Coverage Report

Created: 2025-07-18 06:52

/src/fftw3/rdft/scalar/r2cf/r2cf_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Jul 18 06:50:48 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cf_16 -include rdft/scalar/r2cf.h */
29
30
/*
31
 * This function contains 58 FP additions, 20 FP multiplications,
32
 * (or, 38 additions, 0 multiplications, 20 fused multiply/add),
33
 * 34 stack variables, 3 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/r2cf.h"
36
37
static void r2cf_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
41
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
42
     {
43
    INT i;
44
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
45
         E T3, T6, T7, TN, TB, Ta, Td, Te, TO, TE, Tm, TT, Ty, TI, Tt;
46
         E TS, Tz, TL, TC, TD, TR, TU;
47
         {
48
        E T1, T2, T4, T5;
49
        T1 = R0[0];
50
        T2 = R0[WS(rs, 4)];
51
        T3 = T1 + T2;
52
        T4 = R0[WS(rs, 2)];
53
        T5 = R0[WS(rs, 6)];
54
        T6 = T4 + T5;
55
        T7 = T3 + T6;
56
        TN = T4 - T5;
57
        TB = T1 - T2;
58
         }
59
         {
60
        E T8, T9, Tb, Tc;
61
        T8 = R0[WS(rs, 1)];
62
        T9 = R0[WS(rs, 5)];
63
        Ta = T8 + T9;
64
        TC = T8 - T9;
65
        Tb = R0[WS(rs, 7)];
66
        Tc = R0[WS(rs, 3)];
67
        Td = Tb + Tc;
68
        TD = Tb - Tc;
69
         }
70
         Te = Ta + Td;
71
         TO = TD - TC;
72
         TE = TC + TD;
73
         {
74
        E Ti, TG, Tl, TH;
75
        {
76
       E Tg, Th, Tj, Tk;
77
       Tg = R1[0];
78
       Th = R1[WS(rs, 4)];
79
       Ti = Tg + Th;
80
       TG = Tg - Th;
81
       Tj = R1[WS(rs, 2)];
82
       Tk = R1[WS(rs, 6)];
83
       Tl = Tj + Tk;
84
       TH = Tj - Tk;
85
        }
86
        Tm = Ti - Tl;
87
        TT = FMA(KP414213562, TG, TH);
88
        Ty = Ti + Tl;
89
        TI = FNMS(KP414213562, TH, TG);
90
         }
91
         {
92
        E Tp, TJ, Ts, TK;
93
        {
94
       E Tn, To, Tq, Tr;
95
       Tn = R1[WS(rs, 7)];
96
       To = R1[WS(rs, 3)];
97
       Tp = Tn + To;
98
       TJ = Tn - To;
99
       Tq = R1[WS(rs, 1)];
100
       Tr = R1[WS(rs, 5)];
101
       Ts = Tq + Tr;
102
       TK = Tr - Tq;
103
        }
104
        Tt = Tp - Ts;
105
        TS = FMA(KP414213562, TJ, TK);
106
        Tz = Tp + Ts;
107
        TL = FNMS(KP414213562, TK, TJ);
108
         }
109
         Cr[WS(csr, 4)] = T7 - Te;
110
         Ci[WS(csi, 4)] = Tz - Ty;
111
         {
112
        E Tf, Tu, Tv, Tw;
113
        Tf = T3 - T6;
114
        Tu = Tm + Tt;
115
        Cr[WS(csr, 6)] = FNMS(KP707106781, Tu, Tf);
116
        Cr[WS(csr, 2)] = FMA(KP707106781, Tu, Tf);
117
        Tv = Td - Ta;
118
        Tw = Tt - Tm;
119
        Ci[WS(csi, 2)] = FMA(KP707106781, Tw, Tv);
120
        Ci[WS(csi, 6)] = FMS(KP707106781, Tw, Tv);
121
         }
122
         {
123
        E Tx, TA, TF, TM;
124
        Tx = T7 + Te;
125
        TA = Ty + Tz;
126
        Cr[WS(csr, 8)] = Tx - TA;
127
        Cr[0] = Tx + TA;
128
        TF = FMA(KP707106781, TE, TB);
129
        TM = TI + TL;
130
        Cr[WS(csr, 7)] = FNMS(KP923879532, TM, TF);
131
        Cr[WS(csr, 1)] = FMA(KP923879532, TM, TF);
132
         }
133
         TR = FNMS(KP707106781, TO, TN);
134
         TU = TS - TT;
135
         Ci[WS(csi, 1)] = FMS(KP923879532, TU, TR);
136
         Ci[WS(csi, 7)] = FMA(KP923879532, TU, TR);
137
         {
138
        E TV, TW, TP, TQ;
139
        TV = FNMS(KP707106781, TE, TB);
140
        TW = TT + TS;
141
        Cr[WS(csr, 5)] = FNMS(KP923879532, TW, TV);
142
        Cr[WS(csr, 3)] = FMA(KP923879532, TW, TV);
143
        TP = FMA(KP707106781, TO, TN);
144
        TQ = TL - TI;
145
        Ci[WS(csi, 3)] = FMA(KP923879532, TQ, TP);
146
        Ci[WS(csi, 5)] = FMS(KP923879532, TQ, TP);
147
         }
148
    }
149
     }
150
}
151
152
static const kr2c_desc desc = { 16, "r2cf_16", { 38, 0, 20, 0 }, &GENUS };
153
154
void X(codelet_r2cf_16) (planner *p) { X(kr2c_register) (p, r2cf_16, &desc);
155
}
156
157
#else
158
159
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cf_16 -include rdft/scalar/r2cf.h */
160
161
/*
162
 * This function contains 58 FP additions, 12 FP multiplications,
163
 * (or, 54 additions, 8 multiplications, 4 fused multiply/add),
164
 * 34 stack variables, 3 constants, and 32 memory accesses
165
 */
166
#include "rdft/scalar/r2cf.h"
167
168
static void r2cf_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
169
0
{
170
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
171
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
172
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
173
0
     {
174
0
    INT i;
175
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
176
0
         E T3, T6, T7, Tz, Ti, Ta, Td, Te, TA, Th, Tq, TV, TF, TP, Tx;
177
0
         E TU, TE, TM, Tg, Tf, TJ, TQ;
178
0
         {
179
0
        E T1, T2, T4, T5;
180
0
        T1 = R0[0];
181
0
        T2 = R0[WS(rs, 4)];
182
0
        T3 = T1 + T2;
183
0
        T4 = R0[WS(rs, 2)];
184
0
        T5 = R0[WS(rs, 6)];
185
0
        T6 = T4 + T5;
186
0
        T7 = T3 + T6;
187
0
        Tz = T1 - T2;
188
0
        Ti = T4 - T5;
189
0
         }
190
0
         {
191
0
        E T8, T9, Tb, Tc;
192
0
        T8 = R0[WS(rs, 1)];
193
0
        T9 = R0[WS(rs, 5)];
194
0
        Ta = T8 + T9;
195
0
        Tg = T8 - T9;
196
0
        Tb = R0[WS(rs, 7)];
197
0
        Tc = R0[WS(rs, 3)];
198
0
        Td = Tb + Tc;
199
0
        Tf = Tb - Tc;
200
0
         }
201
0
         Te = Ta + Td;
202
0
         TA = KP707106781 * (Tg + Tf);
203
0
         Th = KP707106781 * (Tf - Tg);
204
0
         {
205
0
        E Tm, TN, Tp, TO;
206
0
        {
207
0
       E Tk, Tl, Tn, To;
208
0
       Tk = R1[WS(rs, 7)];
209
0
       Tl = R1[WS(rs, 3)];
210
0
       Tm = Tk - Tl;
211
0
       TN = Tk + Tl;
212
0
       Tn = R1[WS(rs, 1)];
213
0
       To = R1[WS(rs, 5)];
214
0
       Tp = Tn - To;
215
0
       TO = Tn + To;
216
0
        }
217
0
        Tq = FNMS(KP923879532, Tp, KP382683432 * Tm);
218
0
        TV = TN + TO;
219
0
        TF = FMA(KP923879532, Tm, KP382683432 * Tp);
220
0
        TP = TN - TO;
221
0
         }
222
0
         {
223
0
        E Tt, TK, Tw, TL;
224
0
        {
225
0
       E Tr, Ts, Tu, Tv;
226
0
       Tr = R1[0];
227
0
       Ts = R1[WS(rs, 4)];
228
0
       Tt = Tr - Ts;
229
0
       TK = Tr + Ts;
230
0
       Tu = R1[WS(rs, 2)];
231
0
       Tv = R1[WS(rs, 6)];
232
0
       Tw = Tu - Tv;
233
0
       TL = Tu + Tv;
234
0
        }
235
0
        Tx = FMA(KP382683432, Tt, KP923879532 * Tw);
236
0
        TU = TK + TL;
237
0
        TE = FNMS(KP382683432, Tw, KP923879532 * Tt);
238
0
        TM = TK - TL;
239
0
         }
240
0
         Cr[WS(csr, 4)] = T7 - Te;
241
0
         Ci[WS(csi, 4)] = TV - TU;
242
0
         {
243
0
        E Tj, Ty, TD, TG;
244
0
        Tj = Th - Ti;
245
0
        Ty = Tq - Tx;
246
0
        Ci[WS(csi, 1)] = Tj + Ty;
247
0
        Ci[WS(csi, 7)] = Ty - Tj;
248
0
        TD = Tz + TA;
249
0
        TG = TE + TF;
250
0
        Cr[WS(csr, 7)] = TD - TG;
251
0
        Cr[WS(csr, 1)] = TD + TG;
252
0
         }
253
0
         {
254
0
        E TB, TC, TH, TI;
255
0
        TB = Tz - TA;
256
0
        TC = Tx + Tq;
257
0
        Cr[WS(csr, 5)] = TB - TC;
258
0
        Cr[WS(csr, 3)] = TB + TC;
259
0
        TH = Ti + Th;
260
0
        TI = TF - TE;
261
0
        Ci[WS(csi, 3)] = TH + TI;
262
0
        Ci[WS(csi, 5)] = TI - TH;
263
0
         }
264
0
         TJ = T3 - T6;
265
0
         TQ = KP707106781 * (TM + TP);
266
0
         Cr[WS(csr, 6)] = TJ - TQ;
267
0
         Cr[WS(csr, 2)] = TJ + TQ;
268
0
         {
269
0
        E TR, TS, TT, TW;
270
0
        TR = Td - Ta;
271
0
        TS = KP707106781 * (TP - TM);
272
0
        Ci[WS(csi, 2)] = TR + TS;
273
0
        Ci[WS(csi, 6)] = TS - TR;
274
0
        TT = T7 + Te;
275
0
        TW = TU + TV;
276
0
        Cr[WS(csr, 8)] = TT - TW;
277
0
        Cr[0] = TT + TW;
278
0
         }
279
0
    }
280
0
     }
281
0
}
282
283
static const kr2c_desc desc = { 16, "r2cf_16", { 54, 8, 4, 0 }, &GENUS };
284
285
1
void X(codelet_r2cf_16) (planner *p) { X(kr2c_register) (p, r2cf_16, &desc);
286
1
}
287
288
#endif