/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_4.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 18 06:51:18 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cfdft2_4 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 32 FP additions, 24 FP multiplications, |
32 | | * (or, 24 additions, 16 multiplications, 8 fused multiply/add), |
33 | | * 37 stack variables, 1 constants, and 16 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) { |
43 | | E T1, T5, T2, T4, T6, Tc, T3, Tb; |
44 | | T1 = W[0]; |
45 | | T5 = W[3]; |
46 | | T2 = W[2]; |
47 | | T3 = T1 * T2; |
48 | | Tb = T1 * T5; |
49 | | T4 = W[1]; |
50 | | T6 = FMA(T4, T5, T3); |
51 | | Tc = FNMS(T4, T2, Tb); |
52 | | { |
53 | | E Tj, Tp, To, TE, Tw, T9, Tt, Ta, TC, Tf, Tr, Ts, Tx; |
54 | | { |
55 | | E Th, Ti, Tl, Tm, Tn; |
56 | | Th = Ip[0]; |
57 | | Ti = Im[0]; |
58 | | Tj = Th - Ti; |
59 | | Tp = Th + Ti; |
60 | | Tl = Rm[0]; |
61 | | Tm = Rp[0]; |
62 | | Tn = Tl - Tm; |
63 | | To = T1 * Tn; |
64 | | TE = T4 * Tn; |
65 | | Tw = Tm + Tl; |
66 | | } |
67 | | { |
68 | | E T7, T8, Td, Te; |
69 | | T7 = Ip[WS(rs, 1)]; |
70 | | T8 = Im[WS(rs, 1)]; |
71 | | T9 = T7 - T8; |
72 | | Tt = T7 + T8; |
73 | | Ta = T6 * T9; |
74 | | TC = T2 * Tt; |
75 | | Td = Rp[WS(rs, 1)]; |
76 | | Te = Rm[WS(rs, 1)]; |
77 | | Tf = Td + Te; |
78 | | Tr = Td - Te; |
79 | | Ts = T2 * Tr; |
80 | | Tx = T6 * Tf; |
81 | | } |
82 | | { |
83 | | E Tk, TB, Tz, TH, Tv, TA, TG, TI, Tg, Ty; |
84 | | Tg = FNMS(Tc, Tf, Ta); |
85 | | Tk = Tg + Tj; |
86 | | TB = Tj - Tg; |
87 | | Ty = FMA(Tc, T9, Tx); |
88 | | Tz = Tw - Ty; |
89 | | TH = Tw + Ty; |
90 | | { |
91 | | E Tq, Tu, TD, TF; |
92 | | Tq = FNMS(T4, Tp, To); |
93 | | Tu = FMA(T5, Tt, Ts); |
94 | | Tv = Tq - Tu; |
95 | | TA = Tu + Tq; |
96 | | TD = FNMS(T5, Tr, TC); |
97 | | TF = FMA(T1, Tp, TE); |
98 | | TG = TD - TF; |
99 | | TI = TD + TF; |
100 | | } |
101 | | Ip[0] = KP500000000 * (Tk + Tv); |
102 | | Rp[0] = KP500000000 * (TH + TI); |
103 | | Im[WS(rs, 1)] = KP500000000 * (Tv - Tk); |
104 | | Rm[WS(rs, 1)] = KP500000000 * (TH - TI); |
105 | | Rm[0] = KP500000000 * (Tz - TA); |
106 | | Im[0] = KP500000000 * (TG - TB); |
107 | | Rp[WS(rs, 1)] = KP500000000 * (Tz + TA); |
108 | | Ip[WS(rs, 1)] = KP500000000 * (TB + TG); |
109 | | } |
110 | | } |
111 | | } |
112 | | } |
113 | | } |
114 | | |
115 | | static const tw_instr twinstr[] = { |
116 | | { TW_CEXP, 1, 1 }, |
117 | | { TW_CEXP, 1, 3 }, |
118 | | { TW_NEXT, 1, 0 } |
119 | | }; |
120 | | |
121 | | static const hc2c_desc desc = { 4, "hc2cfdft2_4", twinstr, &GENUS, { 24, 16, 8, 0 } }; |
122 | | |
123 | | void X(codelet_hc2cfdft2_4) (planner *p) { |
124 | | X(khc2c_register) (p, hc2cfdft2_4, &desc, HC2C_VIA_DFT); |
125 | | } |
126 | | #else |
127 | | |
128 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 4 -dit -name hc2cfdft2_4 -include rdft/scalar/hc2cf.h */ |
129 | | |
130 | | /* |
131 | | * This function contains 32 FP additions, 24 FP multiplications, |
132 | | * (or, 24 additions, 16 multiplications, 8 fused multiply/add), |
133 | | * 24 stack variables, 1 constants, and 16 memory accesses |
134 | | */ |
135 | | #include "rdft/scalar/hc2cf.h" |
136 | | |
137 | | static void hc2cfdft2_4(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
138 | 0 | { |
139 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
140 | 0 | { |
141 | 0 | INT m; |
142 | 0 | for (m = mb, W = W + ((mb - 1) * 4); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 4, MAKE_VOLATILE_STRIDE(16, rs)) { |
143 | 0 | E T1, T3, T2, T4, T5, T9; |
144 | 0 | T1 = W[0]; |
145 | 0 | T3 = W[1]; |
146 | 0 | T2 = W[2]; |
147 | 0 | T4 = W[3]; |
148 | 0 | T5 = FMA(T1, T2, T3 * T4); |
149 | 0 | T9 = FNMS(T3, T2, T1 * T4); |
150 | 0 | { |
151 | 0 | E Tg, Tr, Tm, Tx, Td, Tw, Tp, Ts; |
152 | 0 | { |
153 | 0 | E Te, Tf, Tl, Ti, Tj, Tk; |
154 | 0 | Te = Ip[0]; |
155 | 0 | Tf = Im[0]; |
156 | 0 | Tl = Te + Tf; |
157 | 0 | Ti = Rm[0]; |
158 | 0 | Tj = Rp[0]; |
159 | 0 | Tk = Ti - Tj; |
160 | 0 | Tg = Te - Tf; |
161 | 0 | Tr = Tj + Ti; |
162 | 0 | Tm = FNMS(T3, Tl, T1 * Tk); |
163 | 0 | Tx = FMA(T3, Tk, T1 * Tl); |
164 | 0 | } |
165 | 0 | { |
166 | 0 | E T8, To, Tc, Tn; |
167 | 0 | { |
168 | 0 | E T6, T7, Ta, Tb; |
169 | 0 | T6 = Ip[WS(rs, 1)]; |
170 | 0 | T7 = Im[WS(rs, 1)]; |
171 | 0 | T8 = T6 - T7; |
172 | 0 | To = T6 + T7; |
173 | 0 | Ta = Rp[WS(rs, 1)]; |
174 | 0 | Tb = Rm[WS(rs, 1)]; |
175 | 0 | Tc = Ta + Tb; |
176 | 0 | Tn = Ta - Tb; |
177 | 0 | } |
178 | 0 | Td = FNMS(T9, Tc, T5 * T8); |
179 | 0 | Tw = FNMS(T4, Tn, T2 * To); |
180 | 0 | Tp = FMA(T2, Tn, T4 * To); |
181 | 0 | Ts = FMA(T5, Tc, T9 * T8); |
182 | 0 | } |
183 | 0 | { |
184 | 0 | E Th, Tq, Tz, TA; |
185 | 0 | Th = Td + Tg; |
186 | 0 | Tq = Tm - Tp; |
187 | 0 | Ip[0] = KP500000000 * (Th + Tq); |
188 | 0 | Im[WS(rs, 1)] = KP500000000 * (Tq - Th); |
189 | 0 | Tz = Tr + Ts; |
190 | 0 | TA = Tw + Tx; |
191 | 0 | Rm[WS(rs, 1)] = KP500000000 * (Tz - TA); |
192 | 0 | Rp[0] = KP500000000 * (Tz + TA); |
193 | 0 | } |
194 | 0 | { |
195 | 0 | E Tt, Tu, Tv, Ty; |
196 | 0 | Tt = Tr - Ts; |
197 | 0 | Tu = Tp + Tm; |
198 | 0 | Rm[0] = KP500000000 * (Tt - Tu); |
199 | 0 | Rp[WS(rs, 1)] = KP500000000 * (Tt + Tu); |
200 | 0 | Tv = Tg - Td; |
201 | 0 | Ty = Tw - Tx; |
202 | 0 | Ip[WS(rs, 1)] = KP500000000 * (Tv + Ty); |
203 | 0 | Im[0] = KP500000000 * (Ty - Tv); |
204 | 0 | } |
205 | 0 | } |
206 | 0 | } |
207 | 0 | } |
208 | 0 | } |
209 | | |
210 | | static const tw_instr twinstr[] = { |
211 | | { TW_CEXP, 1, 1 }, |
212 | | { TW_CEXP, 1, 3 }, |
213 | | { TW_NEXT, 1, 0 } |
214 | | }; |
215 | | |
216 | | static const hc2c_desc desc = { 4, "hc2cfdft2_4", twinstr, &GENUS, { 24, 16, 8, 0 } }; |
217 | | |
218 | 1 | void X(codelet_hc2cfdft2_4) (planner *p) { |
219 | 1 | X(khc2c_register) (p, hc2cfdft2_4, &desc, HC2C_VIA_DFT); |
220 | 1 | } |
221 | | #endif |