/src/fftw3/rdft/scalar/r2cf/r2cf_16.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Jul 18 06:50:48 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cf_16 -include rdft/scalar/r2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 58 FP additions, 20 FP multiplications, |
32 | | * (or, 38 additions, 0 multiplications, 20 fused multiply/add), |
33 | | * 34 stack variables, 3 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cf.h" |
36 | | |
37 | | static void r2cf_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
41 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
42 | | { |
43 | | INT i; |
44 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { |
45 | | E T3, T6, T7, TN, TB, Ta, Td, Te, TO, TE, Tm, TT, Ty, TI, Tt; |
46 | | E TS, Tz, TL, TC, TD, TR, TU; |
47 | | { |
48 | | E T1, T2, T4, T5; |
49 | | T1 = R0[0]; |
50 | | T2 = R0[WS(rs, 4)]; |
51 | | T3 = T1 + T2; |
52 | | T4 = R0[WS(rs, 2)]; |
53 | | T5 = R0[WS(rs, 6)]; |
54 | | T6 = T4 + T5; |
55 | | T7 = T3 + T6; |
56 | | TN = T4 - T5; |
57 | | TB = T1 - T2; |
58 | | } |
59 | | { |
60 | | E T8, T9, Tb, Tc; |
61 | | T8 = R0[WS(rs, 1)]; |
62 | | T9 = R0[WS(rs, 5)]; |
63 | | Ta = T8 + T9; |
64 | | TC = T8 - T9; |
65 | | Tb = R0[WS(rs, 7)]; |
66 | | Tc = R0[WS(rs, 3)]; |
67 | | Td = Tb + Tc; |
68 | | TD = Tb - Tc; |
69 | | } |
70 | | Te = Ta + Td; |
71 | | TO = TD - TC; |
72 | | TE = TC + TD; |
73 | | { |
74 | | E Ti, TG, Tl, TH; |
75 | | { |
76 | | E Tg, Th, Tj, Tk; |
77 | | Tg = R1[0]; |
78 | | Th = R1[WS(rs, 4)]; |
79 | | Ti = Tg + Th; |
80 | | TG = Tg - Th; |
81 | | Tj = R1[WS(rs, 2)]; |
82 | | Tk = R1[WS(rs, 6)]; |
83 | | Tl = Tj + Tk; |
84 | | TH = Tj - Tk; |
85 | | } |
86 | | Tm = Ti - Tl; |
87 | | TT = FMA(KP414213562, TG, TH); |
88 | | Ty = Ti + Tl; |
89 | | TI = FNMS(KP414213562, TH, TG); |
90 | | } |
91 | | { |
92 | | E Tp, TJ, Ts, TK; |
93 | | { |
94 | | E Tn, To, Tq, Tr; |
95 | | Tn = R1[WS(rs, 7)]; |
96 | | To = R1[WS(rs, 3)]; |
97 | | Tp = Tn + To; |
98 | | TJ = Tn - To; |
99 | | Tq = R1[WS(rs, 1)]; |
100 | | Tr = R1[WS(rs, 5)]; |
101 | | Ts = Tq + Tr; |
102 | | TK = Tr - Tq; |
103 | | } |
104 | | Tt = Tp - Ts; |
105 | | TS = FMA(KP414213562, TJ, TK); |
106 | | Tz = Tp + Ts; |
107 | | TL = FNMS(KP414213562, TK, TJ); |
108 | | } |
109 | | Cr[WS(csr, 4)] = T7 - Te; |
110 | | Ci[WS(csi, 4)] = Tz - Ty; |
111 | | { |
112 | | E Tf, Tu, Tv, Tw; |
113 | | Tf = T3 - T6; |
114 | | Tu = Tm + Tt; |
115 | | Cr[WS(csr, 6)] = FNMS(KP707106781, Tu, Tf); |
116 | | Cr[WS(csr, 2)] = FMA(KP707106781, Tu, Tf); |
117 | | Tv = Td - Ta; |
118 | | Tw = Tt - Tm; |
119 | | Ci[WS(csi, 2)] = FMA(KP707106781, Tw, Tv); |
120 | | Ci[WS(csi, 6)] = FMS(KP707106781, Tw, Tv); |
121 | | } |
122 | | { |
123 | | E Tx, TA, TF, TM; |
124 | | Tx = T7 + Te; |
125 | | TA = Ty + Tz; |
126 | | Cr[WS(csr, 8)] = Tx - TA; |
127 | | Cr[0] = Tx + TA; |
128 | | TF = FMA(KP707106781, TE, TB); |
129 | | TM = TI + TL; |
130 | | Cr[WS(csr, 7)] = FNMS(KP923879532, TM, TF); |
131 | | Cr[WS(csr, 1)] = FMA(KP923879532, TM, TF); |
132 | | } |
133 | | TR = FNMS(KP707106781, TO, TN); |
134 | | TU = TS - TT; |
135 | | Ci[WS(csi, 1)] = FMS(KP923879532, TU, TR); |
136 | | Ci[WS(csi, 7)] = FMA(KP923879532, TU, TR); |
137 | | { |
138 | | E TV, TW, TP, TQ; |
139 | | TV = FNMS(KP707106781, TE, TB); |
140 | | TW = TT + TS; |
141 | | Cr[WS(csr, 5)] = FNMS(KP923879532, TW, TV); |
142 | | Cr[WS(csr, 3)] = FMA(KP923879532, TW, TV); |
143 | | TP = FMA(KP707106781, TO, TN); |
144 | | TQ = TL - TI; |
145 | | Ci[WS(csi, 3)] = FMA(KP923879532, TQ, TP); |
146 | | Ci[WS(csi, 5)] = FMS(KP923879532, TQ, TP); |
147 | | } |
148 | | } |
149 | | } |
150 | | } |
151 | | |
152 | | static const kr2c_desc desc = { 16, "r2cf_16", { 38, 0, 20, 0 }, &GENUS }; |
153 | | |
154 | | void X(codelet_r2cf_16) (planner *p) { X(kr2c_register) (p, r2cf_16, &desc); |
155 | | } |
156 | | |
157 | | #else |
158 | | |
159 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 16 -name r2cf_16 -include rdft/scalar/r2cf.h */ |
160 | | |
161 | | /* |
162 | | * This function contains 58 FP additions, 12 FP multiplications, |
163 | | * (or, 54 additions, 8 multiplications, 4 fused multiply/add), |
164 | | * 34 stack variables, 3 constants, and 32 memory accesses |
165 | | */ |
166 | | #include "rdft/scalar/r2cf.h" |
167 | | |
168 | | static void r2cf_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
169 | 0 | { |
170 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
171 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
172 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
173 | 0 | { |
174 | 0 | INT i; |
175 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) { |
176 | 0 | E T3, T6, T7, Tz, Ti, Ta, Td, Te, TA, Th, Tq, TV, TF, TP, Tx; |
177 | 0 | E TU, TE, TM, Tg, Tf, TJ, TQ; |
178 | 0 | { |
179 | 0 | E T1, T2, T4, T5; |
180 | 0 | T1 = R0[0]; |
181 | 0 | T2 = R0[WS(rs, 4)]; |
182 | 0 | T3 = T1 + T2; |
183 | 0 | T4 = R0[WS(rs, 2)]; |
184 | 0 | T5 = R0[WS(rs, 6)]; |
185 | 0 | T6 = T4 + T5; |
186 | 0 | T7 = T3 + T6; |
187 | 0 | Tz = T1 - T2; |
188 | 0 | Ti = T4 - T5; |
189 | 0 | } |
190 | 0 | { |
191 | 0 | E T8, T9, Tb, Tc; |
192 | 0 | T8 = R0[WS(rs, 1)]; |
193 | 0 | T9 = R0[WS(rs, 5)]; |
194 | 0 | Ta = T8 + T9; |
195 | 0 | Tg = T8 - T9; |
196 | 0 | Tb = R0[WS(rs, 7)]; |
197 | 0 | Tc = R0[WS(rs, 3)]; |
198 | 0 | Td = Tb + Tc; |
199 | 0 | Tf = Tb - Tc; |
200 | 0 | } |
201 | 0 | Te = Ta + Td; |
202 | 0 | TA = KP707106781 * (Tg + Tf); |
203 | 0 | Th = KP707106781 * (Tf - Tg); |
204 | 0 | { |
205 | 0 | E Tm, TN, Tp, TO; |
206 | 0 | { |
207 | 0 | E Tk, Tl, Tn, To; |
208 | 0 | Tk = R1[WS(rs, 7)]; |
209 | 0 | Tl = R1[WS(rs, 3)]; |
210 | 0 | Tm = Tk - Tl; |
211 | 0 | TN = Tk + Tl; |
212 | 0 | Tn = R1[WS(rs, 1)]; |
213 | 0 | To = R1[WS(rs, 5)]; |
214 | 0 | Tp = Tn - To; |
215 | 0 | TO = Tn + To; |
216 | 0 | } |
217 | 0 | Tq = FNMS(KP923879532, Tp, KP382683432 * Tm); |
218 | 0 | TV = TN + TO; |
219 | 0 | TF = FMA(KP923879532, Tm, KP382683432 * Tp); |
220 | 0 | TP = TN - TO; |
221 | 0 | } |
222 | 0 | { |
223 | 0 | E Tt, TK, Tw, TL; |
224 | 0 | { |
225 | 0 | E Tr, Ts, Tu, Tv; |
226 | 0 | Tr = R1[0]; |
227 | 0 | Ts = R1[WS(rs, 4)]; |
228 | 0 | Tt = Tr - Ts; |
229 | 0 | TK = Tr + Ts; |
230 | 0 | Tu = R1[WS(rs, 2)]; |
231 | 0 | Tv = R1[WS(rs, 6)]; |
232 | 0 | Tw = Tu - Tv; |
233 | 0 | TL = Tu + Tv; |
234 | 0 | } |
235 | 0 | Tx = FMA(KP382683432, Tt, KP923879532 * Tw); |
236 | 0 | TU = TK + TL; |
237 | 0 | TE = FNMS(KP382683432, Tw, KP923879532 * Tt); |
238 | 0 | TM = TK - TL; |
239 | 0 | } |
240 | 0 | Cr[WS(csr, 4)] = T7 - Te; |
241 | 0 | Ci[WS(csi, 4)] = TV - TU; |
242 | 0 | { |
243 | 0 | E Tj, Ty, TD, TG; |
244 | 0 | Tj = Th - Ti; |
245 | 0 | Ty = Tq - Tx; |
246 | 0 | Ci[WS(csi, 1)] = Tj + Ty; |
247 | 0 | Ci[WS(csi, 7)] = Ty - Tj; |
248 | 0 | TD = Tz + TA; |
249 | 0 | TG = TE + TF; |
250 | 0 | Cr[WS(csr, 7)] = TD - TG; |
251 | 0 | Cr[WS(csr, 1)] = TD + TG; |
252 | 0 | } |
253 | 0 | { |
254 | 0 | E TB, TC, TH, TI; |
255 | 0 | TB = Tz - TA; |
256 | 0 | TC = Tx + Tq; |
257 | 0 | Cr[WS(csr, 5)] = TB - TC; |
258 | 0 | Cr[WS(csr, 3)] = TB + TC; |
259 | 0 | TH = Ti + Th; |
260 | 0 | TI = TF - TE; |
261 | 0 | Ci[WS(csi, 3)] = TH + TI; |
262 | 0 | Ci[WS(csi, 5)] = TI - TH; |
263 | 0 | } |
264 | 0 | TJ = T3 - T6; |
265 | 0 | TQ = KP707106781 * (TM + TP); |
266 | 0 | Cr[WS(csr, 6)] = TJ - TQ; |
267 | 0 | Cr[WS(csr, 2)] = TJ + TQ; |
268 | 0 | { |
269 | 0 | E TR, TS, TT, TW; |
270 | 0 | TR = Td - Ta; |
271 | 0 | TS = KP707106781 * (TP - TM); |
272 | 0 | Ci[WS(csi, 2)] = TR + TS; |
273 | 0 | Ci[WS(csi, 6)] = TS - TR; |
274 | 0 | TT = T7 + Te; |
275 | 0 | TW = TU + TV; |
276 | 0 | Cr[WS(csr, 8)] = TT - TW; |
277 | 0 | Cr[0] = TT + TW; |
278 | 0 | } |
279 | 0 | } |
280 | 0 | } |
281 | 0 | } |
282 | | |
283 | | static const kr2c_desc desc = { 16, "r2cf_16", { 54, 8, 4, 0 }, &GENUS }; |
284 | | |
285 | 1 | void X(codelet_r2cf_16) (planner *p) { X(kr2c_register) (p, r2cf_16, &desc); |
286 | 1 | } |
287 | | |
288 | | #endif |