Coverage Report

Created: 2025-07-18 06:52

/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 18 06:51:18 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 90 FP additions, 66 FP multiplications,
32
 * (or, 60 additions, 36 multiplications, 30 fused multiply/add),
33
 * 45 stack variables, 2 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
44
         E T1, T2, Th, Tj, T4, T5, T6, Tk, TB, Tq, Tw, Tc, TM, TQ;
45
         {
46
        E T3, Ti, Tp, Tb, TL, TP;
47
        T1 = W[0];
48
        T2 = W[2];
49
        T3 = T1 * T2;
50
        Th = W[4];
51
        Ti = T1 * Th;
52
        Tj = W[5];
53
        Tp = T1 * Tj;
54
        T4 = W[1];
55
        T5 = W[3];
56
        Tb = T1 * T5;
57
        T6 = FMA(T4, T5, T3);
58
        Tk = FMA(T4, Tj, Ti);
59
        TB = FMA(T4, T2, Tb);
60
        Tq = FNMS(T4, Th, Tp);
61
        Tw = FNMS(T4, T5, T3);
62
        TL = T6 * Th;
63
        TP = T6 * Tj;
64
        Tc = FNMS(T4, T2, Tb);
65
        TM = FMA(Tc, Tj, TL);
66
        TQ = FNMS(Tc, Th, TP);
67
         }
68
         {
69
        E TI, T1a, TY, T1u, TF, T1s, TS, T1c, Tg, T1n, T13, T1f, Tu, T1p, T17;
70
        E T1h;
71
        {
72
       E TG, TH, TX, TT, TU, TV, TW, T1t;
73
       TG = Ip[0];
74
       TH = Im[0];
75
       TX = TG + TH;
76
       TT = Rm[0];
77
       TU = Rp[0];
78
       TV = TT - TU;
79
       TI = TG - TH;
80
       T1a = TU + TT;
81
       TW = T1 * TV;
82
       TY = FNMS(T4, TX, TW);
83
       T1t = T4 * TV;
84
       T1u = FMA(T1, TX, T1t);
85
        }
86
        {
87
       E Tz, TR, TE, TN;
88
       {
89
            E Tx, Ty, TC, TD;
90
            Tx = Ip[WS(rs, 2)];
91
            Ty = Im[WS(rs, 2)];
92
            Tz = Tx - Ty;
93
            TR = Tx + Ty;
94
            TC = Rp[WS(rs, 2)];
95
            TD = Rm[WS(rs, 2)];
96
            TE = TC + TD;
97
            TN = TD - TC;
98
       }
99
       {
100
            E TA, T1r, TO, T1b;
101
            TA = Tw * Tz;
102
            TF = FNMS(TB, TE, TA);
103
            T1r = TQ * TN;
104
            T1s = FMA(TM, TR, T1r);
105
            TO = TM * TN;
106
            TS = FNMS(TQ, TR, TO);
107
            T1b = Tw * TE;
108
            T1c = FMA(TB, Tz, T1b);
109
       }
110
        }
111
        {
112
       E T9, T12, Tf, T10;
113
       {
114
            E T7, T8, Td, Te;
115
            T7 = Ip[WS(rs, 1)];
116
            T8 = Im[WS(rs, 1)];
117
            T9 = T7 - T8;
118
            T12 = T7 + T8;
119
            Td = Rp[WS(rs, 1)];
120
            Te = Rm[WS(rs, 1)];
121
            Tf = Td + Te;
122
            T10 = Td - Te;
123
       }
124
       {
125
            E Ta, T1m, T11, T1e;
126
            Ta = T6 * T9;
127
            Tg = FNMS(Tc, Tf, Ta);
128
            T1m = T2 * T12;
129
            T1n = FNMS(T5, T10, T1m);
130
            T11 = T2 * T10;
131
            T13 = FMA(T5, T12, T11);
132
            T1e = T6 * Tf;
133
            T1f = FMA(Tc, T9, T1e);
134
       }
135
        }
136
        {
137
       E Tn, T16, Tt, T14;
138
       {
139
            E Tl, Tm, Tr, Ts;
140
            Tl = Ip[WS(rs, 3)];
141
            Tm = Im[WS(rs, 3)];
142
            Tn = Tl - Tm;
143
            T16 = Tl + Tm;
144
            Tr = Rp[WS(rs, 3)];
145
            Ts = Rm[WS(rs, 3)];
146
            Tt = Tr + Ts;
147
            T14 = Tr - Ts;
148
       }
149
       {
150
            E To, T1o, T15, T1g;
151
            To = Tk * Tn;
152
            Tu = FNMS(Tq, Tt, To);
153
            T1o = Th * T16;
154
            T1p = FNMS(Tj, T14, T1o);
155
            T15 = Th * T14;
156
            T17 = FMA(Tj, T16, T15);
157
            T1g = Tk * Tt;
158
            T1h = FMA(Tq, Tn, T1g);
159
       }
160
        }
161
        {
162
       E TK, T1l, T1w, T1y, T19, T1k, T1j, T1x;
163
       {
164
            E Tv, TJ, T1q, T1v;
165
            Tv = Tg + Tu;
166
            TJ = TF + TI;
167
            TK = Tv + TJ;
168
            T1l = TJ - Tv;
169
            T1q = T1n + T1p;
170
            T1v = T1s + T1u;
171
            T1w = T1q - T1v;
172
            T1y = T1q + T1v;
173
       }
174
       {
175
            E TZ, T18, T1d, T1i;
176
            TZ = TS + TY;
177
            T18 = T13 + T17;
178
            T19 = TZ - T18;
179
            T1k = T18 + TZ;
180
            T1d = T1a + T1c;
181
            T1i = T1f + T1h;
182
            T1j = T1d - T1i;
183
            T1x = T1d + T1i;
184
       }
185
       Ip[0] = KP500000000 * (TK + T19);
186
       Rp[0] = KP500000000 * (T1x + T1y);
187
       Im[WS(rs, 3)] = KP500000000 * (T19 - TK);
188
       Rm[WS(rs, 3)] = KP500000000 * (T1x - T1y);
189
       Rm[WS(rs, 1)] = KP500000000 * (T1j - T1k);
190
       Im[WS(rs, 1)] = KP500000000 * (T1w - T1l);
191
       Rp[WS(rs, 2)] = KP500000000 * (T1j + T1k);
192
       Ip[WS(rs, 2)] = KP500000000 * (T1l + T1w);
193
        }
194
        {
195
       E T1B, T1N, T1L, T1R, T1E, T1O, T1H, T1P;
196
       {
197
            E T1z, T1A, T1J, T1K;
198
            T1z = TI - TF;
199
            T1A = T1f - T1h;
200
            T1B = T1z - T1A;
201
            T1N = T1A + T1z;
202
            T1J = T1a - T1c;
203
            T1K = Tg - Tu;
204
            T1L = T1J - T1K;
205
            T1R = T1J + T1K;
206
       }
207
       {
208
            E T1C, T1D, T1F, T1G;
209
            T1C = T1p - T1n;
210
            T1D = T13 - T17;
211
            T1E = T1C + T1D;
212
            T1O = T1C - T1D;
213
            T1F = TY - TS;
214
            T1G = T1u - T1s;
215
            T1H = T1F - T1G;
216
            T1P = T1F + T1G;
217
       }
218
       {
219
            E T1I, T1S, T1M, T1Q;
220
            T1I = T1E + T1H;
221
            Ip[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1I, T1B));
222
            Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP707106781, T1I, T1B)));
223
            T1S = T1O + T1P;
224
            Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP707106781, T1S, T1R));
225
            Rp[WS(rs, 1)] = KP500000000 * (FMA(KP707106781, T1S, T1R));
226
            T1M = T1H - T1E;
227
            Rm[0] = KP500000000 * (FNMS(KP707106781, T1M, T1L));
228
            Rp[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1M, T1L));
229
            T1Q = T1O - T1P;
230
            Ip[WS(rs, 3)] = KP500000000 * (FMA(KP707106781, T1Q, T1N));
231
            Im[0] = -(KP500000000 * (FNMS(KP707106781, T1Q, T1N)));
232
       }
233
        }
234
         }
235
    }
236
     }
237
}
238
239
static const tw_instr twinstr[] = {
240
     { TW_CEXP, 1, 1 },
241
     { TW_CEXP, 1, 3 },
242
     { TW_CEXP, 1, 7 },
243
     { TW_NEXT, 1, 0 }
244
};
245
246
static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, { 60, 36, 30, 0 } };
247
248
void X(codelet_hc2cfdft2_8) (planner *p) {
249
     X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT);
250
}
251
#else
252
253
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hc2cfdft2_8 -include rdft/scalar/hc2cf.h */
254
255
/*
256
 * This function contains 90 FP additions, 56 FP multiplications,
257
 * (or, 72 additions, 38 multiplications, 18 fused multiply/add),
258
 * 51 stack variables, 2 constants, and 32 memory accesses
259
 */
260
#include "rdft/scalar/hc2cf.h"
261
262
static void hc2cfdft2_8(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
263
0
{
264
0
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
265
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
266
0
     {
267
0
    INT m;
268
0
    for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 6, MAKE_VOLATILE_STRIDE(32, rs)) {
269
0
         E T1, T4, T2, T5, Tu, Ty, T7, Td, Ti, Tj, Tk, TP, To, TN;
270
0
         {
271
0
        E T3, Tc, T6, Tb;
272
0
        T1 = W[0];
273
0
        T4 = W[1];
274
0
        T2 = W[2];
275
0
        T5 = W[3];
276
0
        T3 = T1 * T2;
277
0
        Tc = T4 * T2;
278
0
        T6 = T4 * T5;
279
0
        Tb = T1 * T5;
280
0
        Tu = T3 - T6;
281
0
        Ty = Tb + Tc;
282
0
        T7 = T3 + T6;
283
0
        Td = Tb - Tc;
284
0
        Ti = W[4];
285
0
        Tj = W[5];
286
0
        Tk = FMA(T1, Ti, T4 * Tj);
287
0
        TP = FNMS(Td, Ti, T7 * Tj);
288
0
        To = FNMS(T4, Ti, T1 * Tj);
289
0
        TN = FMA(T7, Ti, Td * Tj);
290
0
         }
291
0
         {
292
0
        E TF, T11, TC, T12, T1d, T1e, T1q, TM, TR, T1p, Th, Ts, T15, T14, T1a;
293
0
        E T1b, T1m, TV, TY, T1n;
294
0
        {
295
0
       E TD, TE, TL, TI, TJ, TK, Tx, TQ, TB, TO;
296
0
       TD = Ip[0];
297
0
       TE = Im[0];
298
0
       TL = TD + TE;
299
0
       TI = Rm[0];
300
0
       TJ = Rp[0];
301
0
       TK = TI - TJ;
302
0
       {
303
0
            E Tv, Tw, Tz, TA;
304
0
            Tv = Ip[WS(rs, 2)];
305
0
            Tw = Im[WS(rs, 2)];
306
0
            Tx = Tv - Tw;
307
0
            TQ = Tv + Tw;
308
0
            Tz = Rp[WS(rs, 2)];
309
0
            TA = Rm[WS(rs, 2)];
310
0
            TB = Tz + TA;
311
0
            TO = Tz - TA;
312
0
       }
313
0
       TF = TD - TE;
314
0
       T11 = TJ + TI;
315
0
       TC = FNMS(Ty, TB, Tu * Tx);
316
0
       T12 = FMA(Tu, TB, Ty * Tx);
317
0
       T1d = FNMS(TP, TO, TN * TQ);
318
0
       T1e = FMA(T4, TK, T1 * TL);
319
0
       T1q = T1e - T1d;
320
0
       TM = FNMS(T4, TL, T1 * TK);
321
0
       TR = FMA(TN, TO, TP * TQ);
322
0
       T1p = TR + TM;
323
0
        }
324
0
        {
325
0
       E Ta, TU, Tg, TT, Tn, TX, Tr, TW;
326
0
       {
327
0
            E T8, T9, Te, Tf;
328
0
            T8 = Ip[WS(rs, 1)];
329
0
            T9 = Im[WS(rs, 1)];
330
0
            Ta = T8 - T9;
331
0
            TU = T8 + T9;
332
0
            Te = Rp[WS(rs, 1)];
333
0
            Tf = Rm[WS(rs, 1)];
334
0
            Tg = Te + Tf;
335
0
            TT = Te - Tf;
336
0
       }
337
0
       {
338
0
            E Tl, Tm, Tp, Tq;
339
0
            Tl = Ip[WS(rs, 3)];
340
0
            Tm = Im[WS(rs, 3)];
341
0
            Tn = Tl - Tm;
342
0
            TX = Tl + Tm;
343
0
            Tp = Rp[WS(rs, 3)];
344
0
            Tq = Rm[WS(rs, 3)];
345
0
            Tr = Tp + Tq;
346
0
            TW = Tp - Tq;
347
0
       }
348
0
       Th = FNMS(Td, Tg, T7 * Ta);
349
0
       Ts = FNMS(To, Tr, Tk * Tn);
350
0
       T15 = FMA(Tk, Tr, To * Tn);
351
0
       T14 = FMA(T7, Tg, Td * Ta);
352
0
       T1a = FNMS(T5, TT, T2 * TU);
353
0
       T1b = FNMS(Tj, TW, Ti * TX);
354
0
       T1m = T1b - T1a;
355
0
       TV = FMA(T2, TT, T5 * TU);
356
0
       TY = FMA(Ti, TW, Tj * TX);
357
0
       T1n = TV - TY;
358
0
        }
359
0
        {
360
0
       E T1l, T1x, T1A, T1C, T1s, T1w, T1v, T1B;
361
0
       {
362
0
            E T1j, T1k, T1y, T1z;
363
0
            T1j = TF - TC;
364
0
            T1k = T14 - T15;
365
0
            T1l = KP500000000 * (T1j - T1k);
366
0
            T1x = KP500000000 * (T1k + T1j);
367
0
            T1y = T1m - T1n;
368
0
            T1z = T1p + T1q;
369
0
            T1A = KP353553390 * (T1y - T1z);
370
0
            T1C = KP353553390 * (T1y + T1z);
371
0
       }
372
0
       {
373
0
            E T1o, T1r, T1t, T1u;
374
0
            T1o = T1m + T1n;
375
0
            T1r = T1p - T1q;
376
0
            T1s = KP353553390 * (T1o + T1r);
377
0
            T1w = KP353553390 * (T1r - T1o);
378
0
            T1t = T11 - T12;
379
0
            T1u = Th - Ts;
380
0
            T1v = KP500000000 * (T1t - T1u);
381
0
            T1B = KP500000000 * (T1t + T1u);
382
0
       }
383
0
       Ip[WS(rs, 1)] = T1l + T1s;
384
0
       Rp[WS(rs, 1)] = T1B + T1C;
385
0
       Im[WS(rs, 2)] = T1s - T1l;
386
0
       Rm[WS(rs, 2)] = T1B - T1C;
387
0
       Rm[0] = T1v - T1w;
388
0
       Im[0] = T1A - T1x;
389
0
       Rp[WS(rs, 3)] = T1v + T1w;
390
0
       Ip[WS(rs, 3)] = T1x + T1A;
391
0
        }
392
0
        {
393
0
       E TH, T19, T1g, T1i, T10, T18, T17, T1h;
394
0
       {
395
0
            E Tt, TG, T1c, T1f;
396
0
            Tt = Th + Ts;
397
0
            TG = TC + TF;
398
0
            TH = Tt + TG;
399
0
            T19 = TG - Tt;
400
0
            T1c = T1a + T1b;
401
0
            T1f = T1d + T1e;
402
0
            T1g = T1c - T1f;
403
0
            T1i = T1c + T1f;
404
0
       }
405
0
       {
406
0
            E TS, TZ, T13, T16;
407
0
            TS = TM - TR;
408
0
            TZ = TV + TY;
409
0
            T10 = TS - TZ;
410
0
            T18 = TZ + TS;
411
0
            T13 = T11 + T12;
412
0
            T16 = T14 + T15;
413
0
            T17 = T13 - T16;
414
0
            T1h = T13 + T16;
415
0
       }
416
0
       Ip[0] = KP500000000 * (TH + T10);
417
0
       Rp[0] = KP500000000 * (T1h + T1i);
418
0
       Im[WS(rs, 3)] = KP500000000 * (T10 - TH);
419
0
       Rm[WS(rs, 3)] = KP500000000 * (T1h - T1i);
420
0
       Rm[WS(rs, 1)] = KP500000000 * (T17 - T18);
421
0
       Im[WS(rs, 1)] = KP500000000 * (T1g - T19);
422
0
       Rp[WS(rs, 2)] = KP500000000 * (T17 + T18);
423
0
       Ip[WS(rs, 2)] = KP500000000 * (T19 + T1g);
424
0
        }
425
0
         }
426
0
    }
427
0
     }
428
0
}
429
430
static const tw_instr twinstr[] = {
431
     { TW_CEXP, 1, 1 },
432
     { TW_CEXP, 1, 3 },
433
     { TW_CEXP, 1, 7 },
434
     { TW_NEXT, 1, 0 }
435
};
436
437
static const hc2c_desc desc = { 8, "hc2cfdft2_8", twinstr, &GENUS, { 72, 38, 18, 0 } };
438
439
1
void X(codelet_hc2cfdft2_8) (planner *p) {
440
1
     X(khc2c_register) (p, hc2cfdft2_8, &desc, HC2C_VIA_DFT);
441
1
}
442
#endif