft/scalar/hc2cb.h" |
229 | | |
230 | | static void hc2cb2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
231 | 0 | { |
232 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
233 | 0 | { |
234 | 0 | INT m; |
235 | 0 | for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { |
236 | 0 | E Tf, Ti, Tg, Tj, Tl, Tp, TP, TR, TF, TG, TH, T15, TL, TT; |
237 | 0 | { |
238 | 0 | E Th, To, Tk, Tn; |
239 | 0 | Tf = W[0]; |
240 | 0 | Ti = W[1]; |
241 | 0 | Tg = W[2]; |
242 | 0 | Tj = W[3]; |
243 | 0 | Th = Tf * Tg; |
244 | 0 | To = Ti * Tg; |
245 | 0 | Tk = Ti * Tj; |
246 | 0 | Tn = Tf * Tj; |
247 | 0 | Tl = Th - Tk; |
248 | 0 | Tp = Tn + To; |
249 | 0 | TP = Th + Tk; |
250 | 0 | TR = Tn - To; |
251 | 0 | TF = W[4]; |
252 | 0 | TG = W[5]; |
253 | 0 | TH = FMA(Tf, TF, Ti * TG); |
254 | 0 | T15 = FNMS(TR, TF, TP * TG); |
255 | 0 | TL = FNMS(Ti, TF, Tf * TG); |
256 | 0 | TT = FMA(TP, TF, TR * TG); |
257 | 0 | } |
258 | 0 | { |
259 | 0 | E T7, T1f, T1i, Tw, TI, TW, T18, TM, Te, T19, T1a, TD, TJ, TZ, T12; |
260 | 0 | E TN, Tm, TE; |
261 | 0 | { |
262 | 0 | E T3, TU, Ts, T17, T6, T16, Tv, TV; |
263 | 0 | { |
264 | 0 | E T1, T2, Tq, Tr; |
265 | 0 | T1 = Rp[0]; |
266 | 0 | T2 = Rm[WS(rs, 3)]; |
267 | 0 | T3 = T1 + T2; |
268 | 0 | TU = T1 - T2; |
269 | 0 | Tq = Ip[0]; |
270 | 0 | Tr = Im[WS(rs, 3)]; |
271 | 0 | Ts = Tq - Tr; |
272 | 0 | T17 = Tq + Tr; |
273 | 0 | } |
274 | 0 | { |
275 | 0 | E T4, T5, Tt, Tu; |
276 | 0 | T4 = Rp[WS(rs, 2)]; |
277 | 0 | T5 = Rm[WS(rs, 1)]; |
278 | 0 | T6 = T4 + T5; |
279 | 0 | T16 = T4 - T5; |
280 | 0 | Tt = Ip[WS(rs, 2)]; |
281 | 0 | Tu = Im[WS(rs, 1)]; |
282 | 0 | Tv = Tt - Tu; |
283 | 0 | TV = Tt + Tu; |
284 | 0 | } |
285 | 0 | T7 = T3 + T6; |
286 | 0 | T1f = TU + TV; |
287 | 0 | T1i = T17 - T16; |
288 | 0 | Tw = Ts + Tv; |
289 | 0 | TI = T3 - T6; |
290 | 0 | TW = TU - TV; |
291 | 0 | T18 = T16 + T17; |
292 | 0 | TM = Ts - Tv; |
293 | 0 | } |
294 | 0 | { |
295 | 0 | E Ta, TX, Tz, TY, Td, T10, TC, T11; |
296 | 0 | { |
297 | 0 | E T8, T9, Tx, Ty; |
298 | 0 | T8 = Rp[WS(rs, 1)]; |
299 | 0 | T9 = Rm[WS(rs, 2)]; |
300 | 0 | Ta = T8 + T9; |
301 | 0 | TX = T8 - T9; |
302 | 0 | Tx = Ip[WS(rs, 1)]; |
303 | 0 | Ty = Im[WS(rs, 2)]; |
304 | 0 | Tz = Tx - Ty; |
305 | 0 | TY = Tx + Ty; |
306 | 0 | } |
307 | 0 | { |
308 | 0 | E Tb, Tc, TA, TB; |
309 | 0 | Tb = Rm[0]; |
310 | 0 | Tc = Rp[WS(rs, 3)]; |
311 | 0 | Td = Tb + Tc; |
312 | 0 | T10 = Tb - Tc; |
313 | 0 | TA = Ip[WS(rs, 3)]; |
314 | 0 | TB = Im[0]; |
315 | 0 | TC = TA - TB; |
316 | 0 | T11 = TA + TB; |
317 | 0 | } |
318 | 0 | Te = Ta + Td; |
319 | 0 | T19 = TX + TY; |
320 | 0 | T1a = T10 + T11; |
321 | 0 | TD = Tz + TC; |
322 | 0 | TJ = TC - Tz; |
323 | 0 | TZ = TX - TY; |
324 | 0 | T12 = T10 - T11; |
325 | 0 | TN = Ta - Td; |
326 | 0 | } |
327 | 0 | Rp[0] = T7 + Te; |
328 | 0 | Rm[0] = Tw + TD; |
329 | 0 | Tm = T7 - Te; |
330 | 0 | TE = Tw - TD; |
331 | 0 | Rp[WS(rs, 2)] = FNMS(Tp, TE, Tl * Tm); |
332 | 0 | Rm[WS(rs, 2)] = FMA(Tp, Tm, Tl * TE); |
333 | 0 | { |
334 | 0 | E TQ, TS, TK, TO; |
335 | 0 | TQ = TI + TJ; |
336 | 0 | TS = TN + TM; |
337 | 0 | Rp[WS(rs, 1)] = FNMS(TR, TS, TP * TQ); |
338 | 0 | Rm[WS(rs, 1)] = FMA(TP, TS, TR * TQ); |
339 | 0 | TK = TI - TJ; |
340 | 0 | TO = TM - TN; |
341 | 0 | Rp[WS(rs, 3)] = FNMS(TL, TO, TH * TK); |
342 | 0 | Rm[WS(rs, 3)] = FMA(TH, TO, TL * TK); |
343 | 0 | } |
344 | 0 | { |
345 | 0 | E T1h, T1l, T1k, T1m, T1g, T1j; |
346 | 0 | T1g = KP707106781 * (T19 + T1a); |
347 | 0 | T1h = T1f - T1g; |
348 | 0 | T1l = T1f + T1g; |
349 | 0 | T1j = KP707106781 * (TZ - T12); |
350 | 0 | T1k = T1i + T1j; |
351 | 0 | T1m = T1i - T1j; |
352 | 0 | Ip[WS(rs, 1)] = FNMS(Tj, T1k, Tg * T1h); |
353 | 0 | Im[WS(rs, 1)] = FMA(Tg, T1k, Tj * T1h); |
354 | 0 | Ip[WS(rs, 3)] = FNMS(TG, T1m, TF * T1l); |
355 | 0 | Im[WS(rs, 3)] = FMA(TF, T1m, TG * T1l); |
356 | 0 | } |
357 | 0 | { |
358 | 0 | E T14, T1d, T1c, T1e, T13, T1b; |
359 | 0 | T13 = KP707106781 * (TZ + T12); |
360 | 0 | T14 = TW - T13; |
361 | 0 | T1d = TW + T13; |
362 | 0 | T1b = KP707106781 * (T19 - T1a); |
363 | 0 | T1c = T18 - T1b; |
364 | 0 | T1e = T18 + T1b; |
365 | 0 | Ip[WS(rs, 2)] = FNMS(T15, T1c, TT * T14); |
366 | 0 | Im[WS(rs, 2)] = FMA(T15, T14, TT * T1c); |
367 | 0 | Ip[0] = FNMS(Ti, T1e, Tf * T1d); |
368 | 0 | Im[0] = FMA(Ti, T1d, Tf * T1e); |
369 | 0 | } |
370 | 0 | } |
371 | 0 | } |
372 | 0 | } |
373 | 0 | } |
374 | | |
375 | | static const tw_instr twinstr[] = { |
376 | | { TW_CEXP, 1, 1 }, |
377 | | { TW_CEXP, 1, 3 }, |
378 | | { TW_CEXP, 1, 7 }, |
379 | | { TW_NEXT, 1, 0 } |
380 | | }; |
381 | | |
382 | | static const hc2c_desc desc = { 8, "hc2cb2_8", twinstr, &GENUS, { 56, 26, 18, 0 } }; |
383 | | |
384 | 1 | void X(codelet_hc2cb2_8) (planner *p) { |
385 | 1 | X(khc2c_register) (p, hc2cb2_8, &desc, HC2C_VIA_RDFT); |
386 | 1 | } |
387 | | #endif |