/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 18 06:51:18 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 90 FP additions, 66 FP multiplications, |
32 | | * (or, 60 additions, 36 multiplications, 30 fused multiply/add), |
33 | | * 45 stack variables, 2 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { |
44 | | E T1, T2, Th, Tj, T4, T5, T6, Tk, TB, Tq, Tw, Tc, TM, TQ; |
45 | | { |
46 | | E T3, Ti, Tp, Tb, TL, TP; |
47 | | T1 = W[0]; |
48 | | T2 = W[2]; |
49 | | T3 = T1 * T2; |
50 | | Th = W[4]; |
51 | | Ti = T1 * Th; |
52 | | Tj = W[5]; |
53 | | Tp = T1 * Tj; |
54 | | T4 = W[1]; |
55 | | T5 = W[3]; |
56 | | Tb = T1 * T5; |
57 | | T6 = FMA(T4, T5, T3); |
58 | | Tk = FMA(T4, Tj, Ti); |
59 | | TB = FMA(T4, T2, Tb); |
60 | | Tq = FNMS(T4, Th, Tp); |
61 | | Tw = FNMS(T4, T5, T3); |
62 | | TL = T6 * Th; |
63 | | TP = T6 * Tj; |
64 | | Tc = FNMS(T4, T2, Tb); |
65 | | TM = FMA(Tc, Tj, TL); |
66 | | TQ = FNMS(Tc, Th, TP); |
67 | | } |
68 | | { |
69 | | E TI, T1a, TY, T1u, TF, T1s, TS, T1c, Tg, T1n, T13, T1f, Tu, T1p, T17; |
70 | | E T1h; |
71 | | { |
72 | | E TG, TH, TX, TT, TU, TV, TW, T1t; |
73 | | TG = Ip[0]; |
74 | | TH = Im[0]; |
75 | | TX = TG + TH; |
76 | | TT = Rm[0]; |
77 | | TU = Rp[0]; |
78 | | TV = TT - TU; |
79 | | TI = TG - TH; |
80 | | T1a = TU + TT; |
81 | | TW = T1 * TV; |
82 | | TY = FNMS(T4, TX, TW); |
83 | | T1t = T4 * TV; |
84 | | T1u = FMA(T1, TX, T1t); |
85 | | } |
86 | | { |
87 | | E Tz, TR, TE, TN; |
88 | | { |
89 | | E Tx, Ty, TC, TD; |
90 | | Tx = Ip[WS(rs, 2)]; |
91 | | Ty = Im[WS(rs, 2)]; |
92 | | Tz = Tx - Ty; |
93 | | TR = Tx + Ty; |
94 | | TC = Rp[WS(rs, 2)]; |
95 | | TD = Rm[WS(rs, 2)]; |
96 | | TE = TC + TD; |
97 | | TN = TD - TC; |
98 | | } |
99 | | { |
100 | | E TA, T1r, TO, T1b; |
101 | | TA = Tw * Tz; |
102 | | TF = FNMS(TB, TE, TA); |
103 | | T1r = TQ * TN; |
104 | | T1s = FMA(TM, TR, T1r); |
105 | | TO = TM * TN; |
106 | | TS = FNMS(TQ, TR, TO); |
107 | | T1b = Tw * TE; |
108 | | T1c = FMA(TB, Tz, T1b); |
109 | | } |
110 | | } |
111 | | { |
112 | | E T9, T12, Tf, T10; |
113 | | { |
114 | | E T7, T8, Td, Te; |
115 | | T7 = Ip[WS(rs, 1)]; |
116 | | T8 = Im[WS(rs, 1)]; |
117 | | T9 = T7 - T8; |
118 | | T12 = T7 + T8; |
119 | | Td = Rp[WS(rs, 1)]; |
120 | | Te = Rm[WS(rs, 1)]; |
121 | | Tf = Td + Te; |
122 | | T10 = Td - Te; |
123 | | } |
124 | | { |
125 | | E Ta, T1m, T11, T1e; |
126 | | Ta = T6 * T9; |
127 | | Tg = FNMS(Tc, Tf, Ta); |
128 | | T1m = T2 * T12; |
129 | | T1n = FNMS(T5, T10, T1m); |
130 | | T11 = T2 * T10; |
131 | | T13 = FMA(T5, T12, T11); |
132 | | T1e = T6 * Tf; |
133 | | T1f = FMA(Tc, T9, T1e); |
134 | | } |
135 | | } |
136 | | { |
137 | | E Tn, T16, Tt, T14; |
138 | | { |
139 | | E Tl, Tm, Tr, Ts; |
140 | | Tl = Ip[WS(rs, 3)]; |
141 | | Tm = Im[WS(rs, 3)]; |
142 | | Tn = Tl - Tm; |
143 | | T16 = Tl + Tm; |
144 | | Tr = Rp[WS(rs, 3)]; |
145 | | Ts = Rm[WS(rs, 3)]; |
146 | | Tt = Tr + Ts; |
147 | | T14 = Tr - Ts; |
148 | | } |
149 | | { |
150 | | E To, T1o, T15, T1g; |
151 | | To = Tk * Tn; |
152 | | Tu = FNMS(Tq, Tt, To); |
153 | | T1o = Th * T16; |
154 | | T1p = FNMS(Tj, T14, T1o); |
155 | | T15 = Th * T14; |
156 | | T17 = FMA(Tj, T16, T15); |
157 | | T1g = Tk * Tt; |
158 | | T1h = FMA(Tq, Tn, T1g); |
159 | | } |
160 | | } |
161 | | { |
162 | | E TK, T1l, T1w, T1y, T19, T1k, T1j, T1x; |
163 | | { |
164 | | E Tv, TJ, T1q, T1v; |
165 | | Tv = Tg + Tu; |
166 | | TJ = TF + TI; |
167 | | TK = Tv + TJ; |
168 | | T1l = TJ - Tv; |
169 | | T1q = T1n + T1p; |
170 | | T1v = T1s + T1u; |
171 | | T1w = T1q - T1v; |
172 | | T1y = T1q + T1v; |
173 | | } |
174 | | { |
175 | | E TZ, T18, T1d, T1i; |
176 | | TZ = TS + TY; |
177 | | T18 = T13 + T17; |
178 | | T19 = TZ - T18; |
179 | | T1k = T18 + TZ; |
180 | | T1d = T1a + T1c; |
181 | | T1i = T1f + T1h; |
182 | | T1j = T1d - T1i; |
183 | | T1x = T1d + T1i; |
184 | | } |
185 | | Ip[0] = KP500000000 * (TK + T19); |
186 | | Rp[0] = KP500000000 * (T1x + T1y); |
187 | | Im[WS(rs, 3)] = KP500000000 * (T19 - TK); |
188 | | Rm[WS(rs, 3)] = KP500000000 * (T1x - T1y); |
189 | | Rm[WS(rs, 1)] = KP500000000 * (T1j - T1k); |
190 | | Im[WS(rs, 1)] = KP500000000 * (T1w - T1l); |
191 | | Rp[WS(rs, 2)] = KP500000000 * (T1j + T1k); |
192 | | Ip[WS(rs, 2)] = KP500000000 * (T1l + T1w); |
193 | | } |
194 | | { |
195 | | E T1B, T1N, T1L, T1R, T1E, T1O, T1H, T1P; |
196 | | { |
197 | | E T1z, T1A, T1J, T1K; |
198 | | T1z = TI - TF; |
199 | | T1A = T1f - T1h; |
200 | | T1B = T1z - T1A; |
201 | | T1N = T1A + T1z; |
202 | | T1J = T1a - T1c; |
203 | | T1K = Tg - Tu; |
204 | | T1L = T1J - T1K; |
205 | | T1R = T1J + T1K; |
206 | | } |
207 | | { |
208 | | E T1C, T1D, T1F, T1G; |
209 | | T1C = T1p - T1n; |
210 | | T1D = T13 - T17; |
211 | | T1E = T1C + T1D; |
212 | | T1O = T1C - T1D; |
213 | | T1F = TY - TS; |
214 | | T1G = T1u - T1s; |
215 | | T1H = T1F - T1G; |
216 | | T1P = T1F + T1G; |
217 | | } |
218 | | { |
219 | | E T1I, T1S, T1M, T1Q; |
220 | | T1I = T1E + T1H; |
221 | | Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1I, T1B)); |
222 | | Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1I, T1B))); |
223 | | T1S = T1O + T1P; |
224 | | Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1S, T1R)); |
225 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1S, T1R)); |
226 | | T1M = T1H - T1E; |
227 | | Rm[0] = KP500000000 * (FNMS(KP707106781, T1M, T1L)); |
228 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1M, T1L)); |
229 | | T1Q = T1O - T1P; |
230 | | Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1Q, T1N)); |
231 | | Im[0] = -(KP500000000 * (FNMS(KP707106781, T1Q, T1N))); |
232 | | } |
233 | | } |
234 | | } |
235 | | } |
236 | | } |
237 | | } |
238 | | |
239 | | static const tw_instr twinstr[] = { |
240 | | { TW_CEXP, 1, 1 }, |
241 | | { TW_CEXP, 1, 3 }, |
242 | | { TW_CEXP, 1, 7 }, |
243 | | { TW_NEXT, 1, 0 } |
244 | | }; |
245 | | |
246 | | static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, { 60, 36, 30, 0 } }; |
247 | | |
248 | | void X(codelet_hc2cfdft2_8) (planner *p) { |
249 | | X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT); |
250 | | } |
251 | | #else |
252 | | |
253 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include rdft/scalar/hc2cf.h */ |
254 | | |
255 | | /* |
256 | | * This function contains 90 FP additions, 56 FP multiplications, |
257 | | * (or, 72 additions, 38 multiplications, 18 fused multiply/add), |
258 | | * 51 stack variables, 2 constants, and 32 memory accesses |
259 | | */ |
260 | | #include "rdft/scalar/hc2cf.h" |
261 | | |
262 | | static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
263 | 0 | { |
264 | 0 | DK(KP353553390, +0.353553390593273762200422181052424519642417969); |
265 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
266 | 0 | { |
267 | 0 | INT m; |
268 | 0 | for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) { |
269 | 0 | E T1, T4, T2, T5, Tu, Ty, T7, Td, Ti, Tj, Tk, TP, To, TN; |
270 | 0 | { |
271 | 0 | E T3, Tc, T6, Tb; |
272 | 0 | T1 = W[0]; |
273 | 0 | T4 = W[1]; |
274 | 0 | T2 = W[2]; |
275 | 0 | T5 = W[3]; |
276 | 0 | T3 = T1 * T2; |
277 | 0 | Tc = T4 * T2; |
278 | 0 | T6 = T4 * T5; |
279 | 0 | Tb = T1 * T5; |
280 | 0 | Tu = T3 - T6; |
281 | 0 | Ty = Tb + Tc; |
282 | 0 | T7 = T3 + T6; |
283 | 0 | Td = Tb - Tc; |
284 | 0 | Ti = W[4]; |
285 | 0 | Tj = W[5]; |
286 | 0 | Tk = FMA(T1, Ti, T4 * Tj); |
287 | 0 | TP = FNMS(Td, Ti, T7 * Tj); |
288 | 0 | To = FNMS(T4, Ti, T1 * Tj); |
289 | 0 | TN = FMA(T7, Ti, Td * Tj); |
290 | 0 | } |
291 | 0 | { |
292 | 0 | E TF, T11, TC, T12, T1d, T1e, T1q, TM, TR, T1p, Th, Ts, T15, T14, T1a; |
293 | 0 | E T1b, T1m, TV, TY, T1n; |
294 | 0 | { |
295 | 0 | E TD, TE, TL, TI, TJ, TK, Tx, TQ, TB, TO; |
296 | 0 | TD = Ip[0]; |
297 | 0 | TE = Im[0]; |
298 | 0 | TL = TD + TE; |
299 | 0 | TI = Rm[0]; |
300 | 0 | TJ = Rp[0]; |
301 | 0 | TK = TI - TJ; |
302 | 0 | { |
303 | 0 | E Tv, Tw, Tz, TA; |
304 | 0 | Tv = Ip[WS(rs, 2)]; |
305 | 0 | Tw = Im[WS(rs, 2)]; |
306 | 0 | Tx = Tv - Tw; |
307 | 0 | TQ = Tv + Tw; |
308 | 0 | Tz = Rp[WS(rs, 2)]; |
309 | 0 | TA = Rm[WS(rs, 2)]; |
310 | 0 | TB = Tz + TA; |
311 | 0 | TO = Tz - TA; |
312 | 0 | } |
313 | 0 | TF = TD - TE; |
314 | 0 | T11 = TJ + TI; |
315 | 0 | TC = FNMS(Ty, TB, Tu * Tx); |
316 | 0 | T12 = FMA(Tu, TB, Ty * Tx); |
317 | 0 | T1d = FNMS(TP, TO, TN * TQ); |
318 | 0 | T1e = FMA(T4, TK, T1 * TL); |
319 | 0 | T1q = T1e - T1d; |
320 | 0 | TM = FNMS(T4, TL, T1 * TK); |
321 | 0 | TR = FMA(TN, TO, TP * TQ); |
322 | 0 | T1p = TR + TM; |
323 | 0 | } |
324 | 0 | { |
325 | 0 | E Ta, TU, Tg, TT, Tn, TX, Tr, TW; |
326 | 0 | { |
327 | 0 | E T8, T9, Te, Tf; |
328 | 0 | T8 = Ip[WS(rs, 1)]; |
329 | 0 | T9 = Im[WS(rs, 1)]; |
330 | 0 | Ta = T8 - T9; |
331 | 0 | TU = T8 + T9; |
332 | 0 | Te = Rp[WS(rs, 1)]; |
333 | 0 | Tf = Rm[WS(rs, 1)]; |
334 | 0 | Tg = Te + Tf; |
335 | 0 | TT = Te - Tf; |
336 | 0 | } |
337 | 0 | { |
338 | 0 | E Tl, Tm, Tp, Tq; |
339 | 0 | Tl = Ip[WS(rs, 3)]; |
340 | 0 | Tm = Im[WS(rs, 3)]; |
341 | 0 | Tn = Tl - Tm; |
342 | 0 | TX = Tl + Tm; |
343 | 0 | Tp = Rp[WS(rs, 3)]; |
344 | 0 | Tq = Rm[WS(rs, 3)]; |
345 | 0 | Tr = Tp + Tq; |
346 | 0 | TW = Tp - Tq; |
347 | 0 | } |
348 | 0 | Th = FNMS(Td, Tg, T7 * Ta); |
349 | 0 | Ts = FNMS(To, Tr, Tk * Tn); |
350 | 0 | T15 = FMA(Tk, Tr, To * Tn); |
351 | 0 | T14 = FMA(T7, Tg, Td * Ta); |
352 | 0 | T1a = FNMS(T5, TT, T2 * TU); |
353 | 0 | T1b = FNMS(Tj, TW, Ti * TX); |
354 | 0 | T1m = T1b - T1a; |
355 | 0 | TV = FMA(T2, TT, T5 * TU); |
356 | 0 | TY = FMA(Ti, TW, Tj * TX); |
357 | 0 | T1n = TV - TY; |
358 | 0 | } |
359 | 0 | { |
360 | 0 | E T1l, T1x, T1A, T1C, T1s, T1w, T1v, T1B; |
361 | 0 | { |
362 | 0 | E T1j, T1k, T1y, T1z; |
363 | 0 | T1j = TF - TC; |
364 | 0 | T1k = T14 - T15; |
365 | 0 | T1l = KP500000000 * (T1j - T1k); |
366 | 0 | T1x = KP500000000 * (T1k + T1j); |
367 | 0 | T1y = T1m - T1n; |
368 | 0 | T1z = T1p + T1q; |
369 | 0 | T1A = KP353553390 * (T1y - T1z); |
370 | 0 | T1C = KP353553390 * (T1y + T1z); |
371 | 0 | } |
372 | 0 | { |
373 | 0 | E T1o, T1r, T1t, T1u; |
374 | 0 | T1o = T1m + T1n; |
375 | 0 | T1r = T1p - T1q; |
376 | 0 | T1s = KP353553390 * (T1o + T1r); |
377 | 0 | T1w = KP353553390 * (T1r - T1o); |
378 | 0 | T1t = T11 - T12; |
379 | 0 | T1u = Th - Ts; |
380 | 0 | T1v = KP500000000 * (T1t - T1u); |
381 | 0 | T1B = KP500000000 * (T1t + T1u); |
382 | 0 | } |
383 | 0 | Ip[WS(rs, 1)] = T1l + T1s; |
384 | 0 | Rp[WS(rs, 1)] = T1B + T1C; |
385 | 0 | Im[WS(rs, 2)] = T1s - T1l; |
386 | 0 | Rm[WS(rs, 2)] = T1B - T1C; |
387 | 0 | Rm[0] = T1v - T1w; |
388 | 0 | Im[0] = T1A - T1x; |
389 | 0 | Rp[WS(rs, 3)] = T1v + T1w; |
390 | 0 | Ip[WS(rs, 3)] = T1x + T1A; |
391 | 0 | } |
392 | 0 | { |
393 | 0 | E TH, T19, T1g, T1i, T10, T18, T17, T1h; |
394 | 0 | { |
395 | 0 | E Tt, TG, T1c, T1f; |
396 | 0 | Tt = Th + Ts; |
397 | 0 | TG = TC + TF; |
398 | 0 | TH = Tt + TG; |
399 | 0 | T19 = TG - Tt; |
400 | 0 | T1c = T1a + T1b; |
401 | 0 | T1f = T1d + T1e; |
402 | 0 | T1g = T1c - T1f; |
403 | 0 | T1i = T1c + T1f; |
404 | 0 | } |
405 | 0 | { |
406 | 0 | E TS, TZ, T13, T16; |
407 | 0 | TS = TM - TR; |
408 | 0 | TZ = TV + TY; |
409 | 0 | T10 = TS - TZ; |
410 | 0 | T18 = TZ + TS; |
411 | 0 | T13 = T11 + T12; |
412 | 0 | T16 = T14 + T15; |
413 | 0 | T17 = T13 - T16; |
414 | 0 | T1h = T13 + T16; |
415 | 0 | } |
416 | 0 | Ip[0] = KP500000000 * (TH + T10); |
417 | 0 | Rp[0] = KP500000000 * (T1h + T1i); |
418 | 0 | Im[WS(rs, 3)] = KP500000000 * (T10 - TH); |
419 | 0 | Rm[WS(rs, 3)] = KP500000000 * (T1h - T1i); |
420 | 0 | Rm[WS(rs, 1)] = KP500000000 * (T17 - T18); |
421 | 0 | Im[WS(rs, 1)] = KP500000000 * (T1g - T19); |
422 | 0 | Rp[WS(rs, 2)] = KP500000000 * (T17 + T18); |
423 | 0 | Ip[WS(rs, 2)] = KP500000000 * (T19 + T1g); |
424 | 0 | } |
425 | 0 | } |
426 | 0 | } |
427 | 0 | } |
428 | 0 | } |
429 | | |
430 | | static const tw_instr twinstr[] = { |
431 | | { TW_CEXP, 1, 1 }, |
432 | | { TW_CEXP, 1, 3 }, |
433 | | { TW_CEXP, 1, 7 }, |
434 | | { TW_NEXT, 1, 0 } |
435 | | }; |
436 | | |
437 | | static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, { 72, 38, 18, 0 } }; |
438 | | |
439 | 1 | void X(codelet_hc2cfdft2_8) (planner *p) { |
440 | 1 | X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT); |
441 | 1 | } |
442 | | #endif |