Coverage Report

Created: 2025-07-23 07:03

/src/fftw3/rdft/scalar/r2cb/hb_32.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Wed Jul 23 07:02:29 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hb_32 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 434 FP additions, 260 FP multiplications,
32
 * (or, 236 additions, 62 multiplications, 198 fused multiply/add),
33
 * 102 stack variables, 7 constants, and 128 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
40
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
41
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
42
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
43
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
44
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
45
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
46
     {
47
    INT m;
48
    for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
49
         E Tf, T5K, T7k, T8k, T7N, T8x, T1i, T3i, T2L, T3v, T4v, T5f, T6m, T6T, T42;
50
         E T52, TZ, T6X, T1X, T3p, T8p, T8B, T26, T3o, T4n, T58, T7z, T7T, T4k, T59;
51
         E T6a, T6p, TK, T6W, T2o, T3m, T8s, T8A, T2x, T3l, T4g, T55, T7G, T7S, T4d;
52
         E T56, T61, T6o, Tu, T6f, T7r, T8y, T7Q, T8l, T1F, T3w, T2O, T3j, T4y, T53;
53
         E T5R, T6U, T49, T5g;
54
         {
55
        E T3, T12, T6, T2D, T2G, T6g, T15, T6h, Td, T6k, T1g, T2J, Ta, T6j, T1b;
56
        E T2I;
57
        {
58
       E T1, T2, T13, T14;
59
       T1 = cr[0];
60
       T2 = ci[WS(rs, 15)];
61
       T3 = T1 + T2;
62
       T12 = T1 - T2;
63
       {
64
            E T4, T5, T2E, T2F;
65
            T4 = cr[WS(rs, 8)];
66
            T5 = ci[WS(rs, 7)];
67
            T6 = T4 + T5;
68
            T2D = T4 - T5;
69
            T2E = ci[WS(rs, 31)];
70
            T2F = cr[WS(rs, 16)];
71
            T2G = T2E + T2F;
72
            T6g = T2E - T2F;
73
       }
74
       T13 = ci[WS(rs, 23)];
75
       T14 = cr[WS(rs, 24)];
76
       T15 = T13 + T14;
77
       T6h = T13 - T14;
78
       {
79
            E Tb, Tc, T1c, T1d, T1e, T1f;
80
            Tb = ci[WS(rs, 3)];
81
            Tc = cr[WS(rs, 12)];
82
            T1c = Tb - Tc;
83
            T1d = ci[WS(rs, 19)];
84
            T1e = cr[WS(rs, 28)];
85
            T1f = T1d + T1e;
86
            Td = Tb + Tc;
87
            T6k = T1d - T1e;
88
            T1g = T1c - T1f;
89
            T2J = T1c + T1f;
90
       }
91
       {
92
            E T8, T9, T17, T18, T19, T1a;
93
            T8 = cr[WS(rs, 4)];
94
            T9 = ci[WS(rs, 11)];
95
            T17 = T8 - T9;
96
            T18 = ci[WS(rs, 27)];
97
            T19 = cr[WS(rs, 20)];
98
            T1a = T18 + T19;
99
            Ta = T8 + T9;
100
            T6j = T18 - T19;
101
            T1b = T17 - T1a;
102
            T2I = T17 + T1a;
103
       }
104
        }
105
        {
106
       E T7, Te, T7i, T7j;
107
       T7 = T3 + T6;
108
       Te = Ta + Td;
109
       Tf = T7 + Te;
110
       T5K = T7 - Te;
111
       T7i = T3 - T6;
112
       T7j = T6k - T6j;
113
       T7k = T7i - T7j;
114
       T8k = T7i + T7j;
115
        }
116
        {
117
       E T7L, T7M, T16, T1h;
118
       T7L = T6g - T6h;
119
       T7M = Ta - Td;
120
       T7N = T7L - T7M;
121
       T8x = T7M + T7L;
122
       T16 = T12 - T15;
123
       T1h = T1b + T1g;
124
       T1i = FNMS(KP707106781, T1h, T16);
125
       T3i = FMA(KP707106781, T1h, T16);
126
        }
127
        {
128
       E T2H, T2K, T4t, T4u;
129
       T2H = T2D + T2G;
130
       T2K = T2I - T2J;
131
       T2L = FNMS(KP707106781, T2K, T2H);
132
       T3v = FMA(KP707106781, T2K, T2H);
133
       T4t = T2G - T2D;
134
       T4u = T1b - T1g;
135
       T4v = FMA(KP707106781, T4u, T4t);
136
       T5f = FNMS(KP707106781, T4u, T4t);
137
        }
138
        {
139
       E T6i, T6l, T40, T41;
140
       T6i = T6g + T6h;
141
       T6l = T6j + T6k;
142
       T6m = T6i - T6l;
143
       T6T = T6i + T6l;
144
       T40 = T12 + T15;
145
       T41 = T2I + T2J;
146
       T42 = FNMS(KP707106781, T41, T40);
147
       T52 = FMA(KP707106781, T41, T40);
148
        }
149
         }
150
         {
151
        E TR, T7w, T1H, T1Y, T1K, T7t, T21, T65, TY, T7u, T7x, T1Q, T1V, T24, T68;
152
        E T23, T7v, T7y;
153
        {
154
       E TL, TM, TN, TO, TP, TQ;
155
       TL = ci[0];
156
       TM = cr[WS(rs, 15)];
157
       TN = TL + TM;
158
       TO = cr[WS(rs, 7)];
159
       TP = ci[WS(rs, 8)];
160
       TQ = TO + TP;
161
       TR = TN + TQ;
162
       T7w = TN - TQ;
163
       T1H = TO - TP;
164
       T1Y = TL - TM;
165
        }
166
        {
167
       E T1I, T1J, T63, T1Z, T20, T64;
168
       T1I = ci[WS(rs, 16)];
169
       T1J = cr[WS(rs, 31)];
170
       T63 = T1I - T1J;
171
       T1Z = ci[WS(rs, 24)];
172
       T20 = cr[WS(rs, 23)];
173
       T64 = T1Z - T20;
174
       T1K = T1I + T1J;
175
       T7t = T63 - T64;
176
       T21 = T1Z + T20;
177
       T65 = T63 + T64;
178
        }
179
        {
180
       E TU, T1M, T1U, T67, TX, T1R, T1P, T66;
181
       {
182
            E TS, TT, T1S, T1T;
183
            TS = cr[WS(rs, 3)];
184
            TT = ci[WS(rs, 12)];
185
            TU = TS + TT;
186
            T1M = TS - TT;
187
            T1S = ci[WS(rs, 20)];
188
            T1T = cr[WS(rs, 27)];
189
            T1U = T1S + T1T;
190
            T67 = T1S - T1T;
191
       }
192
       {
193
            E TV, TW, T1N, T1O;
194
            TV = ci[WS(rs, 4)];
195
            TW = cr[WS(rs, 11)];
196
            TX = TV + TW;
197
            T1R = TV - TW;
198
            T1N = ci[WS(rs, 28)];
199
            T1O = cr[WS(rs, 19)];
200
            T1P = T1N + T1O;
201
            T66 = T1N - T1O;
202
       }
203
       TY = TU + TX;
204
       T7u = TU - TX;
205
       T7x = T67 - T66;
206
       T1Q = T1M + T1P;
207
       T1V = T1R + T1U;
208
       T24 = T1R - T1U;
209
       T68 = T66 + T67;
210
       T23 = T1M - T1P;
211
        }
212
        TZ = TR + TY;
213
        T6X = T65 + T68;
214
        {
215
       E T1L, T1W, T8n, T8o;
216
       T1L = T1H - T1K;
217
       T1W = T1Q - T1V;
218
       T1X = FNMS(KP707106781, T1W, T1L);
219
       T3p = FMA(KP707106781, T1W, T1L);
220
       T8n = T7u + T7t;
221
       T8o = T7w + T7x;
222
       T8p = FNMS(KP414213562, T8o, T8n);
223
       T8B = FMA(KP414213562, T8n, T8o);
224
        }
225
        {
226
       E T22, T25, T4l, T4m;
227
       T22 = T1Y - T21;
228
       T25 = T23 + T24;
229
       T26 = FNMS(KP707106781, T25, T22);
230
       T3o = FMA(KP707106781, T25, T22);
231
       T4l = T1H + T1K;
232
       T4m = T23 - T24;
233
       T4n = FNMS(KP707106781, T4m, T4l);
234
       T58 = FMA(KP707106781, T4m, T4l);
235
        }
236
        T7v = T7t - T7u;
237
        T7y = T7w - T7x;
238
        T7z = FMA(KP414213562, T7y, T7v);
239
        T7T = FNMS(KP414213562, T7v, T7y);
240
        {
241
       E T4i, T4j, T62, T69;
242
       T4i = T1Y + T21;
243
       T4j = T1Q + T1V;
244
       T4k = FNMS(KP707106781, T4j, T4i);
245
       T59 = FMA(KP707106781, T4j, T4i);
246
       T62 = TR - TY;
247
       T69 = T65 - T68;
248
       T6a = T62 + T69;
249
       T6p = T69 - T62;
250
        }
251
         }
252
         {
253
        E TC, T7D, T28, T2p, T2b, T7A, T2s, T5W, TJ, T7B, T7E, T2h, T2m, T2v, T5Z;
254
        E T2u, T7C, T7F;
255
        {
256
       E Tw, Tx, Ty, Tz, TA, TB;
257
       Tw = cr[WS(rs, 1)];
258
       Tx = ci[WS(rs, 14)];
259
       Ty = Tw + Tx;
260
       Tz = cr[WS(rs, 9)];
261
       TA = ci[WS(rs, 6)];
262
       TB = Tz + TA;
263
       TC = Ty + TB;
264
       T7D = Ty - TB;
265
       T28 = Tz - TA;
266
       T2p = Tw - Tx;
267
        }
268
        {
269
       E T29, T2a, T5U, T2q, T2r, T5V;
270
       T29 = ci[WS(rs, 30)];
271
       T2a = cr[WS(rs, 17)];
272
       T5U = T29 - T2a;
273
       T2q = ci[WS(rs, 22)];
274
       T2r = cr[WS(rs, 25)];
275
       T5V = T2q - T2r;
276
       T2b = T29 + T2a;
277
       T7A = T5U - T5V;
278
       T2s = T2q + T2r;
279
       T5W = T5U + T5V;
280
        }
281
        {
282
       E TF, T2d, T2l, T5Y, TI, T2i, T2g, T5X;
283
       {
284
            E TD, TE, T2j, T2k;
285
            TD = cr[WS(rs, 5)];
286
            TE = ci[WS(rs, 10)];
287
            TF = TD + TE;
288
            T2d = TD - TE;
289
            T2j = ci[WS(rs, 18)];
290
            T2k = cr[WS(rs, 29)];
291
            T2l = T2j + T2k;
292
            T5Y = T2j - T2k;
293
       }
294
       {
295
            E TG, TH, T2e, T2f;
296
            TG = ci[WS(rs, 2)];
297
            TH = cr[WS(rs, 13)];
298
            TI = TG + TH;
299
            T2i = TG - TH;
300
            T2e = ci[WS(rs, 26)];
301
            T2f = cr[WS(rs, 21)];
302
            T2g = T2e + T2f;
303
            T5X = T2e - T2f;
304
       }
305
       TJ = TF + TI;
306
       T7B = TF - TI;
307
       T7E = T5Y - T5X;
308
       T2h = T2d + T2g;
309
       T2m = T2i + T2l;
310
       T2v = T2i - T2l;
311
       T5Z = T5X + T5Y;
312
       T2u = T2d - T2g;
313
        }
314
        TK = TC + TJ;
315
        T6W = T5W + T5Z;
316
        {
317
       E T2c, T2n, T8q, T8r;
318
       T2c = T28 + T2b;
319
       T2n = T2h - T2m;
320
       T2o = FNMS(KP707106781, T2n, T2c);
321
       T3m = FMA(KP707106781, T2n, T2c);
322
       T8q = T7B + T7A;
323
       T8r = T7D + T7E;
324
       T8s = FMA(KP414213562, T8r, T8q);
325
       T8A = FNMS(KP414213562, T8q, T8r);
326
        }
327
        {
328
       E T2t, T2w, T4e, T4f;
329
       T2t = T2p - T2s;
330
       T2w = T2u + T2v;
331
       T2x = FNMS(KP707106781, T2w, T2t);
332
       T3l = FMA(KP707106781, T2w, T2t);
333
       T4e = T2b - T28;
334
       T4f = T2v - T2u;
335
       T4g = FNMS(KP707106781, T4f, T4e);
336
       T55 = FMA(KP707106781, T4f, T4e);
337
        }
338
        T7C = T7A - T7B;
339
        T7F = T7D - T7E;
340
        T7G = FNMS(KP414213562, T7F, T7C);
341
        T7S = FMA(KP414213562, T7C, T7F);
342
        {
343
       E T4b, T4c, T5T, T60;
344
       T4b = T2p + T2s;
345
       T4c = T2h + T2m;
346
       T4d = FNMS(KP707106781, T4c, T4b);
347
       T56 = FMA(KP707106781, T4c, T4b);
348
       T5T = TC - TJ;
349
       T60 = T5W - T5Z;
350
       T61 = T5T - T60;
351
       T6o = T5T + T60;
352
        }
353
         }
354
         {
355
        E Ti, T5P, Tl, T5O, T1y, T1D, T7p, T7o, T44, T43, Tp, T5M, Ts, T5L, T1n;
356
        E T1s, T7m, T7l, T47, T46;
357
        {
358
       E T1z, T1C, T1u, T1x;
359
       {
360
            E Tg, Th, T1A, T1B;
361
            Tg = cr[WS(rs, 2)];
362
            Th = ci[WS(rs, 13)];
363
            Ti = Tg + Th;
364
            T1z = Tg - Th;
365
            T1A = ci[WS(rs, 21)];
366
            T1B = cr[WS(rs, 26)];
367
            T1C = T1A + T1B;
368
            T5P = T1A - T1B;
369
       }
370
       {
371
            E Tj, Tk, T1v, T1w;
372
            Tj = cr[WS(rs, 10)];
373
            Tk = ci[WS(rs, 5)];
374
            Tl = Tj + Tk;
375
            T1u = Tj - Tk;
376
            T1v = ci[WS(rs, 29)];
377
            T1w = cr[WS(rs, 18)];
378
            T1x = T1v + T1w;
379
            T5O = T1v - T1w;
380
       }
381
       T1y = T1u + T1x;
382
       T1D = T1z - T1C;
383
       T7p = T5O - T5P;
384
       T7o = Ti - Tl;
385
       T44 = T1z + T1C;
386
       T43 = T1x - T1u;
387
        }
388
        {
389
       E T1o, T1r, T1j, T1m;
390
       {
391
            E Tn, To, T1p, T1q;
392
            Tn = ci[WS(rs, 1)];
393
            To = cr[WS(rs, 14)];
394
            Tp = Tn + To;
395
            T1o = Tn - To;
396
            T1p = ci[WS(rs, 25)];
397
            T1q = cr[WS(rs, 22)];
398
            T1r = T1p + T1q;
399
            T5M = T1p - T1q;
400
       }
401
       {
402
            E Tq, Tr, T1k, T1l;
403
            Tq = cr[WS(rs, 6)];
404
            Tr = ci[WS(rs, 9)];
405
            Ts = Tq + Tr;
406
            T1j = Tq - Tr;
407
            T1k = ci[WS(rs, 17)];
408
            T1l = cr[WS(rs, 30)];
409
            T1m = T1k + T1l;
410
            T5L = T1k - T1l;
411
       }
412
       T1n = T1j - T1m;
413
       T1s = T1o - T1r;
414
       T7m = Tp - Ts;
415
       T7l = T5L - T5M;
416
       T47 = T1o + T1r;
417
       T46 = T1j + T1m;
418
        }
419
        {
420
       E Tm, Tt, T7n, T7q;
421
       Tm = Ti + Tl;
422
       Tt = Tp + Ts;
423
       Tu = Tm + Tt;
424
       T6f = Tm - Tt;
425
       T7n = T7l - T7m;
426
       T7q = T7o + T7p;
427
       T7r = T7n - T7q;
428
       T8y = T7q + T7n;
429
        }
430
        {
431
       E T7O, T7P, T1t, T1E;
432
       T7O = T7o - T7p;
433
       T7P = T7m + T7l;
434
       T7Q = T7O - T7P;
435
       T8l = T7O + T7P;
436
       T1t = FNMS(KP414213562, T1s, T1n);
437
       T1E = FMA(KP414213562, T1D, T1y);
438
       T1F = T1t - T1E;
439
       T3w = T1E + T1t;
440
        }
441
        {
442
       E T2M, T2N, T4w, T4x;
443
       T2M = FNMS(KP414213562, T1y, T1D);
444
       T2N = FMA(KP414213562, T1n, T1s);
445
       T2O = T2M - T2N;
446
       T3j = T2M + T2N;
447
       T4w = FMA(KP414213562, T43, T44);
448
       T4x = FMA(KP414213562, T46, T47);
449
       T4y = T4w - T4x;
450
       T53 = T4w + T4x;
451
        }
452
        {
453
       E T5N, T5Q, T45, T48;
454
       T5N = T5L + T5M;
455
       T5Q = T5O + T5P;
456
       T5R = T5N - T5Q;
457
       T6U = T5Q + T5N;
458
       T45 = FNMS(KP414213562, T44, T43);
459
       T48 = FNMS(KP414213562, T47, T46);
460
       T49 = T45 + T48;
461
       T5g = T48 - T45;
462
        }
463
         }
464
         {
465
        E Tv, T10, T6Q, T6V, T6Y, T6Z;
466
        Tv = Tf + Tu;
467
        T10 = TK + TZ;
468
        T6Q = Tv - T10;
469
        T6V = T6T + T6U;
470
        T6Y = T6W + T6X;
471
        T6Z = T6V - T6Y;
472
        cr[0] = Tv + T10;
473
        ci[0] = T6V + T6Y;
474
        {
475
       E T6P, T6R, T6S, T70;
476
       T6P = W[30];
477
       T6R = T6P * T6Q;
478
       T6S = W[31];
479
       T70 = T6S * T6Q;
480
       cr[WS(rs, 16)] = FNMS(T6S, T6Z, T6R);
481
       ci[WS(rs, 16)] = FMA(T6P, T6Z, T70);
482
        }
483
         }
484
         {
485
        E T8O, T8W, T8T, T8Z;
486
        {
487
       E T8M, T8N, T8R, T8S;
488
       T8M = FMA(KP707106781, T8l, T8k);
489
       T8N = T8A + T8B;
490
       T8O = FNMS(KP923879532, T8N, T8M);
491
       T8W = FMA(KP923879532, T8N, T8M);
492
       T8R = FMA(KP707106781, T8y, T8x);
493
       T8S = T8s + T8p;
494
       T8T = FNMS(KP923879532, T8S, T8R);
495
       T8Z = FMA(KP923879532, T8S, T8R);
496
        }
497
        {
498
       E T8P, T8U, T8L, T8Q;
499
       T8L = W[34];
500
       T8P = T8L * T8O;
501
       T8U = T8L * T8T;
502
       T8Q = W[35];
503
       cr[WS(rs, 18)] = FNMS(T8Q, T8T, T8P);
504
       ci[WS(rs, 18)] = FMA(T8Q, T8O, T8U);
505
        }
506
        {
507
       E T8X, T90, T8V, T8Y;
508
       T8V = W[2];
509
       T8X = T8V * T8W;
510
       T90 = T8V * T8Z;
511
       T8Y = W[3];
512
       cr[WS(rs, 2)] = FNMS(T8Y, T8Z, T8X);
513
       ci[WS(rs, 2)] = FMA(T8Y, T8W, T90);
514
        }
515
         }
516
         {
517
        E T86, T8e, T8b, T8h;
518
        {
519
       E T84, T85, T89, T8a;
520
       T84 = FNMS(KP707106781, T7r, T7k);
521
       T85 = T7S + T7T;
522
       T86 = FNMS(KP923879532, T85, T84);
523
       T8e = FMA(KP923879532, T85, T84);
524
       T89 = FNMS(KP707106781, T7Q, T7N);
525
       T8a = T7G + T7z;
526
       T8b = FNMS(KP923879532, T8a, T89);
527
       T8h = FMA(KP923879532, T8a, T89);
528
        }
529
        {
530
       E T87, T8c, T83, T88;
531
       T83 = W[26];
532
       T87 = T83 * T86;
533
       T8c = T83 * T8b;
534
       T88 = W[27];
535
       cr[WS(rs, 14)] = FNMS(T88, T8b, T87);
536
       ci[WS(rs, 14)] = FMA(T88, T86, T8c);
537
        }
538
        {
539
       E T8f, T8i, T8d, T8g;
540
       T8d = W[58];
541
       T8f = T8d * T8e;
542
       T8i = T8d * T8h;
543
       T8g = W[59];
544
       cr[WS(rs, 30)] = FNMS(T8g, T8h, T8f);
545
       ci[WS(rs, 30)] = FMA(T8g, T8e, T8i);
546
        }
547
         }
548
         {
549
        E T6C, T6K, T6H, T6N;
550
        {
551
       E T6A, T6B, T6F, T6G;
552
       T6A = T5K - T5R;
553
       T6B = T6p - T6o;
554
       T6C = FNMS(KP707106781, T6B, T6A);
555
       T6K = FMA(KP707106781, T6B, T6A);
556
       T6F = T6m - T6f;
557
       T6G = T61 - T6a;
558
       T6H = FNMS(KP707106781, T6G, T6F);
559
       T6N = FMA(KP707106781, T6G, T6F);
560
        }
561
        {
562
       E T6D, T6I, T6z, T6E;
563
       T6z = W[54];
564
       T6D = T6z * T6C;
565
       T6I = T6z * T6H;
566
       T6E = W[55];
567
       cr[WS(rs, 28)] = FNMS(T6E, T6H, T6D);
568
       ci[WS(rs, 28)] = FMA(T6E, T6C, T6I);
569
        }
570
        {
571
       E T6L, T6O, T6J, T6M;
572
       T6J = W[22];
573
       T6L = T6J * T6K;
574
       T6O = T6J * T6N;
575
       T6M = W[23];
576
       cr[WS(rs, 12)] = FNMS(T6M, T6N, T6L);
577
       ci[WS(rs, 12)] = FMA(T6M, T6K, T6O);
578
        }
579
         }
580
         {
581
        E T8u, T8G, T8D, T8J;
582
        {
583
       E T8m, T8t, T8z, T8C;
584
       T8m = FNMS(KP707106781, T8l, T8k);
585
       T8t = T8p - T8s;
586
       T8u = FNMS(KP923879532, T8t, T8m);
587
       T8G = FMA(KP923879532, T8t, T8m);
588
       T8z = FNMS(KP707106781, T8y, T8x);
589
       T8C = T8A - T8B;
590
       T8D = FNMS(KP923879532, T8C, T8z);
591
       T8J = FMA(KP923879532, T8C, T8z);
592
        }
593
        {
594
       E T8j, T8v, T8w, T8E;
595
       T8j = W[50];
596
       T8v = T8j * T8u;
597
       T8w = W[51];
598
       T8E = T8w * T8u;
599
       cr[WS(rs, 26)] = FNMS(T8w, T8D, T8v);
600
       ci[WS(rs, 26)] = FMA(T8j, T8D, T8E);
601
        }
602
        {
603
       E T8F, T8H, T8I, T8K;
604
       T8F = W[18];
605
       T8H = T8F * T8G;
606
       T8I = W[19];
607
       T8K = T8I * T8G;
608
       cr[WS(rs, 10)] = FNMS(T8I, T8J, T8H);
609
       ci[WS(rs, 10)] = FMA(T8F, T8J, T8K);
610
        }
611
         }
612
         {
613
        E T6c, T6u, T6r, T6x;
614
        {
615
       E T5S, T6b, T6n, T6q;
616
       T5S = T5K + T5R;
617
       T6b = T61 + T6a;
618
       T6c = FNMS(KP707106781, T6b, T5S);
619
       T6u = FMA(KP707106781, T6b, T5S);
620
       T6n = T6f + T6m;
621
       T6q = T6o + T6p;
622
       T6r = FNMS(KP707106781, T6q, T6n);
623
       T6x = FMA(KP707106781, T6q, T6n);
624
        }
625
        {
626
       E T5J, T6d, T6e, T6s;
627
       T5J = W[38];
628
       T6d = T5J * T6c;
629
       T6e = W[39];
630
       T6s = T6e * T6c;
631
       cr[WS(rs, 20)] = FNMS(T6e, T6r, T6d);
632
       ci[WS(rs, 20)] = FMA(T5J, T6r, T6s);
633
        }
634
        {
635
       E T6t, T6v, T6w, T6y;
636
       T6t = W[6];
637
       T6v = T6t * T6u;
638
       T6w = W[7];
639
       T6y = T6w * T6u;
640
       cr[WS(rs, 4)] = FNMS(T6w, T6x, T6v);
641
       ci[WS(rs, 4)] = FMA(T6t, T6x, T6y);
642
        }
643
         }
644
         {
645
        E T74, T7c, T79, T7f;
646
        {
647
       E T72, T73, T77, T78;
648
       T72 = Tf - Tu;
649
       T73 = T6X - T6W;
650
       T74 = T72 - T73;
651
       T7c = T72 + T73;
652
       T77 = T6T - T6U;
653
       T78 = TK - TZ;
654
       T79 = T77 - T78;
655
       T7f = T78 + T77;
656
        }
657
        {
658
       E T75, T7a, T71, T76;
659
       T71 = W[46];
660
       T75 = T71 * T74;
661
       T7a = T71 * T79;
662
       T76 = W[47];
663
       cr[WS(rs, 24)] = FNMS(T76, T79, T75);
664
       ci[WS(rs, 24)] = FMA(T76, T74, T7a);
665
        }
666
        {
667
       E T7d, T7g, T7b, T7e;
668
       T7b = W[14];
669
       T7d = T7b * T7c;
670
       T7g = T7b * T7f;
671
       T7e = W[15];
672
       cr[WS(rs, 8)] = FNMS(T7e, T7f, T7d);
673
       ci[WS(rs, 8)] = FMA(T7e, T7c, T7g);
674
        }
675
         }
676
         {
677
        E T7I, T7Y, T7V, T81;
678
        {
679
       E T7s, T7H, T7R, T7U;
680
       T7s = FMA(KP707106781, T7r, T7k);
681
       T7H = T7z - T7G;
682
       T7I = FNMS(KP923879532, T7H, T7s);
683
       T7Y = FMA(KP923879532, T7H, T7s);
684
       T7R = FMA(KP707106781, T7Q, T7N);
685
       T7U = T7S - T7T;
686
       T7V = FNMS(KP923879532, T7U, T7R);
687
       T81 = FMA(KP923879532, T7U, T7R);
688
        }
689
        {
690
       E T7h, T7J, T7K, T7W;
691
       T7h = W[42];
692
       T7J = T7h * T7I;
693
       T7K = W[43];
694
       T7W = T7K * T7I;
695
       cr[WS(rs, 22)] = FNMS(T7K, T7V, T7J);
696
       ci[WS(rs, 22)] = FMA(T7h, T7V, T7W);
697
        }
698
        {
699
       E T7X, T7Z, T80, T82;
700
       T7X = W[10];
701
       T7Z = T7X * T7Y;
702
       T80 = W[11];
703
       T82 = T80 * T7Y;
704
       cr[WS(rs, 6)] = FNMS(T80, T81, T7Z);
705
       ci[WS(rs, 6)] = FMA(T7X, T81, T82);
706
        }
707
         }
708
         {
709
        E T37, T2A, T38, T2W, T2T, T3c, T2Z, T34;
710
        T37 = FNMS(KP923879532, T2O, T2L);
711
        {
712
       E T1G, T27, T2y, T2z;
713
       T1G = FMA(KP923879532, T1F, T1i);
714
       T27 = FMA(KP668178637, T26, T1X);
715
       T2y = FNMS(KP668178637, T2x, T2o);
716
       T2z = T27 - T2y;
717
       T2A = FNMS(KP831469612, T2z, T1G);
718
       T38 = T2y + T27;
719
       T2W = FMA(KP831469612, T2z, T1G);
720
        }
721
        {
722
       E T2P, T32, T2S, T33, T2Q, T2R;
723
       T2P = FMA(KP923879532, T2O, T2L);
724
       T32 = FNMS(KP923879532, T1F, T1i);
725
       T2Q = FMA(KP668178637, T2o, T2x);
726
       T2R = FNMS(KP668178637, T1X, T26);
727
       T2S = T2Q - T2R;
728
       T33 = T2Q + T2R;
729
       T2T = FNMS(KP831469612, T2S, T2P);
730
       T3c = FMA(KP831469612, T33, T32);
731
       T2Z = FMA(KP831469612, T2S, T2P);
732
       T34 = FNMS(KP831469612, T33, T32);
733
        }
734
        {
735
       E T2B, T2U, T11, T2C;
736
       T11 = W[40];
737
       T2B = T11 * T2A;
738
       T2U = T11 * T2T;
739
       T2C = W[41];
740
       cr[WS(rs, 21)] = FNMS(T2C, T2T, T2B);
741
       ci[WS(rs, 21)] = FMA(T2C, T2A, T2U);
742
        }
743
        {
744
       E T2X, T30, T2V, T2Y;
745
       T2V = W[8];
746
       T2X = T2V * T2W;
747
       T30 = T2V * T2Z;
748
       T2Y = W[9];
749
       cr[WS(rs, 5)] = FNMS(T2Y, T2Z, T2X);
750
       ci[WS(rs, 5)] = FMA(T2Y, T2W, T30);
751
        }
752
        {
753
       E T39, T36, T3a, T31, T35;
754
       T39 = FNMS(KP831469612, T38, T37);
755
       T36 = W[25];
756
       T3a = T36 * T34;
757
       T31 = W[24];
758
       T35 = T31 * T34;
759
       cr[WS(rs, 13)] = FNMS(T36, T39, T35);
760
       ci[WS(rs, 13)] = FMA(T31, T39, T3a);
761
        }
762
        {
763
       E T3f, T3e, T3g, T3b, T3d;
764
       T3f = FMA(KP831469612, T38, T37);
765
       T3e = W[57];
766
       T3g = T3e * T3c;
767
       T3b = W[56];
768
       T3d = T3b * T3c;
769
       cr[WS(rs, 29)] = FNMS(T3e, T3f, T3d);
770
       ci[WS(rs, 29)] = FMA(T3b, T3f, T3g);
771
        }
772
         }
773
         {
774
        E T4z, T4C, T4W, T4O, T4q, T4Z, T4G, T4T;
775
        T4z = FMA(KP923879532, T4y, T4v);
776
        {
777
       E T4M, T4A, T4B, T4N;
778
       T4M = FMA(KP923879532, T49, T42);
779
       T4A = FMA(KP668178637, T4d, T4g);
780
       T4B = FMA(KP668178637, T4k, T4n);
781
       T4N = T4A + T4B;
782
       T4C = T4A - T4B;
783
       T4W = FMA(KP831469612, T4N, T4M);
784
       T4O = FNMS(KP831469612, T4N, T4M);
785
        }
786
        {
787
       E T4a, T4R, T4p, T4S, T4h, T4o;
788
       T4a = FNMS(KP923879532, T49, T42);
789
       T4R = FNMS(KP923879532, T4y, T4v);
790
       T4h = FNMS(KP668178637, T4g, T4d);
791
       T4o = FNMS(KP668178637, T4n, T4k);
792
       T4p = T4h + T4o;
793
       T4S = T4h - T4o;
794
       T4q = FNMS(KP831469612, T4p, T4a);
795
       T4Z = FNMS(KP831469612, T4S, T4R);
796
       T4G = FMA(KP831469612, T4p, T4a);
797
       T4T = FMA(KP831469612, T4S, T4R);
798
        }
799
        {
800
       E T4P, T4U, T4L, T4Q;
801
       T4L = W[20];
802
       T4P = T4L * T4O;
803
       T4U = T4L * T4T;
804
       T4Q = W[21];
805
       cr[WS(rs, 11)] = FNMS(T4Q, T4T, T4P);
806
       ci[WS(rs, 11)] = FMA(T4Q, T4O, T4U);
807
        }
808
        {
809
       E T4X, T50, T4V, T4Y;
810
       T4V = W[52];
811
       T4X = T4V * T4W;
812
       T50 = T4V * T4Z;
813
       T4Y = W[53];
814
       cr[WS(rs, 27)] = FNMS(T4Y, T4Z, T4X);
815
       ci[WS(rs, 27)] = FMA(T4Y, T4W, T50);
816
        }
817
        {
818
       E T4D, T4s, T4E, T3Z, T4r;
819
       T4D = FNMS(KP831469612, T4C, T4z);
820
       T4s = W[37];
821
       T4E = T4s * T4q;
822
       T3Z = W[36];
823
       T4r = T3Z * T4q;
824
       cr[WS(rs, 19)] = FNMS(T4s, T4D, T4r);
825
       ci[WS(rs, 19)] = FMA(T3Z, T4D, T4E);
826
        }
827
        {
828
       E T4J, T4I, T4K, T4F, T4H;
829
       T4J = FMA(KP831469612, T4C, T4z);
830
       T4I = W[5];
831
       T4K = T4I * T4G;
832
       T4F = W[4];
833
       T4H = T4F * T4G;
834
       cr[WS(rs, 3)] = FNMS(T4I, T4J, T4H);
835
       ci[WS(rs, 3)] = FMA(T4F, T4J, T4K);
836
        }
837
         }
838
         {
839
        E T3x, T3A, T3U, T3M, T3s, T3X, T3E, T3R;
840
        T3x = FMA(KP923879532, T3w, T3v);
841
        {
842
       E T3K, T3y, T3z, T3L;
843
       T3K = FNMS(KP923879532, T3j, T3i);
844
       T3y = FMA(KP198912367, T3l, T3m);
845
       T3z = FNMS(KP198912367, T3o, T3p);
846
       T3L = T3z - T3y;
847
       T3A = T3y + T3z;
848
       T3U = FMA(KP980785280, T3L, T3K);
849
       T3M = FNMS(KP980785280, T3L, T3K);
850
        }
851
        {
852
       E T3k, T3P, T3r, T3Q, T3n, T3q;
853
       T3k = FMA(KP923879532, T3j, T3i);
854
       T3P = FNMS(KP923879532, T3w, T3v);
855
       T3n = FNMS(KP198912367, T3m, T3l);
856
       T3q = FMA(KP198912367, T3p, T3o);
857
       T3r = T3n + T3q;
858
       T3Q = T3n - T3q;
859
       T3s = FNMS(KP980785280, T3r, T3k);
860
       T3X = FMA(KP980785280, T3Q, T3P);
861
       T3E = FMA(KP980785280, T3r, T3k);
862
       T3R = FNMS(KP980785280, T3Q, T3P);
863
        }
864
        {
865
       E T3N, T3S, T3J, T3O;
866
       T3J = W[48];
867
       T3N = T3J * T3M;
868
       T3S = T3J * T3R;
869
       T3O = W[49];
870
       cr[WS(rs, 25)] = FNMS(T3O, T3R, T3N);
871
       ci[WS(rs, 25)] = FMA(T3O, T3M, T3S);
872
        }
873
        {
874
       E T3V, T3Y, T3T, T3W;
875
       T3T = W[16];
876
       T3V = T3T * T3U;
877
       T3Y = T3T * T3X;
878
       T3W = W[17];
879
       cr[WS(rs, 9)] = FNMS(T3W, T3X, T3V);
880
       ci[WS(rs, 9)] = FMA(T3W, T3U, T3Y);
881
        }
882
        {
883
       E T3B, T3u, T3C, T3h, T3t;
884
       T3B = FNMS(KP980785280, T3A, T3x);
885
       T3u = W[33];
886
       T3C = T3u * T3s;
887
       T3h = W[32];
888
       T3t = T3h * T3s;
889
       cr[WS(rs, 17)] = FNMS(T3u, T3B, T3t);
890
       ci[WS(rs, 17)] = FMA(T3h, T3B, T3C);
891
        }
892
        {
893
       E T3H, T3G, T3I, T3D, T3F;
894
       T3H = FMA(KP980785280, T3A, T3x);
895
       T3G = W[1];
896
       T3I = T3G * T3E;
897
       T3D = W[0];
898
       T3F = T3D * T3E;
899
       cr[WS(rs, 1)] = FNMS(T3G, T3H, T3F);
900
       ci[WS(rs, 1)] = FMA(T3D, T3H, T3I);
901
        }
902
         }
903
         {
904
        E T5h, T5k, T5E, T5w, T5c, T5H, T5o, T5B;
905
        T5h = FMA(KP923879532, T5g, T5f);
906
        {
907
       E T5u, T5i, T5j, T5v;
908
       T5u = FMA(KP923879532, T53, T52);
909
       T5i = FMA(KP198912367, T55, T56);
910
       T5j = FMA(KP198912367, T58, T59);
911
       T5v = T5i + T5j;
912
       T5k = T5i - T5j;
913
       T5E = FMA(KP980785280, T5v, T5u);
914
       T5w = FNMS(KP980785280, T5v, T5u);
915
        }
916
        {
917
       E T54, T5z, T5b, T5A, T57, T5a;
918
       T54 = FNMS(KP923879532, T53, T52);
919
       T5z = FNMS(KP923879532, T5g, T5f);
920
       T57 = FNMS(KP198912367, T56, T55);
921
       T5a = FNMS(KP198912367, T59, T58);
922
       T5b = T57 + T5a;
923
       T5A = T5a - T57;
924
       T5c = FMA(KP980785280, T5b, T54);
925
       T5H = FNMS(KP980785280, T5A, T5z);
926
       T5o = FNMS(KP980785280, T5b, T54);
927
       T5B = FMA(KP980785280, T5A, T5z);
928
        }
929
        {
930
       E T5x, T5C, T5t, T5y;
931
       T5t = W[28];
932
       T5x = T5t * T5w;
933
       T5C = T5t * T5B;
934
       T5y = W[29];
935
       cr[WS(rs, 15)] = FNMS(T5y, T5B, T5x);
936
       ci[WS(rs, 15)] = FMA(T5y, T5w, T5C);
937
        }
938
        {
939
       E T5F, T5I, T5D, T5G;
940
       T5D = W[60];
941
       T5F = T5D * T5E;
942
       T5I = T5D * T5H;
943
       T5G = W[61];
944
       cr[WS(rs, 31)] = FNMS(T5G, T5H, T5F);
945
       ci[WS(rs, 31)] = FMA(T5G, T5E, T5I);
946
        }
947
        {
948
       E T5l, T5e, T5m, T51, T5d;
949
       T5l = FNMS(KP980785280, T5k, T5h);
950
       T5e = W[45];
951
       T5m = T5e * T5c;
952
       T51 = W[44];
953
       T5d = T51 * T5c;
954
       cr[WS(rs, 23)] = FNMS(T5e, T5l, T5d);
955
       ci[WS(rs, 23)] = FMA(T51, T5l, T5m);
956
        }
957
        {
958
       E T5r, T5q, T5s, T5n, T5p;
959
       T5r = FMA(KP980785280, T5k, T5h);
960
       T5q = W[13];
961
       T5s = T5q * T5o;
962
       T5n = W[12];
963
       T5p = T5n * T5o;
964
       cr[WS(rs, 7)] = FNMS(T5q, T5r, T5p);
965
       ci[WS(rs, 7)] = FMA(T5n, T5r, T5s);
966
        }
967
         }
968
    }
969
     }
970
}
971
972
static const tw_instr twinstr[] = {
973
     { TW_FULL, 1, 32 },
974
     { TW_NEXT, 1, 0 }
975
};
976
977
static const hc2hc_desc desc = { 32, "hb_32", twinstr, &GENUS, { 236, 62, 198, 0 } };
978
979
void X(codelet_hb_32) (planner *p) {
980
     X(khc2hc_register) (p, hb_32, &desc);
981
}
982
#else
983
984
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hb_32 -include rdft/scalar/hb.h */
985
986
/*
987
 * This function contains 434 FP additions, 208 FP multiplications,
988
 * (or, 340 additions, 114 multiplications, 94 fused multiply/add),
989
 * 98 stack variables, 7 constants, and 128 memory accesses
990
 */
991
#include "rdft/scalar/hb.h"
992
993
static void hb_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
994
0
{
995
0
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
996
0
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
997
0
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
998
0
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
999
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1000
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1001
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1002
0
     {
1003
0
    INT m;
1004
0
    for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) {
1005
0
         E T4o, T6y, T70, T5u, Tf, T12, T5x, T6z, T3m, T3Y, T29, T2y, T4v, T71, T2U;
1006
0
         E T3M, Tu, T1U, T6D, T73, T6G, T74, T1h, T2z, T2X, T3o, T4D, T5A, T4K, T5z;
1007
0
         E T30, T3n, TK, T1j, T6S, T7w, T6V, T7v, T1y, T2B, T3c, T3S, T4X, T61, T54;
1008
0
         E T62, T3f, T3T, TZ, T1A, T6L, T7z, T6O, T7y, T1P, T2C, T35, T3P, T5g, T64;
1009
0
         E T5n, T65, T38, T3Q;
1010
0
         {
1011
0
        E T3, T4m, T24, T4q, T27, T4t, T6, T5s, Ta, T4p, T1X, T5t, T20, T4n, Td;
1012
0
        E T4s;
1013
0
        {
1014
0
       E T1, T2, T22, T23;
1015
0
       T1 = cr[0];
1016
0
       T2 = ci[WS(rs, 15)];
1017
0
       T3 = T1 + T2;
1018
0
       T4m = T1 - T2;
1019
0
       T22 = ci[WS(rs, 27)];
1020
0
       T23 = cr[WS(rs, 20)];
1021
0
       T24 = T22 - T23;
1022
0
       T4q = T22 + T23;
1023
0
        }
1024
0
        {
1025
0
       E T25, T26, T4, T5;
1026
0
       T25 = ci[WS(rs, 19)];
1027
0
       T26 = cr[WS(rs, 28)];
1028
0
       T27 = T25 - T26;
1029
0
       T4t = T25 + T26;
1030
0
       T4 = cr[WS(rs, 8)];
1031
0
       T5 = ci[WS(rs, 7)];
1032
0
       T6 = T4 + T5;
1033
0
       T5s = T4 - T5;
1034
0
        }
1035
0
        {
1036
0
       E T8, T9, T1V, T1W;
1037
0
       T8 = cr[WS(rs, 4)];
1038
0
       T9 = ci[WS(rs, 11)];
1039
0
       Ta = T8 + T9;
1040
0
       T4p = T8 - T9;
1041
0
       T1V = ci[WS(rs, 31)];
1042
0
       T1W = cr[WS(rs, 16)];
1043
0
       T1X = T1V - T1W;
1044
0
       T5t = T1V + T1W;
1045
0
        }
1046
0
        {
1047
0
       E T1Y, T1Z, Tb, Tc;
1048
0
       T1Y = ci[WS(rs, 23)];
1049
0
       T1Z = cr[WS(rs, 24)];
1050
0
       T20 = T1Y - T1Z;
1051
0
       T4n = T1Y + T1Z;
1052
0
       Tb = ci[WS(rs, 3)];
1053
0
       Tc = cr[WS(rs, 12)];
1054
0
       Td = Tb + Tc;
1055
0
       T4s = Tb - Tc;
1056
0
        }
1057
0
        {
1058
0
       E T7, Te, T21, T28;
1059
0
       T4o = T4m - T4n;
1060
0
       T6y = T4m + T4n;
1061
0
       T70 = T5t - T5s;
1062
0
       T5u = T5s + T5t;
1063
0
       T7 = T3 + T6;
1064
0
       Te = Ta + Td;
1065
0
       Tf = T7 + Te;
1066
0
       T12 = T7 - Te;
1067
0
       {
1068
0
            E T5v, T5w, T3k, T3l;
1069
0
            T5v = T4p + T4q;
1070
0
            T5w = T4s + T4t;
1071
0
            T5x = KP707106781 * (T5v - T5w);
1072
0
            T6z = KP707106781 * (T5v + T5w);
1073
0
            T3k = T1X - T20;
1074
0
            T3l = Ta - Td;
1075
0
            T3m = T3k - T3l;
1076
0
            T3Y = T3l + T3k;
1077
0
       }
1078
0
       T21 = T1X + T20;
1079
0
       T28 = T24 + T27;
1080
0
       T29 = T21 - T28;
1081
0
       T2y = T21 + T28;
1082
0
       {
1083
0
            E T4r, T4u, T2S, T2T;
1084
0
            T4r = T4p - T4q;
1085
0
            T4u = T4s - T4t;
1086
0
            T4v = KP707106781 * (T4r + T4u);
1087
0
            T71 = KP707106781 * (T4r - T4u);
1088
0
            T2S = T3 - T6;
1089
0
            T2T = T27 - T24;
1090
0
            T2U = T2S - T2T;
1091
0
            T3M = T2S + T2T;
1092
0
       }
1093
0
        }
1094
0
         }
1095
0
         {
1096
0
        E Ti, T4H, T1c, T4F, T1f, T4I, Tl, T4E, Tp, T4A, T15, T4y, T18, T4B, Ts;
1097
0
        E T4x;
1098
0
        {
1099
0
       E Tg, Th, T1a, T1b;
1100
0
       Tg = cr[WS(rs, 2)];
1101
0
       Th = ci[WS(rs, 13)];
1102
0
       Ti = Tg + Th;
1103
0
       T4H = Tg - Th;
1104
0
       T1a = ci[WS(rs, 29)];
1105
0
       T1b = cr[WS(rs, 18)];
1106
0
       T1c = T1a - T1b;
1107
0
       T4F = T1a + T1b;
1108
0
        }
1109
0
        {
1110
0
       E T1d, T1e, Tj, Tk;
1111
0
       T1d = ci[WS(rs, 21)];
1112
0
       T1e = cr[WS(rs, 26)];
1113
0
       T1f = T1d - T1e;
1114
0
       T4I = T1d + T1e;
1115
0
       Tj = cr[WS(rs, 10)];
1116
0
       Tk = ci[WS(rs, 5)];
1117
0
       Tl = Tj + Tk;
1118
0
       T4E = Tj - Tk;
1119
0
        }
1120
0
        {
1121
0
       E Tn, To, T13, T14;
1122
0
       Tn = ci[WS(rs, 1)];
1123
0
       To = cr[WS(rs, 14)];
1124
0
       Tp = Tn + To;
1125
0
       T4A = Tn - To;
1126
0
       T13 = ci[WS(rs, 17)];
1127
0
       T14 = cr[WS(rs, 30)];
1128
0
       T15 = T13 - T14;
1129
0
       T4y = T13 + T14;
1130
0
        }
1131
0
        {
1132
0
       E T16, T17, Tq, Tr;
1133
0
       T16 = ci[WS(rs, 25)];
1134
0
       T17 = cr[WS(rs, 22)];
1135
0
       T18 = T16 - T17;
1136
0
       T4B = T16 + T17;
1137
0
       Tq = cr[WS(rs, 6)];
1138
0
       Tr = ci[WS(rs, 9)];
1139
0
       Ts = Tq + Tr;
1140
0
       T4x = Tq - Tr;
1141
0
        }
1142
0
        {
1143
0
       E Tm, Tt, T6B, T6C;
1144
0
       Tm = Ti + Tl;
1145
0
       Tt = Tp + Ts;
1146
0
       Tu = Tm + Tt;
1147
0
       T1U = Tm - Tt;
1148
0
       T6B = T4H + T4I;
1149
0
       T6C = T4F - T4E;
1150
0
       T6D = FNMS(KP923879532, T6C, KP382683432 * T6B);
1151
0
       T73 = FMA(KP382683432, T6C, KP923879532 * T6B);
1152
0
        }
1153
0
        {
1154
0
       E T6E, T6F, T19, T1g;
1155
0
       T6E = T4A + T4B;
1156
0
       T6F = T4x + T4y;
1157
0
       T6G = FNMS(KP923879532, T6F, KP382683432 * T6E);
1158
0
       T74 = FMA(KP382683432, T6F, KP923879532 * T6E);
1159
0
       T19 = T15 + T18;
1160
0
       T1g = T1c + T1f;
1161
0
       T1h = T19 - T1g;
1162
0
       T2z = T1g + T19;
1163
0
        }
1164
0
        {
1165
0
       E T2V, T2W, T4z, T4C;
1166
0
       T2V = T15 - T18;
1167
0
       T2W = Tp - Ts;
1168
0
       T2X = T2V - T2W;
1169
0
       T3o = T2W + T2V;
1170
0
       T4z = T4x - T4y;
1171
0
       T4C = T4A - T4B;
1172
0
       T4D = FNMS(KP382683432, T4C, KP923879532 * T4z);
1173
0
       T5A = FMA(KP382683432, T4z, KP923879532 * T4C);
1174
0
        }
1175
0
        {
1176
0
       E T4G, T4J, T2Y, T2Z;
1177
0
       T4G = T4E + T4F;
1178
0
       T4J = T4H - T4I;
1179
0
       T4K = FMA(KP923879532, T4G, KP382683432 * T4J);
1180
0
       T5z = FNMS(KP382683432, T4G, KP923879532 * T4J);
1181
0
       T2Y = Ti - Tl;
1182
0
       T2Z = T1c - T1f;
1183
0
       T30 = T2Y + T2Z;
1184
0
       T3n = T2Y - T2Z;
1185
0
        }
1186
0
         }
1187
0
         {
1188
0
        E Ty, T4N, TB, T4Y, T1p, T4O, T1m, T4Z, TI, T52, T1w, T4V, TF, T51, T1t;
1189
0
        E T4S;
1190
0
        {
1191
0
       E Tw, Tx, T1k, T1l;
1192
0
       Tw = cr[WS(rs, 1)];
1193
0
       Tx = ci[WS(rs, 14)];
1194
0
       Ty = Tw + Tx;
1195
0
       T4N = Tw - Tx;
1196
0
       {
1197
0
            E Tz, TA, T1n, T1o;
1198
0
            Tz = cr[WS(rs, 9)];
1199
0
            TA = ci[WS(rs, 6)];
1200
0
            TB = Tz + TA;
1201
0
            T4Y = Tz - TA;
1202
0
            T1n = ci[WS(rs, 22)];
1203
0
            T1o = cr[WS(rs, 25)];
1204
0
            T1p = T1n - T1o;
1205
0
            T4O = T1n + T1o;
1206
0
       }
1207
0
       T1k = ci[WS(rs, 30)];
1208
0
       T1l = cr[WS(rs, 17)];
1209
0
       T1m = T1k - T1l;
1210
0
       T4Z = T1k + T1l;
1211
0
       {
1212
0
            E TG, TH, T4T, T1u, T1v, T4U;
1213
0
            TG = ci[WS(rs, 2)];
1214
0
            TH = cr[WS(rs, 13)];
1215
0
            T4T = TG - TH;
1216
0
            T1u = ci[WS(rs, 18)];
1217
0
            T1v = cr[WS(rs, 29)];
1218
0
            T4U = T1u + T1v;
1219
0
            TI = TG + TH;
1220
0
            T52 = T4T + T4U;
1221
0
            T1w = T1u - T1v;
1222
0
            T4V = T4T - T4U;
1223
0
       }
1224
0
       {
1225
0
            E TD, TE, T4Q, T1r, T1s, T4R;
1226
0
            TD = cr[WS(rs, 5)];
1227
0
            TE = ci[WS(rs, 10)];
1228
0
            T4Q = TD - TE;
1229
0
            T1r = ci[WS(rs, 26)];
1230
0
            T1s = cr[WS(rs, 21)];
1231
0
            T4R = T1r + T1s;
1232
0
            TF = TD + TE;
1233
0
            T51 = T4Q + T4R;
1234
0
            T1t = T1r - T1s;
1235
0
            T4S = T4Q - T4R;
1236
0
       }
1237
0
        }
1238
0
        {
1239
0
       E TC, TJ, T6Q, T6R;
1240
0
       TC = Ty + TB;
1241
0
       TJ = TF + TI;
1242
0
       TK = TC + TJ;
1243
0
       T1j = TC - TJ;
1244
0
       T6Q = T4Z - T4Y;
1245
0
       T6R = KP707106781 * (T4S - T4V);
1246
0
       T6S = T6Q + T6R;
1247
0
       T7w = T6Q - T6R;
1248
0
        }
1249
0
        {
1250
0
       E T6T, T6U, T1q, T1x;
1251
0
       T6T = T4N + T4O;
1252
0
       T6U = KP707106781 * (T51 + T52);
1253
0
       T6V = T6T - T6U;
1254
0
       T7v = T6T + T6U;
1255
0
       T1q = T1m + T1p;
1256
0
       T1x = T1t + T1w;
1257
0
       T1y = T1q - T1x;
1258
0
       T2B = T1q + T1x;
1259
0
        }
1260
0
        {
1261
0
       E T3a, T3b, T4P, T4W;
1262
0
       T3a = T1m - T1p;
1263
0
       T3b = TF - TI;
1264
0
       T3c = T3a - T3b;
1265
0
       T3S = T3b + T3a;
1266
0
       T4P = T4N - T4O;
1267
0
       T4W = KP707106781 * (T4S + T4V);
1268
0
       T4X = T4P - T4W;
1269
0
       T61 = T4P + T4W;
1270
0
        }
1271
0
        {
1272
0
       E T50, T53, T3d, T3e;
1273
0
       T50 = T4Y + T4Z;
1274
0
       T53 = KP707106781 * (T51 - T52);
1275
0
       T54 = T50 - T53;
1276
0
       T62 = T50 + T53;
1277
0
       T3d = Ty - TB;
1278
0
       T3e = T1w - T1t;
1279
0
       T3f = T3d - T3e;
1280
0
       T3T = T3d + T3e;
1281
0
        }
1282
0
         }
1283
0
         {
1284
0
        E TN, T56, TQ, T5h, T1G, T57, T1D, T5i, TX, T5l, T1N, T5e, TU, T5k, T1K;
1285
0
        E T5b;
1286
0
        {
1287
0
       E TL, TM, T1B, T1C;
1288
0
       TL = ci[0];
1289
0
       TM = cr[WS(rs, 15)];
1290
0
       TN = TL + TM;
1291
0
       T56 = TL - TM;
1292
0
       {
1293
0
            E TO, TP, T1E, T1F;
1294
0
            TO = cr[WS(rs, 7)];
1295
0
            TP = ci[WS(rs, 8)];
1296
0
            TQ = TO + TP;
1297
0
            T5h = TO - TP;
1298
0
            T1E = ci[WS(rs, 24)];
1299
0
            T1F = cr[WS(rs, 23)];
1300
0
            T1G = T1E - T1F;
1301
0
            T57 = T1E + T1F;
1302
0
       }
1303
0
       T1B = ci[WS(rs, 16)];
1304
0
       T1C = cr[WS(rs, 31)];
1305
0
       T1D = T1B - T1C;
1306
0
       T5i = T1B + T1C;
1307
0
       {
1308
0
            E TV, TW, T5c, T1L, T1M, T5d;
1309
0
            TV = ci[WS(rs, 4)];
1310
0
            TW = cr[WS(rs, 11)];
1311
0
            T5c = TV - TW;
1312
0
            T1L = ci[WS(rs, 20)];
1313
0
            T1M = cr[WS(rs, 27)];
1314
0
            T5d = T1L + T1M;
1315
0
            TX = TV + TW;
1316
0
            T5l = T5c + T5d;
1317
0
            T1N = T1L - T1M;
1318
0
            T5e = T5c - T5d;
1319
0
       }
1320
0
       {
1321
0
            E TS, TT, T59, T1I, T1J, T5a;
1322
0
            TS = cr[WS(rs, 3)];
1323
0
            TT = ci[WS(rs, 12)];
1324
0
            T59 = TS - TT;
1325
0
            T1I = ci[WS(rs, 28)];
1326
0
            T1J = cr[WS(rs, 19)];
1327
0
            T5a = T1I + T1J;
1328
0
            TU = TS + TT;
1329
0
            T5k = T59 + T5a;
1330
0
            T1K = T1I - T1J;
1331
0
            T5b = T59 - T5a;
1332
0
       }
1333
0
        }
1334
0
        {
1335
0
       E TR, TY, T6J, T6K;
1336
0
       TR = TN + TQ;
1337
0
       TY = TU + TX;
1338
0
       TZ = TR + TY;
1339
0
       T1A = TR - TY;
1340
0
       T6J = KP707106781 * (T5b - T5e);
1341
0
       T6K = T5h + T5i;
1342
0
       T6L = T6J - T6K;
1343
0
       T7z = T6K + T6J;
1344
0
        }
1345
0
        {
1346
0
       E T6M, T6N, T1H, T1O;
1347
0
       T6M = T56 + T57;
1348
0
       T6N = KP707106781 * (T5k + T5l);
1349
0
       T6O = T6M - T6N;
1350
0
       T7y = T6M + T6N;
1351
0
       T1H = T1D + T1G;
1352
0
       T1O = T1K + T1N;
1353
0
       T1P = T1H - T1O;
1354
0
       T2C = T1H + T1O;
1355
0
        }
1356
0
        {
1357
0
       E T33, T34, T58, T5f;
1358
0
       T33 = T1D - T1G;
1359
0
       T34 = TU - TX;
1360
0
       T35 = T33 - T34;
1361
0
       T3P = T34 + T33;
1362
0
       T58 = T56 - T57;
1363
0
       T5f = KP707106781 * (T5b + T5e);
1364
0
       T5g = T58 - T5f;
1365
0
       T64 = T58 + T5f;
1366
0
        }
1367
0
        {
1368
0
       E T5j, T5m, T36, T37;
1369
0
       T5j = T5h - T5i;
1370
0
       T5m = KP707106781 * (T5k - T5l);
1371
0
       T5n = T5j - T5m;
1372
0
       T65 = T5j + T5m;
1373
0
       T36 = TN - TQ;
1374
0
       T37 = T1N - T1K;
1375
0
       T38 = T36 - T37;
1376
0
       T3Q = T36 + T37;
1377
0
        }
1378
0
         }
1379
0
         {
1380
0
        E Tv, T10, T2w, T2A, T2D, T2E, T2v, T2x;
1381
0
        Tv = Tf + Tu;
1382
0
        T10 = TK + TZ;
1383
0
        T2w = Tv - T10;
1384
0
        T2A = T2y + T2z;
1385
0
        T2D = T2B + T2C;
1386
0
        T2E = T2A - T2D;
1387
0
        cr[0] = Tv + T10;
1388
0
        ci[0] = T2A + T2D;
1389
0
        T2v = W[30];
1390
0
        T2x = W[31];
1391
0
        cr[WS(rs, 16)] = FNMS(T2x, T2E, T2v * T2w);
1392
0
        ci[WS(rs, 16)] = FMA(T2x, T2w, T2v * T2E);
1393
0
         }
1394
0
         {
1395
0
        E T2I, T2O, T2M, T2Q;
1396
0
        {
1397
0
       E T2G, T2H, T2K, T2L;
1398
0
       T2G = Tf - Tu;
1399
0
       T2H = T2C - T2B;
1400
0
       T2I = T2G - T2H;
1401
0
       T2O = T2G + T2H;
1402
0
       T2K = T2y - T2z;
1403
0
       T2L = TK - TZ;
1404
0
       T2M = T2K - T2L;
1405
0
       T2Q = T2L + T2K;
1406
0
        }
1407
0
        {
1408
0
       E T2F, T2J, T2N, T2P;
1409
0
       T2F = W[46];
1410
0
       T2J = W[47];
1411
0
       cr[WS(rs, 24)] = FNMS(T2J, T2M, T2F * T2I);
1412
0
       ci[WS(rs, 24)] = FMA(T2F, T2M, T2J * T2I);
1413
0
       T2N = W[14];
1414
0
       T2P = W[15];
1415
0
       cr[WS(rs, 8)] = FNMS(T2P, T2Q, T2N * T2O);
1416
0
       ci[WS(rs, 8)] = FMA(T2N, T2Q, T2P * T2O);
1417
0
        }
1418
0
         }
1419
0
         {
1420
0
        E T1i, T2a, T2o, T2k, T2d, T2l, T1R, T2p;
1421
0
        T1i = T12 + T1h;
1422
0
        T2a = T1U + T29;
1423
0
        T2o = T29 - T1U;
1424
0
        T2k = T12 - T1h;
1425
0
        {
1426
0
       E T2b, T2c, T1z, T1Q;
1427
0
       T2b = T1j + T1y;
1428
0
       T2c = T1P - T1A;
1429
0
       T2d = KP707106781 * (T2b + T2c);
1430
0
       T2l = KP707106781 * (T2c - T2b);
1431
0
       T1z = T1j - T1y;
1432
0
       T1Q = T1A + T1P;
1433
0
       T1R = KP707106781 * (T1z + T1Q);
1434
0
       T2p = KP707106781 * (T1z - T1Q);
1435
0
        }
1436
0
        {
1437
0
       E T1S, T2e, T11, T1T;
1438
0
       T1S = T1i - T1R;
1439
0
       T2e = T2a - T2d;
1440
0
       T11 = W[38];
1441
0
       T1T = W[39];
1442
0
       cr[WS(rs, 20)] = FNMS(T1T, T2e, T11 * T1S);
1443
0
       ci[WS(rs, 20)] = FMA(T1T, T1S, T11 * T2e);
1444
0
        }
1445
0
        {
1446
0
       E T2s, T2u, T2r, T2t;
1447
0
       T2s = T2k + T2l;
1448
0
       T2u = T2o + T2p;
1449
0
       T2r = W[22];
1450
0
       T2t = W[23];
1451
0
       cr[WS(rs, 12)] = FNMS(T2t, T2u, T2r * T2s);
1452
0
       ci[WS(rs, 12)] = FMA(T2r, T2u, T2t * T2s);
1453
0
        }
1454
0
        {
1455
0
       E T2g, T2i, T2f, T2h;
1456
0
       T2g = T1i + T1R;
1457
0
       T2i = T2a + T2d;
1458
0
       T2f = W[6];
1459
0
       T2h = W[7];
1460
0
       cr[WS(rs, 4)] = FNMS(T2h, T2i, T2f * T2g);
1461
0
       ci[WS(rs, 4)] = FMA(T2h, T2g, T2f * T2i);
1462
0
        }
1463
0
        {
1464
0
       E T2m, T2q, T2j, T2n;
1465
0
       T2m = T2k - T2l;
1466
0
       T2q = T2o - T2p;
1467
0
       T2j = W[54];
1468
0
       T2n = W[55];
1469
0
       cr[WS(rs, 28)] = FNMS(T2n, T2q, T2j * T2m);
1470
0
       ci[WS(rs, 28)] = FMA(T2j, T2q, T2n * T2m);
1471
0
        }
1472
0
         }
1473
0
         {
1474
0
        E T3O, T4a, T40, T4e, T3V, T4f, T43, T4b, T3N, T3Z;
1475
0
        T3N = KP707106781 * (T3n + T3o);
1476
0
        T3O = T3M - T3N;
1477
0
        T4a = T3M + T3N;
1478
0
        T3Z = KP707106781 * (T30 + T2X);
1479
0
        T40 = T3Y - T3Z;
1480
0
        T4e = T3Y + T3Z;
1481
0
        {
1482
0
       E T3R, T3U, T41, T42;
1483
0
       T3R = FNMS(KP382683432, T3Q, KP923879532 * T3P);
1484
0
       T3U = FMA(KP923879532, T3S, KP382683432 * T3T);
1485
0
       T3V = T3R - T3U;
1486
0
       T4f = T3U + T3R;
1487
0
       T41 = FNMS(KP382683432, T3S, KP923879532 * T3T);
1488
0
       T42 = FMA(KP382683432, T3P, KP923879532 * T3Q);
1489
0
       T43 = T41 - T42;
1490
0
       T4b = T41 + T42;
1491
0
        }
1492
0
        {
1493
0
       E T3W, T44, T3L, T3X;
1494
0
       T3W = T3O - T3V;
1495
0
       T44 = T40 - T43;
1496
0
       T3L = W[50];
1497
0
       T3X = W[51];
1498
0
       cr[WS(rs, 26)] = FNMS(T3X, T44, T3L * T3W);
1499
0
       ci[WS(rs, 26)] = FMA(T3X, T3W, T3L * T44);
1500
0
        }
1501
0
        {
1502
0
       E T4i, T4k, T4h, T4j;
1503
0
       T4i = T4a + T4b;
1504
0
       T4k = T4e + T4f;
1505
0
       T4h = W[2];
1506
0
       T4j = W[3];
1507
0
       cr[WS(rs, 2)] = FNMS(T4j, T4k, T4h * T4i);
1508
0
       ci[WS(rs, 2)] = FMA(T4h, T4k, T4j * T4i);
1509
0
        }
1510
0
        {
1511
0
       E T46, T48, T45, T47;
1512
0
       T46 = T3O + T3V;
1513
0
       T48 = T40 + T43;
1514
0
       T45 = W[18];
1515
0
       T47 = W[19];
1516
0
       cr[WS(rs, 10)] = FNMS(T47, T48, T45 * T46);
1517
0
       ci[WS(rs, 10)] = FMA(T47, T46, T45 * T48);
1518
0
        }
1519
0
        {
1520
0
       E T4c, T4g, T49, T4d;
1521
0
       T4c = T4a - T4b;
1522
0
       T4g = T4e - T4f;
1523
0
       T49 = W[34];
1524
0
       T4d = W[35];
1525
0
       cr[WS(rs, 18)] = FNMS(T4d, T4g, T49 * T4c);
1526
0
       ci[WS(rs, 18)] = FMA(T49, T4g, T4d * T4c);
1527
0
        }
1528
0
         }
1529
0
         {
1530
0
        E T32, T3A, T3q, T3E, T3h, T3F, T3t, T3B, T31, T3p;
1531
0
        T31 = KP707106781 * (T2X - T30);
1532
0
        T32 = T2U - T31;
1533
0
        T3A = T2U + T31;
1534
0
        T3p = KP707106781 * (T3n - T3o);
1535
0
        T3q = T3m - T3p;
1536
0
        T3E = T3m + T3p;
1537
0
        {
1538
0
       E T39, T3g, T3r, T3s;
1539
0
       T39 = FNMS(KP923879532, T38, KP382683432 * T35);
1540
0
       T3g = FMA(KP382683432, T3c, KP923879532 * T3f);
1541
0
       T3h = T39 - T3g;
1542
0
       T3F = T3g + T39;
1543
0
       T3r = FNMS(KP923879532, T3c, KP382683432 * T3f);
1544
0
       T3s = FMA(KP923879532, T35, KP382683432 * T38);
1545
0
       T3t = T3r - T3s;
1546
0
       T3B = T3r + T3s;
1547
0
        }
1548
0
        {
1549
0
       E T3i, T3u, T2R, T3j;
1550
0
       T3i = T32 - T3h;
1551
0
       T3u = T3q - T3t;
1552
0
       T2R = W[58];
1553
0
       T3j = W[59];
1554
0
       cr[WS(rs, 30)] = FNMS(T3j, T3u, T2R * T3i);
1555
0
       ci[WS(rs, 30)] = FMA(T3j, T3i, T2R * T3u);
1556
0
        }
1557
0
        {
1558
0
       E T3I, T3K, T3H, T3J;
1559
0
       T3I = T3A + T3B;
1560
0
       T3K = T3E + T3F;
1561
0
       T3H = W[10];
1562
0
       T3J = W[11];
1563
0
       cr[WS(rs, 6)] = FNMS(T3J, T3K, T3H * T3I);
1564
0
       ci[WS(rs, 6)] = FMA(T3H, T3K, T3J * T3I);
1565
0
        }
1566
0
        {
1567
0
       E T3w, T3y, T3v, T3x;
1568
0
       T3w = T32 + T3h;
1569
0
       T3y = T3q + T3t;
1570
0
       T3v = W[26];
1571
0
       T3x = W[27];
1572
0
       cr[WS(rs, 14)] = FNMS(T3x, T3y, T3v * T3w);
1573
0
       ci[WS(rs, 14)] = FMA(T3x, T3w, T3v * T3y);
1574
0
        }
1575
0
        {
1576
0
       E T3C, T3G, T3z, T3D;
1577
0
       T3C = T3A - T3B;
1578
0
       T3G = T3E - T3F;
1579
0
       T3z = W[42];
1580
0
       T3D = W[43];
1581
0
       cr[WS(rs, 22)] = FNMS(T3D, T3G, T3z * T3C);
1582
0
       ci[WS(rs, 22)] = FMA(T3z, T3G, T3D * T3C);
1583
0
        }
1584
0
         }
1585
0
         {
1586
0
        E T60, T6m, T6f, T6n, T67, T6r, T6c, T6q;
1587
0
        {
1588
0
       E T5Y, T5Z, T6d, T6e;
1589
0
       T5Y = T4o + T4v;
1590
0
       T5Z = T5z + T5A;
1591
0
       T60 = T5Y + T5Z;
1592
0
       T6m = T5Y - T5Z;
1593
0
       T6d = FMA(KP195090322, T61, KP980785280 * T62);
1594
0
       T6e = FNMS(KP195090322, T64, KP980785280 * T65);
1595
0
       T6f = T6d + T6e;
1596
0
       T6n = T6e - T6d;
1597
0
        }
1598
0
        {
1599
0
       E T63, T66, T6a, T6b;
1600
0
       T63 = FNMS(KP195090322, T62, KP980785280 * T61);
1601
0
       T66 = FMA(KP980785280, T64, KP195090322 * T65);
1602
0
       T67 = T63 + T66;
1603
0
       T6r = T63 - T66;
1604
0
       T6a = T5u + T5x;
1605
0
       T6b = T4K + T4D;
1606
0
       T6c = T6a + T6b;
1607
0
       T6q = T6a - T6b;
1608
0
        }
1609
0
        {
1610
0
       E T68, T6g, T5X, T69;
1611
0
       T68 = T60 - T67;
1612
0
       T6g = T6c - T6f;
1613
0
       T5X = W[32];
1614
0
       T69 = W[33];
1615
0
       cr[WS(rs, 17)] = FNMS(T69, T6g, T5X * T68);
1616
0
       ci[WS(rs, 17)] = FMA(T69, T68, T5X * T6g);
1617
0
        }
1618
0
        {
1619
0
       E T6u, T6w, T6t, T6v;
1620
0
       T6u = T6m + T6n;
1621
0
       T6w = T6q + T6r;
1622
0
       T6t = W[16];
1623
0
       T6v = W[17];
1624
0
       cr[WS(rs, 9)] = FNMS(T6v, T6w, T6t * T6u);
1625
0
       ci[WS(rs, 9)] = FMA(T6t, T6w, T6v * T6u);
1626
0
        }
1627
0
        {
1628
0
       E T6i, T6k, T6h, T6j;
1629
0
       T6i = T60 + T67;
1630
0
       T6k = T6c + T6f;
1631
0
       T6h = W[0];
1632
0
       T6j = W[1];
1633
0
       cr[WS(rs, 1)] = FNMS(T6j, T6k, T6h * T6i);
1634
0
       ci[WS(rs, 1)] = FMA(T6j, T6i, T6h * T6k);
1635
0
        }
1636
0
        {
1637
0
       E T6o, T6s, T6l, T6p;
1638
0
       T6o = T6m - T6n;
1639
0
       T6s = T6q - T6r;
1640
0
       T6l = W[48];
1641
0
       T6p = W[49];
1642
0
       cr[WS(rs, 25)] = FNMS(T6p, T6s, T6l * T6o);
1643
0
       ci[WS(rs, 25)] = FMA(T6l, T6s, T6p * T6o);
1644
0
        }
1645
0
         }
1646
0
         {
1647
0
        E T7u, T7Q, T7J, T7R, T7B, T7V, T7G, T7U;
1648
0
        {
1649
0
       E T7s, T7t, T7H, T7I;
1650
0
       T7s = T6y + T6z;
1651
0
       T7t = T73 + T74;
1652
0
       T7u = T7s - T7t;
1653
0
       T7Q = T7s + T7t;
1654
0
       T7H = FMA(KP195090322, T7w, KP980785280 * T7v);
1655
0
       T7I = FMA(KP195090322, T7z, KP980785280 * T7y);
1656
0
       T7J = T7H - T7I;
1657
0
       T7R = T7H + T7I;
1658
0
        }
1659
0
        {
1660
0
       E T7x, T7A, T7E, T7F;
1661
0
       T7x = FNMS(KP980785280, T7w, KP195090322 * T7v);
1662
0
       T7A = FNMS(KP980785280, T7z, KP195090322 * T7y);
1663
0
       T7B = T7x + T7A;
1664
0
       T7V = T7x - T7A;
1665
0
       T7E = T70 - T71;
1666
0
       T7F = T6D - T6G;
1667
0
       T7G = T7E + T7F;
1668
0
       T7U = T7E - T7F;
1669
0
        }
1670
0
        {
1671
0
       E T7C, T7K, T7r, T7D;
1672
0
       T7C = T7u - T7B;
1673
0
       T7K = T7G - T7J;
1674
0
       T7r = W[44];
1675
0
       T7D = W[45];
1676
0
       cr[WS(rs, 23)] = FNMS(T7D, T7K, T7r * T7C);
1677
0
       ci[WS(rs, 23)] = FMA(T7D, T7C, T7r * T7K);
1678
0
        }
1679
0
        {
1680
0
       E T7Y, T80, T7X, T7Z;
1681
0
       T7Y = T7Q + T7R;
1682
0
       T80 = T7U - T7V;
1683
0
       T7X = W[60];
1684
0
       T7Z = W[61];
1685
0
       cr[WS(rs, 31)] = FNMS(T7Z, T80, T7X * T7Y);
1686
0
       ci[WS(rs, 31)] = FMA(T7X, T80, T7Z * T7Y);
1687
0
        }
1688
0
        {
1689
0
       E T7M, T7O, T7L, T7N;
1690
0
       T7M = T7u + T7B;
1691
0
       T7O = T7G + T7J;
1692
0
       T7L = W[12];
1693
0
       T7N = W[13];
1694
0
       cr[WS(rs, 7)] = FNMS(T7N, T7O, T7L * T7M);
1695
0
       ci[WS(rs, 7)] = FMA(T7N, T7M, T7L * T7O);
1696
0
        }
1697
0
        {
1698
0
       E T7S, T7W, T7P, T7T;
1699
0
       T7S = T7Q - T7R;
1700
0
       T7W = T7U + T7V;
1701
0
       T7P = W[28];
1702
0
       T7T = W[29];
1703
0
       cr[WS(rs, 15)] = FNMS(T7T, T7W, T7P * T7S);
1704
0
       ci[WS(rs, 15)] = FMA(T7P, T7W, T7T * T7S);
1705
0
        }
1706
0
         }
1707
0
         {
1708
0
        E T4M, T5M, T5F, T5N, T5p, T5R, T5C, T5Q;
1709
0
        {
1710
0
       E T4w, T4L, T5D, T5E;
1711
0
       T4w = T4o - T4v;
1712
0
       T4L = T4D - T4K;
1713
0
       T4M = T4w + T4L;
1714
0
       T5M = T4w - T4L;
1715
0
       T5D = FMA(KP831469612, T4X, KP555570233 * T54);
1716
0
       T5E = FNMS(KP831469612, T5g, KP555570233 * T5n);
1717
0
       T5F = T5D + T5E;
1718
0
       T5N = T5E - T5D;
1719
0
        }
1720
0
        {
1721
0
       E T55, T5o, T5y, T5B;
1722
0
       T55 = FNMS(KP831469612, T54, KP555570233 * T4X);
1723
0
       T5o = FMA(KP555570233, T5g, KP831469612 * T5n);
1724
0
       T5p = T55 + T5o;
1725
0
       T5R = T55 - T5o;
1726
0
       T5y = T5u - T5x;
1727
0
       T5B = T5z - T5A;
1728
0
       T5C = T5y + T5B;
1729
0
       T5Q = T5y - T5B;
1730
0
        }
1731
0
        {
1732
0
       E T5q, T5G, T4l, T5r;
1733
0
       T5q = T4M - T5p;
1734
0
       T5G = T5C - T5F;
1735
0
       T4l = W[40];
1736
0
       T5r = W[41];
1737
0
       cr[WS(rs, 21)] = FNMS(T5r, T5G, T4l * T5q);
1738
0
       ci[WS(rs, 21)] = FMA(T5r, T5q, T4l * T5G);
1739
0
        }
1740
0
        {
1741
0
       E T5U, T5W, T5T, T5V;
1742
0
       T5U = T5M + T5N;
1743
0
       T5W = T5Q + T5R;
1744
0
       T5T = W[24];
1745
0
       T5V = W[25];
1746
0
       cr[WS(rs, 13)] = FNMS(T5V, T5W, T5T * T5U);
1747
0
       ci[WS(rs, 13)] = FMA(T5T, T5W, T5V * T5U);
1748
0
        }
1749
0
        {
1750
0
       E T5I, T5K, T5H, T5J;
1751
0
       T5I = T4M + T5p;
1752
0
       T5K = T5C + T5F;
1753
0
       T5H = W[8];
1754
0
       T5J = W[9];
1755
0
       cr[WS(rs, 5)] = FNMS(T5J, T5K, T5H * T5I);
1756
0
       ci[WS(rs, 5)] = FMA(T5J, T5I, T5H * T5K);
1757
0
        }
1758
0
        {
1759
0
       E T5O, T5S, T5L, T5P;
1760
0
       T5O = T5M - T5N;
1761
0
       T5S = T5Q - T5R;
1762
0
       T5L = W[56];
1763
0
       T5P = W[57];
1764
0
       cr[WS(rs, 29)] = FNMS(T5P, T5S, T5L * T5O);
1765
0
       ci[WS(rs, 29)] = FMA(T5L, T5S, T5P * T5O);
1766
0
        }
1767
0
         }
1768
0
         {
1769
0
        E T6I, T7g, T79, T7h, T6X, T7l, T76, T7k;
1770
0
        {
1771
0
       E T6A, T6H, T77, T78;
1772
0
       T6A = T6y - T6z;
1773
0
       T6H = T6D + T6G;
1774
0
       T6I = T6A - T6H;
1775
0
       T7g = T6A + T6H;
1776
0
       T77 = FNMS(KP555570233, T6S, KP831469612 * T6V);
1777
0
       T78 = FMA(KP555570233, T6L, KP831469612 * T6O);
1778
0
       T79 = T77 - T78;
1779
0
       T7h = T77 + T78;
1780
0
        }
1781
0
        {
1782
0
       E T6P, T6W, T72, T75;
1783
0
       T6P = FNMS(KP555570233, T6O, KP831469612 * T6L);
1784
0
       T6W = FMA(KP831469612, T6S, KP555570233 * T6V);
1785
0
       T6X = T6P - T6W;
1786
0
       T7l = T6W + T6P;
1787
0
       T72 = T70 + T71;
1788
0
       T75 = T73 - T74;
1789
0
       T76 = T72 - T75;
1790
0
       T7k = T72 + T75;
1791
0
        }
1792
0
        {
1793
0
       E T6Y, T7a, T6x, T6Z;
1794
0
       T6Y = T6I - T6X;
1795
0
       T7a = T76 - T79;
1796
0
       T6x = W[52];
1797
0
       T6Z = W[53];
1798
0
       cr[WS(rs, 27)] = FNMS(T6Z, T7a, T6x * T6Y);
1799
0
       ci[WS(rs, 27)] = FMA(T6Z, T6Y, T6x * T7a);
1800
0
        }
1801
0
        {
1802
0
       E T7o, T7q, T7n, T7p;
1803
0
       T7o = T7g + T7h;
1804
0
       T7q = T7k + T7l;
1805
0
       T7n = W[4];
1806
0
       T7p = W[5];
1807
0
       cr[WS(rs, 3)] = FNMS(T7p, T7q, T7n * T7o);
1808
0
       ci[WS(rs, 3)] = FMA(T7n, T7q, T7p * T7o);
1809
0
        }
1810
0
        {
1811
0
       E T7c, T7e, T7b, T7d;
1812
0
       T7c = T6I + T6X;
1813
0
       T7e = T76 + T79;
1814
0
       T7b = W[20];
1815
0
       T7d = W[21];
1816
0
       cr[WS(rs, 11)] = FNMS(T7d, T7e, T7b * T7c);
1817
0
       ci[WS(rs, 11)] = FMA(T7d, T7c, T7b * T7e);
1818
0
        }
1819
0
        {
1820
0
       E T7i, T7m, T7f, T7j;
1821
0
       T7i = T7g - T7h;
1822
0
       T7m = T7k - T7l;
1823
0
       T7f = W[36];
1824
0
       T7j = W[37];
1825
0
       cr[WS(rs, 19)] = FNMS(T7j, T7m, T7f * T7i);
1826
0
       ci[WS(rs, 19)] = FMA(T7f, T7m, T7j * T7i);
1827
0
        }
1828
0
         }
1829
0
    }
1830
0
     }
1831
0
}
1832
1833
static const tw_instr twinstr[] = {
1834
     { TW_FULL, 1, 32 },
1835
     { TW_NEXT, 1, 0 }
1836
};
1837
1838
static const hc2hc_desc desc = { 32, "hb_32", twinstr, &GENUS, { 340, 114, 94, 0 } };
1839
1840
1
void X(codelet_hb_32) (planner *p) {
1841
1
     X(khc2hc_register) (p, hb_32, &desc);
1842
1
}
1843
#endif