/src/fftw3/kernel/transpose.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | #include "kernel/ifftw.h" |
22 | | |
23 | | /* in place square transposition, iterative */ |
24 | | void X(transpose)(R *I, INT n, INT s0, INT s1, INT vl) |
25 | 0 | { |
26 | 0 | INT i0, i1, v; |
27 | |
|
28 | 0 | switch (vl) { |
29 | 0 | case 1: |
30 | 0 | for (i1 = 1; i1 < n; ++i1) { |
31 | 0 | for (i0 = 0; i0 < i1; ++i0) { |
32 | 0 | R x0 = I[i1 * s0 + i0 * s1]; |
33 | 0 | R y0 = I[i1 * s1 + i0 * s0]; |
34 | 0 | I[i1 * s1 + i0 * s0] = x0; |
35 | 0 | I[i1 * s0 + i0 * s1] = y0; |
36 | 0 | } |
37 | 0 | } |
38 | 0 | break; |
39 | 0 | case 2: |
40 | 0 | for (i1 = 1; i1 < n; ++i1) { |
41 | 0 | for (i0 = 0; i0 < i1; ++i0) { |
42 | 0 | R x0 = I[i1 * s0 + i0 * s1]; |
43 | 0 | R x1 = I[i1 * s0 + i0 * s1 + 1]; |
44 | 0 | R y0 = I[i1 * s1 + i0 * s0]; |
45 | 0 | R y1 = I[i1 * s1 + i0 * s0 + 1]; |
46 | 0 | I[i1 * s1 + i0 * s0] = x0; |
47 | 0 | I[i1 * s1 + i0 * s0 + 1] = x1; |
48 | 0 | I[i1 * s0 + i0 * s1] = y0; |
49 | 0 | I[i1 * s0 + i0 * s1 + 1] = y1; |
50 | 0 | } |
51 | 0 | } |
52 | 0 | break; |
53 | 0 | default: |
54 | 0 | for (i1 = 1; i1 < n; ++i1) { |
55 | 0 | for (i0 = 0; i0 < i1; ++i0) { |
56 | 0 | for (v = 0; v < vl; ++v) { |
57 | 0 | R x0 = I[i1 * s0 + i0 * s1 + v]; |
58 | 0 | R y0 = I[i1 * s1 + i0 * s0 + v]; |
59 | 0 | I[i1 * s1 + i0 * s0 + v] = x0; |
60 | 0 | I[i1 * s0 + i0 * s1 + v] = y0; |
61 | 0 | } |
62 | 0 | } |
63 | 0 | } |
64 | 0 | break; |
65 | 0 | } |
66 | 0 | } |
67 | | |
68 | | struct transpose_closure { |
69 | | R *I; |
70 | | INT s0, s1, vl, tilesz; |
71 | | R *buf0, *buf1; |
72 | | }; |
73 | | |
74 | | static void dotile(INT n0l, INT n0u, INT n1l, INT n1u, void *args) |
75 | 0 | { |
76 | 0 | struct transpose_closure *k = (struct transpose_closure *)args; |
77 | 0 | R *I = k->I; |
78 | 0 | INT s0 = k->s0, s1 = k->s1, vl = k->vl; |
79 | 0 | INT i0, i1, v; |
80 | |
|
81 | 0 | switch (vl) { |
82 | 0 | case 1: |
83 | 0 | for (i1 = n1l; i1 < n1u; ++i1) { |
84 | 0 | for (i0 = n0l; i0 < n0u; ++i0) { |
85 | 0 | R x0 = I[i1 * s0 + i0 * s1]; |
86 | 0 | R y0 = I[i1 * s1 + i0 * s0]; |
87 | 0 | I[i1 * s1 + i0 * s0] = x0; |
88 | 0 | I[i1 * s0 + i0 * s1] = y0; |
89 | 0 | } |
90 | 0 | } |
91 | 0 | break; |
92 | 0 | case 2: |
93 | 0 | for (i1 = n1l; i1 < n1u; ++i1) { |
94 | 0 | for (i0 = n0l; i0 < n0u; ++i0) { |
95 | 0 | R x0 = I[i1 * s0 + i0 * s1]; |
96 | 0 | R x1 = I[i1 * s0 + i0 * s1 + 1]; |
97 | 0 | R y0 = I[i1 * s1 + i0 * s0]; |
98 | 0 | R y1 = I[i1 * s1 + i0 * s0 + 1]; |
99 | 0 | I[i1 * s1 + i0 * s0] = x0; |
100 | 0 | I[i1 * s1 + i0 * s0 + 1] = x1; |
101 | 0 | I[i1 * s0 + i0 * s1] = y0; |
102 | 0 | I[i1 * s0 + i0 * s1 + 1] = y1; |
103 | 0 | } |
104 | 0 | } |
105 | 0 | break; |
106 | 0 | default: |
107 | 0 | for (i1 = n1l; i1 < n1u; ++i1) { |
108 | 0 | for (i0 = n0l; i0 < n0u; ++i0) { |
109 | 0 | for (v = 0; v < vl; ++v) { |
110 | 0 | R x0 = I[i1 * s0 + i0 * s1 + v]; |
111 | 0 | R y0 = I[i1 * s1 + i0 * s0 + v]; |
112 | 0 | I[i1 * s1 + i0 * s0 + v] = x0; |
113 | 0 | I[i1 * s0 + i0 * s1 + v] = y0; |
114 | 0 | } |
115 | 0 | } |
116 | 0 | } |
117 | 0 | } |
118 | 0 | } |
119 | | |
120 | | static void dotile_buf(INT n0l, INT n0u, INT n1l, INT n1u, void *args) |
121 | 0 | { |
122 | 0 | struct transpose_closure *k = (struct transpose_closure *)args; |
123 | 0 | X(cpy2d_ci)(k->I + n0l * k->s0 + n1l * k->s1, |
124 | 0 | k->buf0, |
125 | 0 | n0u - n0l, k->s0, k->vl, |
126 | 0 | n1u - n1l, k->s1, k->vl * (n0u - n0l), |
127 | 0 | k->vl); |
128 | 0 | X(cpy2d_ci)(k->I + n0l * k->s1 + n1l * k->s0, |
129 | 0 | k->buf1, |
130 | 0 | n0u - n0l, k->s1, k->vl, |
131 | 0 | n1u - n1l, k->s0, k->vl * (n0u - n0l), |
132 | 0 | k->vl); |
133 | 0 | X(cpy2d_co)(k->buf1, |
134 | 0 | k->I + n0l * k->s0 + n1l * k->s1, |
135 | 0 | n0u - n0l, k->vl, k->s0, |
136 | 0 | n1u - n1l, k->vl * (n0u - n0l), k->s1, |
137 | 0 | k->vl); |
138 | 0 | X(cpy2d_co)(k->buf0, |
139 | 0 | k->I + n0l * k->s1 + n1l * k->s0, |
140 | 0 | n0u - n0l, k->vl, k->s1, |
141 | 0 | n1u - n1l, k->vl * (n0u - n0l), k->s0, |
142 | 0 | k->vl); |
143 | 0 | } |
144 | | |
145 | | static void transpose_rec(R *I, INT n, |
146 | | void (*f)(INT n0l, INT n0u, INT n1l, INT n1u, |
147 | | void *args), |
148 | | struct transpose_closure *k) |
149 | 0 | { |
150 | 0 | tail: |
151 | 0 | if (n > 1) { |
152 | 0 | INT n2 = n / 2; |
153 | 0 | k->I = I; |
154 | 0 | X(tile2d)(0, n2, n2, n, k->tilesz, f, k); |
155 | 0 | transpose_rec(I, n2, f, k); |
156 | 0 | I += n2 * (k->s0 + k->s1); n -= n2; goto tail; |
157 | 0 | } |
158 | 0 | } |
159 | | |
160 | | void X(transpose_tiled)(R *I, INT n, INT s0, INT s1, INT vl) |
161 | 0 | { |
162 | 0 | struct transpose_closure k; |
163 | 0 | k.s0 = s0; |
164 | 0 | k.s1 = s1; |
165 | 0 | k.vl = vl; |
166 | | /* two blocks must be in cache, to be swapped */ |
167 | 0 | k.tilesz = X(compute_tilesz)(vl, 2); |
168 | 0 | k.buf0 = k.buf1 = 0; /* unused */ |
169 | 0 | transpose_rec(I, n, dotile, &k); |
170 | 0 | } |
171 | | |
172 | | void X(transpose_tiledbuf)(R *I, INT n, INT s0, INT s1, INT vl) |
173 | 0 | { |
174 | 0 | struct transpose_closure k; |
175 | | /* Assume that the the rows of I conflict into the same cache |
176 | | lines, and therefore we don't need to reserve cache space for |
177 | | the input. If the rows don't conflict, there is no reason |
178 | | to use tiledbuf at all.*/ |
179 | 0 | R buf0[CACHESIZE / (2 * sizeof(R))]; |
180 | 0 | R buf1[CACHESIZE / (2 * sizeof(R))]; |
181 | 0 | k.s0 = s0; |
182 | 0 | k.s1 = s1; |
183 | 0 | k.vl = vl; |
184 | 0 | k.tilesz = X(compute_tilesz)(vl, 2); |
185 | 0 | k.buf0 = buf0; |
186 | 0 | k.buf1 = buf1; |
187 | 0 | A(k.tilesz * k.tilesz * vl * sizeof(R) <= sizeof(buf0)); |
188 | 0 | A(k.tilesz * k.tilesz * vl * sizeof(R) <= sizeof(buf1)); |
189 | 0 | transpose_rec(I, n, dotile_buf, &k); |
190 | 0 | } |
191 | | |