/src/fftw3/rdft/scalar/r2cb/hb_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Wed Jul 23 07:02:29 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hb_32 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 434 FP additions, 260 FP multiplications, |
32 | | * (or, 236 additions, 62 multiplications, 198 fused multiply/add), |
33 | | * 102 stack variables, 7 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
40 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
41 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
42 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
43 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
44 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
45 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
46 | | { |
47 | | INT m; |
48 | | for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { |
49 | | E Tf, T5K, T7k, T8k, T7N, T8x, T1i, T3i, T2L, T3v, T4v, T5f, T6m, T6T, T42; |
50 | | E T52, TZ, T6X, T1X, T3p, T8p, T8B, T26, T3o, T4n, T58, T7z, T7T, T4k, T59; |
51 | | E T6a, T6p, TK, T6W, T2o, T3m, T8s, T8A, T2x, T3l, T4g, T55, T7G, T7S, T4d; |
52 | | E T56, T61, T6o, Tu, T6f, T7r, T8y, T7Q, T8l, T1F, T3w, T2O, T3j, T4y, T53; |
53 | | E T5R, T6U, T49, T5g; |
54 | | { |
55 | | E T3, T12, T6, T2D, T2G, T6g, T15, T6h, Td, T6k, T1g, T2J, Ta, T6j, T1b; |
56 | | E T2I; |
57 | | { |
58 | | E T1, T2, T13, T14; |
59 | | T1 = cr[0]; |
60 | | T2 = ci[WS(rs, 15)]; |
61 | | T3 = T1 + T2; |
62 | | T12 = T1 - T2; |
63 | | { |
64 | | E T4, T5, T2E, T2F; |
65 | | T4 = cr[WS(rs, 8)]; |
66 | | T5 = ci[WS(rs, 7)]; |
67 | | T6 = T4 + T5; |
68 | | T2D = T4 - T5; |
69 | | T2E = ci[WS(rs, 31)]; |
70 | | T2F = cr[WS(rs, 16)]; |
71 | | T2G = T2E + T2F; |
72 | | T6g = T2E - T2F; |
73 | | } |
74 | | T13 = ci[WS(rs, 23)]; |
75 | | T14 = cr[WS(rs, 24)]; |
76 | | T15 = T13 + T14; |
77 | | T6h = T13 - T14; |
78 | | { |
79 | | E Tb, Tc, T1c, T1d, T1e, T1f; |
80 | | Tb = ci[WS(rs, 3)]; |
81 | | Tc = cr[WS(rs, 12)]; |
82 | | T1c = Tb - Tc; |
83 | | T1d = ci[WS(rs, 19)]; |
84 | | T1e = cr[WS(rs, 28)]; |
85 | | T1f = T1d + T1e; |
86 | | Td = Tb + Tc; |
87 | | T6k = T1d - T1e; |
88 | | T1g = T1c - T1f; |
89 | | T2J = T1c + T1f; |
90 | | } |
91 | | { |
92 | | E T8, T9, T17, T18, T19, T1a; |
93 | | T8 = cr[WS(rs, 4)]; |
94 | | T9 = ci[WS(rs, 11)]; |
95 | | T17 = T8 - T9; |
96 | | T18 = ci[WS(rs, 27)]; |
97 | | T19 = cr[WS(rs, 20)]; |
98 | | T1a = T18 + T19; |
99 | | Ta = T8 + T9; |
100 | | T6j = T18 - T19; |
101 | | T1b = T17 - T1a; |
102 | | T2I = T17 + T1a; |
103 | | } |
104 | | } |
105 | | { |
106 | | E T7, Te, T7i, T7j; |
107 | | T7 = T3 + T6; |
108 | | Te = Ta + Td; |
109 | | Tf = T7 + Te; |
110 | | T5K = T7 - Te; |
111 | | T7i = T3 - T6; |
112 | | T7j = T6k - T6j; |
113 | | T7k = T7i - T7j; |
114 | | T8k = T7i + T7j; |
115 | | } |
116 | | { |
117 | | E T7L, T7M, T16, T1h; |
118 | | T7L = T6g - T6h; |
119 | | T7M = Ta - Td; |
120 | | T7N = T7L - T7M; |
121 | | T8x = T7M + T7L; |
122 | | T16 = T12 - T15; |
123 | | T1h = T1b + T1g; |
124 | | T1i = FNMS(KP707106781, T1h, T16); |
125 | | T3i = FMA(KP707106781, T1h, T16); |
126 | | } |
127 | | { |
128 | | E T2H, T2K, T4t, T4u; |
129 | | T2H = T2D + T2G; |
130 | | T2K = T2I - T2J; |
131 | | T2L = FNMS(KP707106781, T2K, T2H); |
132 | | T3v = FMA(KP707106781, T2K, T2H); |
133 | | T4t = T2G - T2D; |
134 | | T4u = T1b - T1g; |
135 | | T4v = FMA(KP707106781, T4u, T4t); |
136 | | T5f = FNMS(KP707106781, T4u, T4t); |
137 | | } |
138 | | { |
139 | | E T6i, T6l, T40, T41; |
140 | | T6i = T6g + T6h; |
141 | | T6l = T6j + T6k; |
142 | | T6m = T6i - T6l; |
143 | | T6T = T6i + T6l; |
144 | | T40 = T12 + T15; |
145 | | T41 = T2I + T2J; |
146 | | T42 = FNMS(KP707106781, T41, T40); |
147 | | T52 = FMA(KP707106781, T41, T40); |
148 | | } |
149 | | } |
150 | | { |
151 | | E TR, T7w, T1H, T1Y, T1K, T7t, T21, T65, TY, T7u, T7x, T1Q, T1V, T24, T68; |
152 | | E T23, T7v, T7y; |
153 | | { |
154 | | E TL, TM, TN, TO, TP, TQ; |
155 | | TL = ci[0]; |
156 | | TM = cr[WS(rs, 15)]; |
157 | | TN = TL + TM; |
158 | | TO = cr[WS(rs, 7)]; |
159 | | TP = ci[WS(rs, 8)]; |
160 | | TQ = TO + TP; |
161 | | TR = TN + TQ; |
162 | | T7w = TN - TQ; |
163 | | T1H = TO - TP; |
164 | | T1Y = TL - TM; |
165 | | } |
166 | | { |
167 | | E T1I, T1J, T63, T1Z, T20, T64; |
168 | | T1I = ci[WS(rs, 16)]; |
169 | | T1J = cr[WS(rs, 31)]; |
170 | | T63 = T1I - T1J; |
171 | | T1Z = ci[WS(rs, 24)]; |
172 | | T20 = cr[WS(rs, 23)]; |
173 | | T64 = T1Z - T20; |
174 | | T1K = T1I + T1J; |
175 | | T7t = T63 - T64; |
176 | | T21 = T1Z + T20; |
177 | | T65 = T63 + T64; |
178 | | } |
179 | | { |
180 | | E TU, T1M, T1U, T67, TX, T1R, T1P, T66; |
181 | | { |
182 | | E TS, TT, T1S, T1T; |
183 | | TS = cr[WS(rs, 3)]; |
184 | | TT = ci[WS(rs, 12)]; |
185 | | TU = TS + TT; |
186 | | T1M = TS - TT; |
187 | | T1S = ci[WS(rs, 20)]; |
188 | | T1T = cr[WS(rs, 27)]; |
189 | | T1U = T1S + T1T; |
190 | | T67 = T1S - T1T; |
191 | | } |
192 | | { |
193 | | E TV, TW, T1N, T1O; |
194 | | TV = ci[WS(rs, 4)]; |
195 | | TW = cr[WS(rs, 11)]; |
196 | | TX = TV + TW; |
197 | | T1R = TV - TW; |
198 | | T1N = ci[WS(rs, 28)]; |
199 | | T1O = cr[WS(rs, 19)]; |
200 | | T1P = T1N + T1O; |
201 | | T66 = T1N - T1O; |
202 | | } |
203 | | TY = TU + TX; |
204 | | T7u = TU - TX; |
205 | | T7x = T67 - T66; |
206 | | T1Q = T1M + T1P; |
207 | | T1V = T1R + T1U; |
208 | | T24 = T1R - T1U; |
209 | | T68 = T66 + T67; |
210 | | T23 = T1M - T1P; |
211 | | } |
212 | | TZ = TR + TY; |
213 | | T6X = T65 + T68; |
214 | | { |
215 | | E T1L, T1W, T8n, T8o; |
216 | | T1L = T1H - T1K; |
217 | | T1W = T1Q - T1V; |
218 | | T1X = FNMS(KP707106781, T1W, T1L); |
219 | | T3p = FMA(KP707106781, T1W, T1L); |
220 | | T8n = T7u + T7t; |
221 | | T8o = T7w + T7x; |
222 | | T8p = FNMS(KP414213562, T8o, T8n); |
223 | | T8B = FMA(KP414213562, T8n, T8o); |
224 | | } |
225 | | { |
226 | | E T22, T25, T4l, T4m; |
227 | | T22 = T1Y - T21; |
228 | | T25 = T23 + T24; |
229 | | T26 = FNMS(KP707106781, T25, T22); |
230 | | T3o = FMA(KP707106781, T25, T22); |
231 | | T4l = T1H + T1K; |
232 | | T4m = T23 - T24; |
233 | | T4n = FNMS(KP707106781, T4m, T4l); |
234 | | T58 = FMA(KP707106781, T4m, T4l); |
235 | | } |
236 | | T7v = T7t - T7u; |
237 | | T7y = T7w - T7x; |
238 | | T7z = FMA(KP414213562, T7y, T7v); |
239 | | T7T = FNMS(KP414213562, T7v, T7y); |
240 | | { |
241 | | E T4i, T4j, T62, T69; |
242 | | T4i = T1Y + T21; |
243 | | T4j = T1Q + T1V; |
244 | | T4k = FNMS(KP707106781, T4j, T4i); |
245 | | T59 = FMA(KP707106781, T4j, T4i); |
246 | | T62 = TR - TY; |
247 | | T69 = T65 - T68; |
248 | | T6a = T62 + T69; |
249 | | T6p = T69 - T62; |
250 | | } |
251 | | } |
252 | | { |
253 | | E TC, T7D, T28, T2p, T2b, T7A, T2s, T5W, TJ, T7B, T7E, T2h, T2m, T2v, T5Z; |
254 | | E T2u, T7C, T7F; |
255 | | { |
256 | | E Tw, Tx, Ty, Tz, TA, TB; |
257 | | Tw = cr[WS(rs, 1)]; |
258 | | Tx = ci[WS(rs, 14)]; |
259 | | Ty = Tw + Tx; |
260 | | Tz = cr[WS(rs, 9)]; |
261 | | TA = ci[WS(rs, 6)]; |
262 | | TB = Tz + TA; |
263 | | TC = Ty + TB; |
264 | | T7D = Ty - TB; |
265 | | T28 = Tz - TA; |
266 | | T2p = Tw - Tx; |
267 | | } |
268 | | { |
269 | | E T29, T2a, T5U, T2q, T2r, T5V; |
270 | | T29 = ci[WS(rs, 30)]; |
271 | | T2a = cr[WS(rs, 17)]; |
272 | | T5U = T29 - T2a; |
273 | | T2q = ci[WS(rs, 22)]; |
274 | | T2r = cr[WS(rs, 25)]; |
275 | | T5V = T2q - T2r; |
276 | | T2b = T29 + T2a; |
277 | | T7A = T5U - T5V; |
278 | | T2s = T2q + T2r; |
279 | | T5W = T5U + T5V; |
280 | | } |
281 | | { |
282 | | E TF, T2d, T2l, T5Y, TI, T2i, T2g, T5X; |
283 | | { |
284 | | E TD, TE, T2j, T2k; |
285 | | TD = cr[WS(rs, 5)]; |
286 | | TE = ci[WS(rs, 10)]; |
287 | | TF = TD + TE; |
288 | | T2d = TD - TE; |
289 | | T2j = ci[WS(rs, 18)]; |
290 | | T2k = cr[WS(rs, 29)]; |
291 | | T2l = T2j + T2k; |
292 | | T5Y = T2j - T2k; |
293 | | } |
294 | | { |
295 | | E TG, TH, T2e, T2f; |
296 | | TG = ci[WS(rs, 2)]; |
297 | | TH = cr[WS(rs, 13)]; |
298 | | TI = TG + TH; |
299 | | T2i = TG - TH; |
300 | | T2e = ci[WS(rs, 26)]; |
301 | | T2f = cr[WS(rs, 21)]; |
302 | | T2g = T2e + T2f; |
303 | | T5X = T2e - T2f; |
304 | | } |
305 | | TJ = TF + TI; |
306 | | T7B = TF - TI; |
307 | | T7E = T5Y - T5X; |
308 | | T2h = T2d + T2g; |
309 | | T2m = T2i + T2l; |
310 | | T2v = T2i - T2l; |
311 | | T5Z = T5X + T5Y; |
312 | | T2u = T2d - T2g; |
313 | | } |
314 | | TK = TC + TJ; |
315 | | T6W = T5W + T5Z; |
316 | | { |
317 | | E T2c, T2n, T8q, T8r; |
318 | | T2c = T28 + T2b; |
319 | | T2n = T2h - T2m; |
320 | | T2o = FNMS(KP707106781, T2n, T2c); |
321 | | T3m = FMA(KP707106781, T2n, T2c); |
322 | | T8q = T7B + T7A; |
323 | | T8r = T7D + T7E; |
324 | | T8s = FMA(KP414213562, T8r, T8q); |
325 | | T8A = FNMS(KP414213562, T8q, T8r); |
326 | | } |
327 | | { |
328 | | E T2t, T2w, T4e, T4f; |
329 | | T2t = T2p - T2s; |
330 | | T2w = T2u + T2v; |
331 | | T2x = FNMS(KP707106781, T2w, T2t); |
332 | | T3l = FMA(KP707106781, T2w, T2t); |
333 | | T4e = T2b - T28; |
334 | | T4f = T2v - T2u; |
335 | | T4g = FNMS(KP707106781, T4f, T4e); |
336 | | T55 = FMA(KP707106781, T4f, T4e); |
337 | | } |
338 | | T7C = T7A - T7B; |
339 | | T7F = T7D - T7E; |
340 | | T7G = FNMS(KP414213562, T7F, T7C); |
341 | | T7S = FMA(KP414213562, T7C, T7F); |
342 | | { |
343 | | E T4b, T4c, T5T, T60; |
344 | | T4b = T2p + T2s; |
345 | | T4c = T2h + T2m; |
346 | | T4d = FNMS(KP707106781, T4c, T4b); |
347 | | T56 = FMA(KP707106781, T4c, T4b); |
348 | | T5T = TC - TJ; |
349 | | T60 = T5W - T5Z; |
350 | | T61 = T5T - T60; |
351 | | T6o = T5T + T60; |
352 | | } |
353 | | } |
354 | | { |
355 | | E Ti, T5P, Tl, T5O, T1y, T1D, T7p, T7o, T44, T43, Tp, T5M, Ts, T5L, T1n; |
356 | | E T1s, T7m, T7l, T47, T46; |
357 | | { |
358 | | E T1z, T1C, T1u, T1x; |
359 | | { |
360 | | E Tg, Th, T1A, T1B; |
361 | | Tg = cr[WS(rs, 2)]; |
362 | | Th = ci[WS(rs, 13)]; |
363 | | Ti = Tg + Th; |
364 | | T1z = Tg - Th; |
365 | | T1A = ci[WS(rs, 21)]; |
366 | | T1B = cr[WS(rs, 26)]; |
367 | | T1C = T1A + T1B; |
368 | | T5P = T1A - T1B; |
369 | | } |
370 | | { |
371 | | E Tj, Tk, T1v, T1w; |
372 | | Tj = cr[WS(rs, 10)]; |
373 | | Tk = ci[WS(rs, 5)]; |
374 | | Tl = Tj + Tk; |
375 | | T1u = Tj - Tk; |
376 | | T1v = ci[WS(rs, 29)]; |
377 | | T1w = cr[WS(rs, 18)]; |
378 | | T1x = T1v + T1w; |
379 | | T5O = T1v - T1w; |
380 | | } |
381 | | T1y = T1u + T1x; |
382 | | T1D = T1z - T1C; |
383 | | T7p = T5O - T5P; |
384 | | T7o = Ti - Tl; |
385 | | T44 = T1z + T1C; |
386 | | T43 = T1x - T1u; |
387 | | } |
388 | | { |
389 | | E T1o, T1r, T1j, T1m; |
390 | | { |
391 | | E Tn, To, T1p, T1q; |
392 | | Tn = ci[WS(rs, 1)]; |
393 | | To = cr[WS(rs, 14)]; |
394 | | Tp = Tn + To; |
395 | | T1o = Tn - To; |
396 | | T1p = ci[WS(rs, 25)]; |
397 | | T1q = cr[WS(rs, 22)]; |
398 | | T1r = T1p + T1q; |
399 | | T5M = T1p - T1q; |
400 | | } |
401 | | { |
402 | | E Tq, Tr, T1k, T1l; |
403 | | Tq = cr[WS(rs, 6)]; |
404 | | Tr = ci[WS(rs, 9)]; |
405 | | Ts = Tq + Tr; |
406 | | T1j = Tq - Tr; |
407 | | T1k = ci[WS(rs, 17)]; |
408 | | T1l = cr[WS(rs, 30)]; |
409 | | T1m = T1k + T1l; |
410 | | T5L = T1k - T1l; |
411 | | } |
412 | | T1n = T1j - T1m; |
413 | | T1s = T1o - T1r; |
414 | | T7m = Tp - Ts; |
415 | | T7l = T5L - T5M; |
416 | | T47 = T1o + T1r; |
417 | | T46 = T1j + T1m; |
418 | | } |
419 | | { |
420 | | E Tm, Tt, T7n, T7q; |
421 | | Tm = Ti + Tl; |
422 | | Tt = Tp + Ts; |
423 | | Tu = Tm + Tt; |
424 | | T6f = Tm - Tt; |
425 | | T7n = T7l - T7m; |
426 | | T7q = T7o + T7p; |
427 | | T7r = T7n - T7q; |
428 | | T8y = T7q + T7n; |
429 | | } |
430 | | { |
431 | | E T7O, T7P, T1t, T1E; |
432 | | T7O = T7o - T7p; |
433 | | T7P = T7m + T7l; |
434 | | T7Q = T7O - T7P; |
435 | | T8l = T7O + T7P; |
436 | | T1t = FNMS(KP414213562, T1s, T1n); |
437 | | T1E = FMA(KP414213562, T1D, T1y); |
438 | | T1F = T1t - T1E; |
439 | | T3w = T1E + T1t; |
440 | | } |
441 | | { |
442 | | E T2M, T2N, T4w, T4x; |
443 | | T2M = FNMS(KP414213562, T1y, T1D); |
444 | | T2N = FMA(KP414213562, T1n, T1s); |
445 | | T2O = T2M - T2N; |
446 | | T3j = T2M + T2N; |
447 | | T4w = FMA(KP414213562, T43, T44); |
448 | | T4x = FMA(KP414213562, T46, T47); |
449 | | T4y = T4w - T4x; |
450 | | T53 = T4w + T4x; |
451 | | } |
452 | | { |
453 | | E T5N, T5Q, T45, T48; |
454 | | T5N = T5L + T5M; |
455 | | T5Q = T5O + T5P; |
456 | | T5R = T5N - T5Q; |
457 | | T6U = T5Q + T5N; |
458 | | T45 = FNMS(KP414213562, T44, T43); |
459 | | T48 = FNMS(KP414213562, T47, T46); |
460 | | T49 = T45 + T48; |
461 | | T5g = T48 - T45; |
462 | | } |
463 | | } |
464 | | { |
465 | | E Tv, T10, T6Q, T6V, T6Y, T6Z; |
466 | | Tv = Tf + Tu; |
467 | | T10 = TK + TZ; |
468 | | T6Q = Tv - T10; |
469 | | T6V = T6T + T6U; |
470 | | T6Y = T6W + T6X; |
471 | | T6Z = T6V - T6Y; |
472 | | cr[0] = Tv + T10; |
473 | | ci[0] = T6V + T6Y; |
474 | | { |
475 | | E T6P, T6R, T6S, T70; |
476 | | T6P = W[30]; |
477 | | T6R = T6P * T6Q; |
478 | | T6S = W[31]; |
479 | | T70 = T6S * T6Q; |
480 | | cr[WS(rs, 16)] = FNMS(T6S, T6Z, T6R); |
481 | | ci[WS(rs, 16)] = FMA(T6P, T6Z, T70); |
482 | | } |
483 | | } |
484 | | { |
485 | | E T8O, T8W, T8T, T8Z; |
486 | | { |
487 | | E T8M, T8N, T8R, T8S; |
488 | | T8M = FMA(KP707106781, T8l, T8k); |
489 | | T8N = T8A + T8B; |
490 | | T8O = FNMS(KP923879532, T8N, T8M); |
491 | | T8W = FMA(KP923879532, T8N, T8M); |
492 | | T8R = FMA(KP707106781, T8y, T8x); |
493 | | T8S = T8s + T8p; |
494 | | T8T = FNMS(KP923879532, T8S, T8R); |
495 | | T8Z = FMA(KP923879532, T8S, T8R); |
496 | | } |
497 | | { |
498 | | E T8P, T8U, T8L, T8Q; |
499 | | T8L = W[34]; |
500 | | T8P = T8L * T8O; |
501 | | T8U = T8L * T8T; |
502 | | T8Q = W[35]; |
503 | | cr[WS(rs, 18)] = FNMS(T8Q, T8T, T8P); |
504 | | ci[WS(rs, 18)] = FMA(T8Q, T8O, T8U); |
505 | | } |
506 | | { |
507 | | E T8X, T90, T8V, T8Y; |
508 | | T8V = W[2]; |
509 | | T8X = T8V * T8W; |
510 | | T90 = T8V * T8Z; |
511 | | T8Y = W[3]; |
512 | | cr[WS(rs, 2)] = FNMS(T8Y, T8Z, T8X); |
513 | | ci[WS(rs, 2)] = FMA(T8Y, T8W, T90); |
514 | | } |
515 | | } |
516 | | { |
517 | | E T86, T8e, T8b, T8h; |
518 | | { |
519 | | E T84, T85, T89, T8a; |
520 | | T84 = FNMS(KP707106781, T7r, T7k); |
521 | | T85 = T7S + T7T; |
522 | | T86 = FNMS(KP923879532, T85, T84); |
523 | | T8e = FMA(KP923879532, T85, T84); |
524 | | T89 = FNMS(KP707106781, T7Q, T7N); |
525 | | T8a = T7G + T7z; |
526 | | T8b = FNMS(KP923879532, T8a, T89); |
527 | | T8h = FMA(KP923879532, T8a, T89); |
528 | | } |
529 | | { |
530 | | E T87, T8c, T83, T88; |
531 | | T83 = W[26]; |
532 | | T87 = T83 * T86; |
533 | | T8c = T83 * T8b; |
534 | | T88 = W[27]; |
535 | | cr[WS(rs, 14)] = FNMS(T88, T8b, T87); |
536 | | ci[WS(rs, 14)] = FMA(T88, T86, T8c); |
537 | | } |
538 | | { |
539 | | E T8f, T8i, T8d, T8g; |
540 | | T8d = W[58]; |
541 | | T8f = T8d * T8e; |
542 | | T8i = T8d * T8h; |
543 | | T8g = W[59]; |
544 | | cr[WS(rs, 30)] = FNMS(T8g, T8h, T8f); |
545 | | ci[WS(rs, 30)] = FMA(T8g, T8e, T8i); |
546 | | } |
547 | | } |
548 | | { |
549 | | E T6C, T6K, T6H, T6N; |
550 | | { |
551 | | E T6A, T6B, T6F, T6G; |
552 | | T6A = T5K - T5R; |
553 | | T6B = T6p - T6o; |
554 | | T6C = FNMS(KP707106781, T6B, T6A); |
555 | | T6K = FMA(KP707106781, T6B, T6A); |
556 | | T6F = T6m - T6f; |
557 | | T6G = T61 - T6a; |
558 | | T6H = FNMS(KP707106781, T6G, T6F); |
559 | | T6N = FMA(KP707106781, T6G, T6F); |
560 | | } |
561 | | { |
562 | | E T6D, T6I, T6z, T6E; |
563 | | T6z = W[54]; |
564 | | T6D = T6z * T6C; |
565 | | T6I = T6z * T6H; |
566 | | T6E = W[55]; |
567 | | cr[WS(rs, 28)] = FNMS(T6E, T6H, T6D); |
568 | | ci[WS(rs, 28)] = FMA(T6E, T6C, T6I); |
569 | | } |
570 | | { |
571 | | E T6L, T6O, T6J, T6M; |
572 | | T6J = W[22]; |
573 | | T6L = T6J * T6K; |
574 | | T6O = T6J * T6N; |
575 | | T6M = W[23]; |
576 | | cr[WS(rs, 12)] = FNMS(T6M, T6N, T6L); |
577 | | ci[WS(rs, 12)] = FMA(T6M, T6K, T6O); |
578 | | } |
579 | | } |
580 | | { |
581 | | E T8u, T8G, T8D, T8J; |
582 | | { |
583 | | E T8m, T8t, T8z, T8C; |
584 | | T8m = FNMS(KP707106781, T8l, T8k); |
585 | | T8t = T8p - T8s; |
586 | | T8u = FNMS(KP923879532, T8t, T8m); |
587 | | T8G = FMA(KP923879532, T8t, T8m); |
588 | | T8z = FNMS(KP707106781, T8y, T8x); |
589 | | T8C = T8A - T8B; |
590 | | T8D = FNMS(KP923879532, T8C, T8z); |
591 | | T8J = FMA(KP923879532, T8C, T8z); |
592 | | } |
593 | | { |
594 | | E T8j, T8v, T8w, T8E; |
595 | | T8j = W[50]; |
596 | | T8v = T8j * T8u; |
597 | | T8w = W[51]; |
598 | | T8E = T8w * T8u; |
599 | | cr[WS(rs, 26)] = FNMS(T8w, T8D, T8v); |
600 | | ci[WS(rs, 26)] = FMA(T8j, T8D, T8E); |
601 | | } |
602 | | { |
603 | | E T8F, T8H, T8I, T8K; |
604 | | T8F = W[18]; |
605 | | T8H = T8F * T8G; |
606 | | T8I = W[19]; |
607 | | T8K = T8I * T8G; |
608 | | cr[WS(rs, 10)] = FNMS(T8I, T8J, T8H); |
609 | | ci[WS(rs, 10)] = FMA(T8F, T8J, T8K); |
610 | | } |
611 | | } |
612 | | { |
613 | | E T6c, T6u, T6r, T6x; |
614 | | { |
615 | | E T5S, T6b, T6n, T6q; |
616 | | T5S = T5K + T5R; |
617 | | T6b = T61 + T6a; |
618 | | T6c = FNMS(KP707106781, T6b, T5S); |
619 | | T6u = FMA(KP707106781, T6b, T5S); |
620 | | T6n = T6f + T6m; |
621 | | T6q = T6o + T6p; |
622 | | T6r = FNMS(KP707106781, T6q, T6n); |
623 | | T6x = FMA(KP707106781, T6q, T6n); |
624 | | } |
625 | | { |
626 | | E T5J, T6d, T6e, T6s; |
627 | | T5J = W[38]; |
628 | | T6d = T5J * T6c; |
629 | | T6e = W[39]; |
630 | | T6s = T6e * T6c; |
631 | | cr[WS(rs, 20)] = FNMS(T6e, T6r, T6d); |
632 | | ci[WS(rs, 20)] = FMA(T5J, T6r, T6s); |
633 | | } |
634 | | { |
635 | | E T6t, T6v, T6w, T6y; |
636 | | T6t = W[6]; |
637 | | T6v = T6t * T6u; |
638 | | T6w = W[7]; |
639 | | T6y = T6w * T6u; |
640 | | cr[WS(rs, 4)] = FNMS(T6w, T6x, T6v); |
641 | | ci[WS(rs, 4)] = FMA(T6t, T6x, T6y); |
642 | | } |
643 | | } |
644 | | { |
645 | | E T74, T7c, T79, T7f; |
646 | | { |
647 | | E T72, T73, T77, T78; |
648 | | T72 = Tf - Tu; |
649 | | T73 = T6X - T6W; |
650 | | T74 = T72 - T73; |
651 | | T7c = T72 + T73; |
652 | | T77 = T6T - T6U; |
653 | | T78 = TK - TZ; |
654 | | T79 = T77 - T78; |
655 | | T7f = T78 + T77; |
656 | | } |
657 | | { |
658 | | E T75, T7a, T71, T76; |
659 | | T71 = W[46]; |
660 | | T75 = T71 * T74; |
661 | | T7a = T71 * T79; |
662 | | T76 = W[47]; |
663 | | cr[WS(rs, 24)] = FNMS(T76, T79, T75); |
664 | | ci[WS(rs, 24)] = FMA(T76, T74, T7a); |
665 | | } |
666 | | { |
667 | | E T7d, T7g, T7b, T7e; |
668 | | T7b = W[14]; |
669 | | T7d = T7b * T7c; |
670 | | T7g = T7b * T7f; |
671 | | T7e = W[15]; |
672 | | cr[WS(rs, 8)] = FNMS(T7e, T7f, T7d); |
673 | | ci[WS(rs, 8)] = FMA(T7e, T7c, T7g); |
674 | | } |
675 | | } |
676 | | { |
677 | | E T7I, T7Y, T7V, T81; |
678 | | { |
679 | | E T7s, T7H, T7R, T7U; |
680 | | T7s = FMA(KP707106781, T7r, T7k); |
681 | | T7H = T7z - T7G; |
682 | | T7I = FNMS(KP923879532, T7H, T7s); |
683 | | T7Y = FMA(KP923879532, T7H, T7s); |
684 | | T7R = FMA(KP707106781, T7Q, T7N); |
685 | | T7U = T7S - T7T; |
686 | | T7V = FNMS(KP923879532, T7U, T7R); |
687 | | T81 = FMA(KP923879532, T7U, T7R); |
688 | | } |
689 | | { |
690 | | E T7h, T7J, T7K, T7W; |
691 | | T7h = W[42]; |
692 | | T7J = T7h * T7I; |
693 | | T7K = W[43]; |
694 | | T7W = T7K * T7I; |
695 | | cr[WS(rs, 22)] = FNMS(T7K, T7V, T7J); |
696 | | ci[WS(rs, 22)] = FMA(T7h, T7V, T7W); |
697 | | } |
698 | | { |
699 | | E T7X, T7Z, T80, T82; |
700 | | T7X = W[10]; |
701 | | T7Z = T7X * T7Y; |
702 | | T80 = W[11]; |
703 | | T82 = T80 * T7Y; |
704 | | cr[WS(rs, 6)] = FNMS(T80, T81, T7Z); |
705 | | ci[WS(rs, 6)] = FMA(T7X, T81, T82); |
706 | | } |
707 | | } |
708 | | { |
709 | | E T37, T2A, T38, T2W, T2T, T3c, T2Z, T34; |
710 | | T37 = FNMS(KP923879532, T2O, T2L); |
711 | | { |
712 | | E T1G, T27, T2y, T2z; |
713 | | T1G = FMA(KP923879532, T1F, T1i); |
714 | | T27 = FMA(KP668178637, T26, T1X); |
715 | | T2y = FNMS(KP668178637, T2x, T2o); |
716 | | T2z = T27 - T2y; |
717 | | T2A = FNMS(KP831469612, T2z, T1G); |
718 | | T38 = T2y + T27; |
719 | | T2W = FMA(KP831469612, T2z, T1G); |
720 | | } |
721 | | { |
722 | | E T2P, T32, T2S, T33, T2Q, T2R; |
723 | | T2P = FMA(KP923879532, T2O, T2L); |
724 | | T32 = FNMS(KP923879532, T1F, T1i); |
725 | | T2Q = FMA(KP668178637, T2o, T2x); |
726 | | T2R = FNMS(KP668178637, T1X, T26); |
727 | | T2S = T2Q - T2R; |
728 | | T33 = T2Q + T2R; |
729 | | T2T = FNMS(KP831469612, T2S, T2P); |
730 | | T3c = FMA(KP831469612, T33, T32); |
731 | | T2Z = FMA(KP831469612, T2S, T2P); |
732 | | T34 = FNMS(KP831469612, T33, T32); |
733 | | } |
734 | | { |
735 | | E T2B, T2U, T11, T2C; |
736 | | T11 = W[40]; |
737 | | T2B = T11 * T2A; |
738 | | T2U = T11 * T2T; |
739 | | T2C = W[41]; |
740 | | cr[WS(rs, 21)] = FNMS(T2C, T2T, T2B); |
741 | | ci[WS(rs, 21)] = FMA(T2C, T2A, T2U); |
742 | | } |
743 | | { |
744 | | E T2X, T30, T2V, T2Y; |
745 | | T2V = W[8]; |
746 | | T2X = T2V * T2W; |
747 | | T30 = T2V * T2Z; |
748 | | T2Y = W[9]; |
749 | | cr[WS(rs, 5)] = FNMS(T2Y, T2Z, T2X); |
750 | | ci[WS(rs, 5)] = FMA(T2Y, T2W, T30); |
751 | | } |
752 | | { |
753 | | E T39, T36, T3a, T31, T35; |
754 | | T39 = FNMS(KP831469612, T38, T37); |
755 | | T36 = W[25]; |
756 | | T3a = T36 * T34; |
757 | | T31 = W[24]; |
758 | | T35 = T31 * T34; |
759 | | cr[WS(rs, 13)] = FNMS(T36, T39, T35); |
760 | | ci[WS(rs, 13)] = FMA(T31, T39, T3a); |
761 | | } |
762 | | { |
763 | | E T3f, T3e, T3g, T3b, T3d; |
764 | | T3f = FMA(KP831469612, T38, T37); |
765 | | T3e = W[57]; |
766 | | T3g = T3e * T3c; |
767 | | T3b = W[56]; |
768 | | T3d = T3b * T3c; |
769 | | cr[WS(rs, 29)] = FNMS(T3e, T3f, T3d); |
770 | | ci[WS(rs, 29)] = FMA(T3b, T3f, T3g); |
771 | | } |
772 | | } |
773 | | { |
774 | | E T4z, T4C, T4W, T4O, T4q, T4Z, T4G, T4T; |
775 | | T4z = FMA(KP923879532, T4y, T4v); |
776 | | { |
777 | | E T4M, T4A, T4B, T4N; |
778 | | T4M = FMA(KP923879532, T49, T42); |
779 | | T4A = FMA(KP668178637, T4d, T4g); |
780 | | T4B = FMA(KP668178637, T4k, T4n); |
781 | | T4N = T4A + T4B; |
782 | | T4C = T4A - T4B; |
783 | | T4W = FMA(KP831469612, T4N, T4M); |
784 | | T4O = FNMS(KP831469612, T4N, T4M); |
785 | | } |
786 | | { |
787 | | E T4a, T4R, T4p, T4S, T4h, T4o; |
788 | | T4a = FNMS(KP923879532, T49, T42); |
789 | | T4R = FNMS(KP923879532, T4y, T4v); |
790 | | T4h = FNMS(KP668178637, T4g, T4d); |
791 | | T4o = FNMS(KP668178637, T4n, T4k); |
792 | | T4p = T4h + T4o; |
793 | | T4S = T4h - T4o; |
794 | | T4q = FNMS(KP831469612, T4p, T4a); |
795 | | T4Z = FNMS(KP831469612, T4S, T4R); |
796 | | T4G = FMA(KP831469612, T4p, T4a); |
797 | | T4T = FMA(KP831469612, T4S, T4R); |
798 | | } |
799 | | { |
800 | | E T4P, T4U, T4L, T4Q; |
801 | | T4L = W[20]; |
802 | | T4P = T4L * T4O; |
803 | | T4U = T4L * T4T; |
804 | | T4Q = W[21]; |
805 | | cr[WS(rs, 11)] = FNMS(T4Q, T4T, T4P); |
806 | | ci[WS(rs, 11)] = FMA(T4Q, T4O, T4U); |
807 | | } |
808 | | { |
809 | | E T4X, T50, T4V, T4Y; |
810 | | T4V = W[52]; |
811 | | T4X = T4V * T4W; |
812 | | T50 = T4V * T4Z; |
813 | | T4Y = W[53]; |
814 | | cr[WS(rs, 27)] = FNMS(T4Y, T4Z, T4X); |
815 | | ci[WS(rs, 27)] = FMA(T4Y, T4W, T50); |
816 | | } |
817 | | { |
818 | | E T4D, T4s, T4E, T3Z, T4r; |
819 | | T4D = FNMS(KP831469612, T4C, T4z); |
820 | | T4s = W[37]; |
821 | | T4E = T4s * T4q; |
822 | | T3Z = W[36]; |
823 | | T4r = T3Z * T4q; |
824 | | cr[WS(rs, 19)] = FNMS(T4s, T4D, T4r); |
825 | | ci[WS(rs, 19)] = FMA(T3Z, T4D, T4E); |
826 | | } |
827 | | { |
828 | | E T4J, T4I, T4K, T4F, T4H; |
829 | | T4J = FMA(KP831469612, T4C, T4z); |
830 | | T4I = W[5]; |
831 | | T4K = T4I * T4G; |
832 | | T4F = W[4]; |
833 | | T4H = T4F * T4G; |
834 | | cr[WS(rs, 3)] = FNMS(T4I, T4J, T4H); |
835 | | ci[WS(rs, 3)] = FMA(T4F, T4J, T4K); |
836 | | } |
837 | | } |
838 | | { |
839 | | E T3x, T3A, T3U, T3M, T3s, T3X, T3E, T3R; |
840 | | T3x = FMA(KP923879532, T3w, T3v); |
841 | | { |
842 | | E T3K, T3y, T3z, T3L; |
843 | | T3K = FNMS(KP923879532, T3j, T3i); |
844 | | T3y = FMA(KP198912367, T3l, T3m); |
845 | | T3z = FNMS(KP198912367, T3o, T3p); |
846 | | T3L = T3z - T3y; |
847 | | T3A = T3y + T3z; |
848 | | T3U = FMA(KP980785280, T3L, T3K); |
849 | | T3M = FNMS(KP980785280, T3L, T3K); |
850 | | } |
851 | | { |
852 | | E T3k, T3P, T3r, T3Q, T3n, T3q; |
853 | | T3k = FMA(KP923879532, T3j, T3i); |
854 | | T3P = FNMS(KP923879532, T3w, T3v); |
855 | | T3n = FNMS(KP198912367, T3m, T3l); |
856 | | T3q = FMA(KP198912367, T3p, T3o); |
857 | | T3r = T3n + T3q; |
858 | | T3Q = T3n - T3q; |
859 | | T3s = FNMS(KP980785280, T3r, T3k); |
860 | | T3X = FMA(KP980785280, T3Q, T3P); |
861 | | T3E = FMA(KP980785280, T3r, T3k); |
862 | | T3R = FNMS(KP980785280, T3Q, T3P); |
863 | | } |
864 | | { |
865 | | E T3N, T3S, T3J, T3O; |
866 | | T3J = W[48]; |
867 | | T3N = T3J * T3M; |
868 | | T3S = T3J * T3R; |
869 | | T3O = W[49]; |
870 | | cr[WS(rs, 25)] = FNMS(T3O, T3R, T3N); |
871 | | ci[WS(rs, 25)] = FMA(T3O, T3M, T3S); |
872 | | } |
873 | | { |
874 | | E T3V, T3Y, T3T, T3W; |
875 | | T3T = W[16]; |
876 | | T3V = T3T * T3U; |
877 | | T3Y = T3T * T3X; |
878 | | T3W = W[17]; |
879 | | cr[WS(rs, 9)] = FNMS(T3W, T3X, T3V); |
880 | | ci[WS(rs, 9)] = FMA(T3W, T3U, T3Y); |
881 | | } |
882 | | { |
883 | | E T3B, T3u, T3C, T3h, T3t; |
884 | | T3B = FNMS(KP980785280, T3A, T3x); |
885 | | T3u = W[33]; |
886 | | T3C = T3u * T3s; |
887 | | T3h = W[32]; |
888 | | T3t = T3h * T3s; |
889 | | cr[WS(rs, 17)] = FNMS(T3u, T3B, T3t); |
890 | | ci[WS(rs, 17)] = FMA(T3h, T3B, T3C); |
891 | | } |
892 | | { |
893 | | E T3H, T3G, T3I, T3D, T3F; |
894 | | T3H = FMA(KP980785280, T3A, T3x); |
895 | | T3G = W[1]; |
896 | | T3I = T3G * T3E; |
897 | | T3D = W[0]; |
898 | | T3F = T3D * T3E; |
899 | | cr[WS(rs, 1)] = FNMS(T3G, T3H, T3F); |
900 | | ci[WS(rs, 1)] = FMA(T3D, T3H, T3I); |
901 | | } |
902 | | } |
903 | | { |
904 | | E T5h, T5k, T5E, T5w, T5c, T5H, T5o, T5B; |
905 | | T5h = FMA(KP923879532, T5g, T5f); |
906 | | { |
907 | | E T5u, T5i, T5j, T5v; |
908 | | T5u = FMA(KP923879532, T53, T52); |
909 | | T5i = FMA(KP198912367, T55, T56); |
910 | | T5j = FMA(KP198912367, T58, T59); |
911 | | T5v = T5i + T5j; |
912 | | T5k = T5i - T5j; |
913 | | T5E = FMA(KP980785280, T5v, T5u); |
914 | | T5w = FNMS(KP980785280, T5v, T5u); |
915 | | } |
916 | | { |
917 | | E T54, T5z, T5b, T5A, T57, T5a; |
918 | | T54 = FNMS(KP923879532, T53, T52); |
919 | | T5z = FNMS(KP923879532, T5g, T5f); |
920 | | T57 = FNMS(KP198912367, T56, T55); |
921 | | T5a = FNMS(KP198912367, T59, T58); |
922 | | T5b = T57 + T5a; |
923 | | T5A = T5a - T57; |
924 | | T5c = FMA(KP980785280, T5b, T54); |
925 | | T5H = FNMS(KP980785280, T5A, T5z); |
926 | | T5o = FNMS(KP980785280, T5b, T54); |
927 | | T5B = FMA(KP980785280, T5A, T5z); |
928 | | } |
929 | | { |
930 | | E T5x, T5C, T5t, T5y; |
931 | | T5t = W[28]; |
932 | | T5x = T5t * T5w; |
933 | | T5C = T5t * T5B; |
934 | | T5y = W[29]; |
935 | | cr[WS(rs, 15)] = FNMS(T5y, T5B, T5x); |
936 | | ci[WS(rs, 15)] = FMA(T5y, T5w, T5C); |
937 | | } |
938 | | { |
939 | | E T5F, T5I, T5D, T5G; |
940 | | T5D = W[60]; |
941 | | T5F = T5D * T5E; |
942 | | T5I = T5D * T5H; |
943 | | T5G = W[61]; |
944 | | cr[WS(rs, 31)] = FNMS(T5G, T5H, T5F); |
945 | | ci[WS(rs, 31)] = FMA(T5G, T5E, T5I); |
946 | | } |
947 | | { |
948 | | E T5l, T5e, T5m, T51, T5d; |
949 | | T5l = FNMS(KP980785280, T5k, T5h); |
950 | | T5e = W[45]; |
951 | | T5m = T5e * T5c; |
952 | | T51 = W[44]; |
953 | | T5d = T51 * T5c; |
954 | | cr[WS(rs, 23)] = FNMS(T5e, T5l, T5d); |
955 | | ci[WS(rs, 23)] = FMA(T51, T5l, T5m); |
956 | | } |
957 | | { |
958 | | E T5r, T5q, T5s, T5n, T5p; |
959 | | T5r = FMA(KP980785280, T5k, T5h); |
960 | | T5q = W[13]; |
961 | | T5s = T5q * T5o; |
962 | | T5n = W[12]; |
963 | | T5p = T5n * T5o; |
964 | | cr[WS(rs, 7)] = FNMS(T5q, T5r, T5p); |
965 | | ci[WS(rs, 7)] = FMA(T5n, T5r, T5s); |
966 | | } |
967 | | } |
968 | | } |
969 | | } |
970 | | } |
971 | | |
972 | | static const tw_instr twinstr[] = { |
973 | | { TW_FULL, 1, 32 }, |
974 | | { TW_NEXT, 1, 0 } |
975 | | }; |
976 | | |
977 | | static const hc2hc_desc desc = { 32, "hb_32", twinstr, &GENUS, { 236, 62, 198, 0 } }; |
978 | | |
979 | | void X(codelet_hb_32) (planner *p) { |
980 | | X(khc2hc_register) (p, hb_32, &desc); |
981 | | } |
982 | | #else |
983 | | |
984 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 32 -dif -name hb_32 -include rdft/scalar/hb.h */ |
985 | | |
986 | | /* |
987 | | * This function contains 434 FP additions, 208 FP multiplications, |
988 | | * (or, 340 additions, 114 multiplications, 94 fused multiply/add), |
989 | | * 98 stack variables, 7 constants, and 128 memory accesses |
990 | | */ |
991 | | #include "rdft/scalar/hb.h" |
992 | | |
993 | | static void hb_32(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
994 | 0 | { |
995 | 0 | DK(KP555570233, +0.555570233019602224742830813948532874374937191); |
996 | 0 | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
997 | 0 | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
998 | 0 | DK(KP195090322, +0.195090322016128267848284868477022240927691618); |
999 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
1000 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
1001 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1002 | 0 | { |
1003 | 0 | INT m; |
1004 | 0 | for (m = mb, W = W + ((mb - 1) * 62); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 62, MAKE_VOLATILE_STRIDE(64, rs)) { |
1005 | 0 | E T4o, T6y, T70, T5u, Tf, T12, T5x, T6z, T3m, T3Y, T29, T2y, T4v, T71, T2U; |
1006 | 0 | E T3M, Tu, T1U, T6D, T73, T6G, T74, T1h, T2z, T2X, T3o, T4D, T5A, T4K, T5z; |
1007 | 0 | E T30, T3n, TK, T1j, T6S, T7w, T6V, T7v, T1y, T2B, T3c, T3S, T4X, T61, T54; |
1008 | 0 | E T62, T3f, T3T, TZ, T1A, T6L, T7z, T6O, T7y, T1P, T2C, T35, T3P, T5g, T64; |
1009 | 0 | E T5n, T65, T38, T3Q; |
1010 | 0 | { |
1011 | 0 | E T3, T4m, T24, T4q, T27, T4t, T6, T5s, Ta, T4p, T1X, T5t, T20, T4n, Td; |
1012 | 0 | E T4s; |
1013 | 0 | { |
1014 | 0 | E T1, T2, T22, T23; |
1015 | 0 | T1 = cr[0]; |
1016 | 0 | T2 = ci[WS(rs, 15)]; |
1017 | 0 | T3 = T1 + T2; |
1018 | 0 | T4m = T1 - T2; |
1019 | 0 | T22 = ci[WS(rs, 27)]; |
1020 | 0 | T23 = cr[WS(rs, 20)]; |
1021 | 0 | T24 = T22 - T23; |
1022 | 0 | T4q = T22 + T23; |
1023 | 0 | } |
1024 | 0 | { |
1025 | 0 | E T25, T26, T4, T5; |
1026 | 0 | T25 = ci[WS(rs, 19)]; |
1027 | 0 | T26 = cr[WS(rs, 28)]; |
1028 | 0 | T27 = T25 - T26; |
1029 | 0 | T4t = T25 + T26; |
1030 | 0 | T4 = cr[WS(rs, 8)]; |
1031 | 0 | T5 = ci[WS(rs, 7)]; |
1032 | 0 | T6 = T4 + T5; |
1033 | 0 | T5s = T4 - T5; |
1034 | 0 | } |
1035 | 0 | { |
1036 | 0 | E T8, T9, T1V, T1W; |
1037 | 0 | T8 = cr[WS(rs, 4)]; |
1038 | 0 | T9 = ci[WS(rs, 11)]; |
1039 | 0 | Ta = T8 + T9; |
1040 | 0 | T4p = T8 - T9; |
1041 | 0 | T1V = ci[WS(rs, 31)]; |
1042 | 0 | T1W = cr[WS(rs, 16)]; |
1043 | 0 | T1X = T1V - T1W; |
1044 | 0 | T5t = T1V + T1W; |
1045 | 0 | } |
1046 | 0 | { |
1047 | 0 | E T1Y, T1Z, Tb, Tc; |
1048 | 0 | T1Y = ci[WS(rs, 23)]; |
1049 | 0 | T1Z = cr[WS(rs, 24)]; |
1050 | 0 | T20 = T1Y - T1Z; |
1051 | 0 | T4n = T1Y + T1Z; |
1052 | 0 | Tb = ci[WS(rs, 3)]; |
1053 | 0 | Tc = cr[WS(rs, 12)]; |
1054 | 0 | Td = Tb + Tc; |
1055 | 0 | T4s = Tb - Tc; |
1056 | 0 | } |
1057 | 0 | { |
1058 | 0 | E T7, Te, T21, T28; |
1059 | 0 | T4o = T4m - T4n; |
1060 | 0 | T6y = T4m + T4n; |
1061 | 0 | T70 = T5t - T5s; |
1062 | 0 | T5u = T5s + T5t; |
1063 | 0 | T7 = T3 + T6; |
1064 | 0 | Te = Ta + Td; |
1065 | 0 | Tf = T7 + Te; |
1066 | 0 | T12 = T7 - Te; |
1067 | 0 | { |
1068 | 0 | E T5v, T5w, T3k, T3l; |
1069 | 0 | T5v = T4p + T4q; |
1070 | 0 | T5w = T4s + T4t; |
1071 | 0 | T5x = KP707106781 * (T5v - T5w); |
1072 | 0 | T6z = KP707106781 * (T5v + T5w); |
1073 | 0 | T3k = T1X - T20; |
1074 | 0 | T3l = Ta - Td; |
1075 | 0 | T3m = T3k - T3l; |
1076 | 0 | T3Y = T3l + T3k; |
1077 | 0 | } |
1078 | 0 | T21 = T1X + T20; |
1079 | 0 | T28 = T24 + T27; |
1080 | 0 | T29 = T21 - T28; |
1081 | 0 | T2y = T21 + T28; |
1082 | 0 | { |
1083 | 0 | E T4r, T4u, T2S, T2T; |
1084 | 0 | T4r = T4p - T4q; |
1085 | 0 | T4u = T4s - T4t; |
1086 | 0 | T4v = KP707106781 * (T4r + T4u); |
1087 | 0 | T71 = KP707106781 * (T4r - T4u); |
1088 | 0 | T2S = T3 - T6; |
1089 | 0 | T2T = T27 - T24; |
1090 | 0 | T2U = T2S - T2T; |
1091 | 0 | T3M = T2S + T2T; |
1092 | 0 | } |
1093 | 0 | } |
1094 | 0 | } |
1095 | 0 | { |
1096 | 0 | E Ti, T4H, T1c, T4F, T1f, T4I, Tl, T4E, Tp, T4A, T15, T4y, T18, T4B, Ts; |
1097 | 0 | E T4x; |
1098 | 0 | { |
1099 | 0 | E Tg, Th, T1a, T1b; |
1100 | 0 | Tg = cr[WS(rs, 2)]; |
1101 | 0 | Th = ci[WS(rs, 13)]; |
1102 | 0 | Ti = Tg + Th; |
1103 | 0 | T4H = Tg - Th; |
1104 | 0 | T1a = ci[WS(rs, 29)]; |
1105 | 0 | T1b = cr[WS(rs, 18)]; |
1106 | 0 | T1c = T1a - T1b; |
1107 | 0 | T4F = T1a + T1b; |
1108 | 0 | } |
1109 | 0 | { |
1110 | 0 | E T1d, T1e, Tj, Tk; |
1111 | 0 | T1d = ci[WS(rs, 21)]; |
1112 | 0 | T1e = cr[WS(rs, 26)]; |
1113 | 0 | T1f = T1d - T1e; |
1114 | 0 | T4I = T1d + T1e; |
1115 | 0 | Tj = cr[WS(rs, 10)]; |
1116 | 0 | Tk = ci[WS(rs, 5)]; |
1117 | 0 | Tl = Tj + Tk; |
1118 | 0 | T4E = Tj - Tk; |
1119 | 0 | } |
1120 | 0 | { |
1121 | 0 | E Tn, To, T13, T14; |
1122 | 0 | Tn = ci[WS(rs, 1)]; |
1123 | 0 | To = cr[WS(rs, 14)]; |
1124 | 0 | Tp = Tn + To; |
1125 | 0 | T4A = Tn - To; |
1126 | 0 | T13 = ci[WS(rs, 17)]; |
1127 | 0 | T14 = cr[WS(rs, 30)]; |
1128 | 0 | T15 = T13 - T14; |
1129 | 0 | T4y = T13 + T14; |
1130 | 0 | } |
1131 | 0 | { |
1132 | 0 | E T16, T17, Tq, Tr; |
1133 | 0 | T16 = ci[WS(rs, 25)]; |
1134 | 0 | T17 = cr[WS(rs, 22)]; |
1135 | 0 | T18 = T16 - T17; |
1136 | 0 | T4B = T16 + T17; |
1137 | 0 | Tq = cr[WS(rs, 6)]; |
1138 | 0 | Tr = ci[WS(rs, 9)]; |
1139 | 0 | Ts = Tq + Tr; |
1140 | 0 | T4x = Tq - Tr; |
1141 | 0 | } |
1142 | 0 | { |
1143 | 0 | E Tm, Tt, T6B, T6C; |
1144 | 0 | Tm = Ti + Tl; |
1145 | 0 | Tt = Tp + Ts; |
1146 | 0 | Tu = Tm + Tt; |
1147 | 0 | T1U = Tm - Tt; |
1148 | 0 | T6B = T4H + T4I; |
1149 | 0 | T6C = T4F - T4E; |
1150 | 0 | T6D = FNMS(KP923879532, T6C, KP382683432 * T6B); |
1151 | 0 | T73 = FMA(KP382683432, T6C, KP923879532 * T6B); |
1152 | 0 | } |
1153 | 0 | { |
1154 | 0 | E T6E, T6F, T19, T1g; |
1155 | 0 | T6E = T4A + T4B; |
1156 | 0 | T6F = T4x + T4y; |
1157 | 0 | T6G = FNMS(KP923879532, T6F, KP382683432 * T6E); |
1158 | 0 | T74 = FMA(KP382683432, T6F, KP923879532 * T6E); |
1159 | 0 | T19 = T15 + T18; |
1160 | 0 | T1g = T1c + T1f; |
1161 | 0 | T1h = T19 - T1g; |
1162 | 0 | T2z = T1g + T19; |
1163 | 0 | } |
1164 | 0 | { |
1165 | 0 | E T2V, T2W, T4z, T4C; |
1166 | 0 | T2V = T15 - T18; |
1167 | 0 | T2W = Tp - Ts; |
1168 | 0 | T2X = T2V - T2W; |
1169 | 0 | T3o = T2W + T2V; |
1170 | 0 | T4z = T4x - T4y; |
1171 | 0 | T4C = T4A - T4B; |
1172 | 0 | T4D = FNMS(KP382683432, T4C, KP923879532 * T4z); |
1173 | 0 | T5A = FMA(KP382683432, T4z, KP923879532 * T4C); |
1174 | 0 | } |
1175 | 0 | { |
1176 | 0 | E T4G, T4J, T2Y, T2Z; |
1177 | 0 | T4G = T4E + T4F; |
1178 | 0 | T4J = T4H - T4I; |
1179 | 0 | T4K = FMA(KP923879532, T4G, KP382683432 * T4J); |
1180 | 0 | T5z = FNMS(KP382683432, T4G, KP923879532 * T4J); |
1181 | 0 | T2Y = Ti - Tl; |
1182 | 0 | T2Z = T1c - T1f; |
1183 | 0 | T30 = T2Y + T2Z; |
1184 | 0 | T3n = T2Y - T2Z; |
1185 | 0 | } |
1186 | 0 | } |
1187 | 0 | { |
1188 | 0 | E Ty, T4N, TB, T4Y, T1p, T4O, T1m, T4Z, TI, T52, T1w, T4V, TF, T51, T1t; |
1189 | 0 | E T4S; |
1190 | 0 | { |
1191 | 0 | E Tw, Tx, T1k, T1l; |
1192 | 0 | Tw = cr[WS(rs, 1)]; |
1193 | 0 | Tx = ci[WS(rs, 14)]; |
1194 | 0 | Ty = Tw + Tx; |
1195 | 0 | T4N = Tw - Tx; |
1196 | 0 | { |
1197 | 0 | E Tz, TA, T1n, T1o; |
1198 | 0 | Tz = cr[WS(rs, 9)]; |
1199 | 0 | TA = ci[WS(rs, 6)]; |
1200 | 0 | TB = Tz + TA; |
1201 | 0 | T4Y = Tz - TA; |
1202 | 0 | T1n = ci[WS(rs, 22)]; |
1203 | 0 | T1o = cr[WS(rs, 25)]; |
1204 | 0 | T1p = T1n - T1o; |
1205 | 0 | T4O = T1n + T1o; |
1206 | 0 | } |
1207 | 0 | T1k = ci[WS(rs, 30)]; |
1208 | 0 | T1l = cr[WS(rs, 17)]; |
1209 | 0 | T1m = T1k - T1l; |
1210 | 0 | T4Z = T1k + T1l; |
1211 | 0 | { |
1212 | 0 | E TG, TH, T4T, T1u, T1v, T4U; |
1213 | 0 | TG = ci[WS(rs, 2)]; |
1214 | 0 | TH = cr[WS(rs, 13)]; |
1215 | 0 | T4T = TG - TH; |
1216 | 0 | T1u = ci[WS(rs, 18)]; |
1217 | 0 | T1v = cr[WS(rs, 29)]; |
1218 | 0 | T4U = T1u + T1v; |
1219 | 0 | TI = TG + TH; |
1220 | 0 | T52 = T4T + T4U; |
1221 | 0 | T1w = T1u - T1v; |
1222 | 0 | T4V = T4T - T4U; |
1223 | 0 | } |
1224 | 0 | { |
1225 | 0 | E TD, TE, T4Q, T1r, T1s, T4R; |
1226 | 0 | TD = cr[WS(rs, 5)]; |
1227 | 0 | TE = ci[WS(rs, 10)]; |
1228 | 0 | T4Q = TD - TE; |
1229 | 0 | T1r = ci[WS(rs, 26)]; |
1230 | 0 | T1s = cr[WS(rs, 21)]; |
1231 | 0 | T4R = T1r + T1s; |
1232 | 0 | TF = TD + TE; |
1233 | 0 | T51 = T4Q + T4R; |
1234 | 0 | T1t = T1r - T1s; |
1235 | 0 | T4S = T4Q - T4R; |
1236 | 0 | } |
1237 | 0 | } |
1238 | 0 | { |
1239 | 0 | E TC, TJ, T6Q, T6R; |
1240 | 0 | TC = Ty + TB; |
1241 | 0 | TJ = TF + TI; |
1242 | 0 | TK = TC + TJ; |
1243 | 0 | T1j = TC - TJ; |
1244 | 0 | T6Q = T4Z - T4Y; |
1245 | 0 | T6R = KP707106781 * (T4S - T4V); |
1246 | 0 | T6S = T6Q + T6R; |
1247 | 0 | T7w = T6Q - T6R; |
1248 | 0 | } |
1249 | 0 | { |
1250 | 0 | E T6T, T6U, T1q, T1x; |
1251 | 0 | T6T = T4N + T4O; |
1252 | 0 | T6U = KP707106781 * (T51 + T52); |
1253 | 0 | T6V = T6T - T6U; |
1254 | 0 | T7v = T6T + T6U; |
1255 | 0 | T1q = T1m + T1p; |
1256 | 0 | T1x = T1t + T1w; |
1257 | 0 | T1y = T1q - T1x; |
1258 | 0 | T2B = T1q + T1x; |
1259 | 0 | } |
1260 | 0 | { |
1261 | 0 | E T3a, T3b, T4P, T4W; |
1262 | 0 | T3a = T1m - T1p; |
1263 | 0 | T3b = TF - TI; |
1264 | 0 | T3c = T3a - T3b; |
1265 | 0 | T3S = T3b + T3a; |
1266 | 0 | T4P = T4N - T4O; |
1267 | 0 | T4W = KP707106781 * (T4S + T4V); |
1268 | 0 | T4X = T4P - T4W; |
1269 | 0 | T61 = T4P + T4W; |
1270 | 0 | } |
1271 | 0 | { |
1272 | 0 | E T50, T53, T3d, T3e; |
1273 | 0 | T50 = T4Y + T4Z; |
1274 | 0 | T53 = KP707106781 * (T51 - T52); |
1275 | 0 | T54 = T50 - T53; |
1276 | 0 | T62 = T50 + T53; |
1277 | 0 | T3d = Ty - TB; |
1278 | 0 | T3e = T1w - T1t; |
1279 | 0 | T3f = T3d - T3e; |
1280 | 0 | T3T = T3d + T3e; |
1281 | 0 | } |
1282 | 0 | } |
1283 | 0 | { |
1284 | 0 | E TN, T56, TQ, T5h, T1G, T57, T1D, T5i, TX, T5l, T1N, T5e, TU, T5k, T1K; |
1285 | 0 | E T5b; |
1286 | 0 | { |
1287 | 0 | E TL, TM, T1B, T1C; |
1288 | 0 | TL = ci[0]; |
1289 | 0 | TM = cr[WS(rs, 15)]; |
1290 | 0 | TN = TL + TM; |
1291 | 0 | T56 = TL - TM; |
1292 | 0 | { |
1293 | 0 | E TO, TP, T1E, T1F; |
1294 | 0 | TO = cr[WS(rs, 7)]; |
1295 | 0 | TP = ci[WS(rs, 8)]; |
1296 | 0 | TQ = TO + TP; |
1297 | 0 | T5h = TO - TP; |
1298 | 0 | T1E = ci[WS(rs, 24)]; |
1299 | 0 | T1F = cr[WS(rs, 23)]; |
1300 | 0 | T1G = T1E - T1F; |
1301 | 0 | T57 = T1E + T1F; |
1302 | 0 | } |
1303 | 0 | T1B = ci[WS(rs, 16)]; |
1304 | 0 | T1C = cr[WS(rs, 31)]; |
1305 | 0 | T1D = T1B - T1C; |
1306 | 0 | T5i = T1B + T1C; |
1307 | 0 | { |
1308 | 0 | E TV, TW, T5c, T1L, T1M, T5d; |
1309 | 0 | TV = ci[WS(rs, 4)]; |
1310 | 0 | TW = cr[WS(rs, 11)]; |
1311 | 0 | T5c = TV - TW; |
1312 | 0 | T1L = ci[WS(rs, 20)]; |
1313 | 0 | T1M = cr[WS(rs, 27)]; |
1314 | 0 | T5d = T1L + T1M; |
1315 | 0 | TX = TV + TW; |
1316 | 0 | T5l = T5c + T5d; |
1317 | 0 | T1N = T1L - T1M; |
1318 | 0 | T5e = T5c - T5d; |
1319 | 0 | } |
1320 | 0 | { |
1321 | 0 | E TS, TT, T59, T1I, T1J, T5a; |
1322 | 0 | TS = cr[WS(rs, 3)]; |
1323 | 0 | TT = ci[WS(rs, 12)]; |
1324 | 0 | T59 = TS - TT; |
1325 | 0 | T1I = ci[WS(rs, 28)]; |
1326 | 0 | T1J = cr[WS(rs, 19)]; |
1327 | 0 | T5a = T1I + T1J; |
1328 | 0 | TU = TS + TT; |
1329 | 0 | T5k = T59 + T5a; |
1330 | 0 | T1K = T1I - T1J; |
1331 | 0 | T5b = T59 - T5a; |
1332 | 0 | } |
1333 | 0 | } |
1334 | 0 | { |
1335 | 0 | E TR, TY, T6J, T6K; |
1336 | 0 | TR = TN + TQ; |
1337 | 0 | TY = TU + TX; |
1338 | 0 | TZ = TR + TY; |
1339 | 0 | T1A = TR - TY; |
1340 | 0 | T6J = KP707106781 * (T5b - T5e); |
1341 | 0 | T6K = T5h + T5i; |
1342 | 0 | T6L = T6J - T6K; |
1343 | 0 | T7z = T6K + T6J; |
1344 | 0 | } |
1345 | 0 | { |
1346 | 0 | E T6M, T6N, T1H, T1O; |
1347 | 0 | T6M = T56 + T57; |
1348 | 0 | T6N = KP707106781 * (T5k + T5l); |
1349 | 0 | T6O = T6M - T6N; |
1350 | 0 | T7y = T6M + T6N; |
1351 | 0 | T1H = T1D + T1G; |
1352 | 0 | T1O = T1K + T1N; |
1353 | 0 | T1P = T1H - T1O; |
1354 | 0 | T2C = T1H + T1O; |
1355 | 0 | } |
1356 | 0 | { |
1357 | 0 | E T33, T34, T58, T5f; |
1358 | 0 | T33 = T1D - T1G; |
1359 | 0 | T34 = TU - TX; |
1360 | 0 | T35 = T33 - T34; |
1361 | 0 | T3P = T34 + T33; |
1362 | 0 | T58 = T56 - T57; |
1363 | 0 | T5f = KP707106781 * (T5b + T5e); |
1364 | 0 | T5g = T58 - T5f; |
1365 | 0 | T64 = T58 + T5f; |
1366 | 0 | } |
1367 | 0 | { |
1368 | 0 | E T5j, T5m, T36, T37; |
1369 | 0 | T5j = T5h - T5i; |
1370 | 0 | T5m = KP707106781 * (T5k - T5l); |
1371 | 0 | T5n = T5j - T5m; |
1372 | 0 | T65 = T5j + T5m; |
1373 | 0 | T36 = TN - TQ; |
1374 | 0 | T37 = T1N - T1K; |
1375 | 0 | T38 = T36 - T37; |
1376 | 0 | T3Q = T36 + T37; |
1377 | 0 | } |
1378 | 0 | } |
1379 | 0 | { |
1380 | 0 | E Tv, T10, T2w, T2A, T2D, T2E, T2v, T2x; |
1381 | 0 | Tv = Tf + Tu; |
1382 | 0 | T10 = TK + TZ; |
1383 | 0 | T2w = Tv - T10; |
1384 | 0 | T2A = T2y + T2z; |
1385 | 0 | T2D = T2B + T2C; |
1386 | 0 | T2E = T2A - T2D; |
1387 | 0 | cr[0] = Tv + T10; |
1388 | 0 | ci[0] = T2A + T2D; |
1389 | 0 | T2v = W[30]; |
1390 | 0 | T2x = W[31]; |
1391 | 0 | cr[WS(rs, 16)] = FNMS(T2x, T2E, T2v * T2w); |
1392 | 0 | ci[WS(rs, 16)] = FMA(T2x, T2w, T2v * T2E); |
1393 | 0 | } |
1394 | 0 | { |
1395 | 0 | E T2I, T2O, T2M, T2Q; |
1396 | 0 | { |
1397 | 0 | E T2G, T2H, T2K, T2L; |
1398 | 0 | T2G = Tf - Tu; |
1399 | 0 | T2H = T2C - T2B; |
1400 | 0 | T2I = T2G - T2H; |
1401 | 0 | T2O = T2G + T2H; |
1402 | 0 | T2K = T2y - T2z; |
1403 | 0 | T2L = TK - TZ; |
1404 | 0 | T2M = T2K - T2L; |
1405 | 0 | T2Q = T2L + T2K; |
1406 | 0 | } |
1407 | 0 | { |
1408 | 0 | E T2F, T2J, T2N, T2P; |
1409 | 0 | T2F = W[46]; |
1410 | 0 | T2J = W[47]; |
1411 | 0 | cr[WS(rs, 24)] = FNMS(T2J, T2M, T2F * T2I); |
1412 | 0 | ci[WS(rs, 24)] = FMA(T2F, T2M, T2J * T2I); |
1413 | 0 | T2N = W[14]; |
1414 | 0 | T2P = W[15]; |
1415 | 0 | cr[WS(rs, 8)] = FNMS(T2P, T2Q, T2N * T2O); |
1416 | 0 | ci[WS(rs, 8)] = FMA(T2N, T2Q, T2P * T2O); |
1417 | 0 | } |
1418 | 0 | } |
1419 | 0 | { |
1420 | 0 | E T1i, T2a, T2o, T2k, T2d, T2l, T1R, T2p; |
1421 | 0 | T1i = T12 + T1h; |
1422 | 0 | T2a = T1U + T29; |
1423 | 0 | T2o = T29 - T1U; |
1424 | 0 | T2k = T12 - T1h; |
1425 | 0 | { |
1426 | 0 | E T2b, T2c, T1z, T1Q; |
1427 | 0 | T2b = T1j + T1y; |
1428 | 0 | T2c = T1P - T1A; |
1429 | 0 | T2d = KP707106781 * (T2b + T2c); |
1430 | 0 | T2l = KP707106781 * (T2c - T2b); |
1431 | 0 | T1z = T1j - T1y; |
1432 | 0 | T1Q = T1A + T1P; |
1433 | 0 | T1R = KP707106781 * (T1z + T1Q); |
1434 | 0 | T2p = KP707106781 * (T1z - T1Q); |
1435 | 0 | } |
1436 | 0 | { |
1437 | 0 | E T1S, T2e, T11, T1T; |
1438 | 0 | T1S = T1i - T1R; |
1439 | 0 | T2e = T2a - T2d; |
1440 | 0 | T11 = W[38]; |
1441 | 0 | T1T = W[39]; |
1442 | 0 | cr[WS(rs, 20)] = FNMS(T1T, T2e, T11 * T1S); |
1443 | 0 | ci[WS(rs, 20)] = FMA(T1T, T1S, T11 * T2e); |
1444 | 0 | } |
1445 | 0 | { |
1446 | 0 | E T2s, T2u, T2r, T2t; |
1447 | 0 | T2s = T2k + T2l; |
1448 | 0 | T2u = T2o + T2p; |
1449 | 0 | T2r = W[22]; |
1450 | 0 | T2t = W[23]; |
1451 | 0 | cr[WS(rs, 12)] = FNMS(T2t, T2u, T2r * T2s); |
1452 | 0 | ci[WS(rs, 12)] = FMA(T2r, T2u, T2t * T2s); |
1453 | 0 | } |
1454 | 0 | { |
1455 | 0 | E T2g, T2i, T2f, T2h; |
1456 | 0 | T2g = T1i + T1R; |
1457 | 0 | T2i = T2a + T2d; |
1458 | 0 | T2f = W[6]; |
1459 | 0 | T2h = W[7]; |
1460 | 0 | cr[WS(rs, 4)] = FNMS(T2h, T2i, T2f * T2g); |
1461 | 0 | ci[WS(rs, 4)] = FMA(T2h, T2g, T2f * T2i); |
1462 | 0 | } |
1463 | 0 | { |
1464 | 0 | E T2m, T2q, T2j, T2n; |
1465 | 0 | T2m = T2k - T2l; |
1466 | 0 | T2q = T2o - T2p; |
1467 | 0 | T2j = W[54]; |
1468 | 0 | T2n = W[55]; |
1469 | 0 | cr[WS(rs, 28)] = FNMS(T2n, T2q, T2j * T2m); |
1470 | 0 | ci[WS(rs, 28)] = FMA(T2j, T2q, T2n * T2m); |
1471 | 0 | } |
1472 | 0 | } |
1473 | 0 | { |
1474 | 0 | E T3O, T4a, T40, T4e, T3V, T4f, T43, T4b, T3N, T3Z; |
1475 | 0 | T3N = KP707106781 * (T3n + T3o); |
1476 | 0 | T3O = T3M - T3N; |
1477 | 0 | T4a = T3M + T3N; |
1478 | 0 | T3Z = KP707106781 * (T30 + T2X); |
1479 | 0 | T40 = T3Y - T3Z; |
1480 | 0 | T4e = T3Y + T3Z; |
1481 | 0 | { |
1482 | 0 | E T3R, T3U, T41, T42; |
1483 | 0 | T3R = FNMS(KP382683432, T3Q, KP923879532 * T3P); |
1484 | 0 | T3U = FMA(KP923879532, T3S, KP382683432 * T3T); |
1485 | 0 | T3V = T3R - T3U; |
1486 | 0 | T4f = T3U + T3R; |
1487 | 0 | T41 = FNMS(KP382683432, T3S, KP923879532 * T3T); |
1488 | 0 | T42 = FMA(KP382683432, T3P, KP923879532 * T3Q); |
1489 | 0 | T43 = T41 - T42; |
1490 | 0 | T4b = T41 + T42; |
1491 | 0 | } |
1492 | 0 | { |
1493 | 0 | E T3W, T44, T3L, T3X; |
1494 | 0 | T3W = T3O - T3V; |
1495 | 0 | T44 = T40 - T43; |
1496 | 0 | T3L = W[50]; |
1497 | 0 | T3X = W[51]; |
1498 | 0 | cr[WS(rs, 26)] = FNMS(T3X, T44, T3L * T3W); |
1499 | 0 | ci[WS(rs, 26)] = FMA(T3X, T3W, T3L * T44); |
1500 | 0 | } |
1501 | 0 | { |
1502 | 0 | E T4i, T4k, T4h, T4j; |
1503 | 0 | T4i = T4a + T4b; |
1504 | 0 | T4k = T4e + T4f; |
1505 | 0 | T4h = W[2]; |
1506 | 0 | T4j = W[3]; |
1507 | 0 | cr[WS(rs, 2)] = FNMS(T4j, T4k, T4h * T4i); |
1508 | 0 | ci[WS(rs, 2)] = FMA(T4h, T4k, T4j * T4i); |
1509 | 0 | } |
1510 | 0 | { |
1511 | 0 | E T46, T48, T45, T47; |
1512 | 0 | T46 = T3O + T3V; |
1513 | 0 | T48 = T40 + T43; |
1514 | 0 | T45 = W[18]; |
1515 | 0 | T47 = W[19]; |
1516 | 0 | cr[WS(rs, 10)] = FNMS(T47, T48, T45 * T46); |
1517 | 0 | ci[WS(rs, 10)] = FMA(T47, T46, T45 * T48); |
1518 | 0 | } |
1519 | 0 | { |
1520 | 0 | E T4c, T4g, T49, T4d; |
1521 | 0 | T4c = T4a - T4b; |
1522 | 0 | T4g = T4e - T4f; |
1523 | 0 | T49 = W[34]; |
1524 | 0 | T4d = W[35]; |
1525 | 0 | cr[WS(rs, 18)] = FNMS(T4d, T4g, T49 * T4c); |
1526 | 0 | ci[WS(rs, 18)] = FMA(T49, T4g, T4d * T4c); |
1527 | 0 | } |
1528 | 0 | } |
1529 | 0 | { |
1530 | 0 | E T32, T3A, T3q, T3E, T3h, T3F, T3t, T3B, T31, T3p; |
1531 | 0 | T31 = KP707106781 * (T2X - T30); |
1532 | 0 | T32 = T2U - T31; |
1533 | 0 | T3A = T2U + T31; |
1534 | 0 | T3p = KP707106781 * (T3n - T3o); |
1535 | 0 | T3q = T3m - T3p; |
1536 | 0 | T3E = T3m + T3p; |
1537 | 0 | { |
1538 | 0 | E T39, T3g, T3r, T3s; |
1539 | 0 | T39 = FNMS(KP923879532, T38, KP382683432 * T35); |
1540 | 0 | T3g = FMA(KP382683432, T3c, KP923879532 * T3f); |
1541 | 0 | T3h = T39 - T3g; |
1542 | 0 | T3F = T3g + T39; |
1543 | 0 | T3r = FNMS(KP923879532, T3c, KP382683432 * T3f); |
1544 | 0 | T3s = FMA(KP923879532, T35, KP382683432 * T38); |
1545 | 0 | T3t = T3r - T3s; |
1546 | 0 | T3B = T3r + T3s; |
1547 | 0 | } |
1548 | 0 | { |
1549 | 0 | E T3i, T3u, T2R, T3j; |
1550 | 0 | T3i = T32 - T3h; |
1551 | 0 | T3u = T3q - T3t; |
1552 | 0 | T2R = W[58]; |
1553 | 0 | T3j = W[59]; |
1554 | 0 | cr[WS(rs, 30)] = FNMS(T3j, T3u, T2R * T3i); |
1555 | 0 | ci[WS(rs, 30)] = FMA(T3j, T3i, T2R * T3u); |
1556 | 0 | } |
1557 | 0 | { |
1558 | 0 | E T3I, T3K, T3H, T3J; |
1559 | 0 | T3I = T3A + T3B; |
1560 | 0 | T3K = T3E + T3F; |
1561 | 0 | T3H = W[10]; |
1562 | 0 | T3J = W[11]; |
1563 | 0 | cr[WS(rs, 6)] = FNMS(T3J, T3K, T3H * T3I); |
1564 | 0 | ci[WS(rs, 6)] = FMA(T3H, T3K, T3J * T3I); |
1565 | 0 | } |
1566 | 0 | { |
1567 | 0 | E T3w, T3y, T3v, T3x; |
1568 | 0 | T3w = T32 + T3h; |
1569 | 0 | T3y = T3q + T3t; |
1570 | 0 | T3v = W[26]; |
1571 | 0 | T3x = W[27]; |
1572 | 0 | cr[WS(rs, 14)] = FNMS(T3x, T3y, T3v * T3w); |
1573 | 0 | ci[WS(rs, 14)] = FMA(T3x, T3w, T3v * T3y); |
1574 | 0 | } |
1575 | 0 | { |
1576 | 0 | E T3C, T3G, T3z, T3D; |
1577 | 0 | T3C = T3A - T3B; |
1578 | 0 | T3G = T3E - T3F; |
1579 | 0 | T3z = W[42]; |
1580 | 0 | T3D = W[43]; |
1581 | 0 | cr[WS(rs, 22)] = FNMS(T3D, T3G, T3z * T3C); |
1582 | 0 | ci[WS(rs, 22)] = FMA(T3z, T3G, T3D * T3C); |
1583 | 0 | } |
1584 | 0 | } |
1585 | 0 | { |
1586 | 0 | E T60, T6m, T6f, T6n, T67, T6r, T6c, T6q; |
1587 | 0 | { |
1588 | 0 | E T5Y, T5Z, T6d, T6e; |
1589 | 0 | T5Y = T4o + T4v; |
1590 | 0 | T5Z = T5z + T5A; |
1591 | 0 | T60 = T5Y + T5Z; |
1592 | 0 | T6m = T5Y - T5Z; |
1593 | 0 | T6d = FMA(KP195090322, T61, KP980785280 * T62); |
1594 | 0 | T6e = FNMS(KP195090322, T64, KP980785280 * T65); |
1595 | 0 | T6f = T6d + T6e; |
1596 | 0 | T6n = T6e - T6d; |
1597 | 0 | } |
1598 | 0 | { |
1599 | 0 | E T63, T66, T6a, T6b; |
1600 | 0 | T63 = FNMS(KP195090322, T62, KP980785280 * T61); |
1601 | 0 | T66 = FMA(KP980785280, T64, KP195090322 * T65); |
1602 | 0 | T67 = T63 + T66; |
1603 | 0 | T6r = T63 - T66; |
1604 | 0 | T6a = T5u + T5x; |
1605 | 0 | T6b = T4K + T4D; |
1606 | 0 | T6c = T6a + T6b; |
1607 | 0 | T6q = T6a - T6b; |
1608 | 0 | } |
1609 | 0 | { |
1610 | 0 | E T68, T6g, T5X, T69; |
1611 | 0 | T68 = T60 - T67; |
1612 | 0 | T6g = T6c - T6f; |
1613 | 0 | T5X = W[32]; |
1614 | 0 | T69 = W[33]; |
1615 | 0 | cr[WS(rs, 17)] = FNMS(T69, T6g, T5X * T68); |
1616 | 0 | ci[WS(rs, 17)] = FMA(T69, T68, T5X * T6g); |
1617 | 0 | } |
1618 | 0 | { |
1619 | 0 | E T6u, T6w, T6t, T6v; |
1620 | 0 | T6u = T6m + T6n; |
1621 | 0 | T6w = T6q + T6r; |
1622 | 0 | T6t = W[16]; |
1623 | 0 | T6v = W[17]; |
1624 | 0 | cr[WS(rs, 9)] = FNMS(T6v, T6w, T6t * T6u); |
1625 | 0 | ci[WS(rs, 9)] = FMA(T6t, T6w, T6v * T6u); |
1626 | 0 | } |
1627 | 0 | { |
1628 | 0 | E T6i, T6k, T6h, T6j; |
1629 | 0 | T6i = T60 + T67; |
1630 | 0 | T6k = T6c + T6f; |
1631 | 0 | T6h = W[0]; |
1632 | 0 | T6j = W[1]; |
1633 | 0 | cr[WS(rs, 1)] = FNMS(T6j, T6k, T6h * T6i); |
1634 | 0 | ci[WS(rs, 1)] = FMA(T6j, T6i, T6h * T6k); |
1635 | 0 | } |
1636 | 0 | { |
1637 | 0 | E T6o, T6s, T6l, T6p; |
1638 | 0 | T6o = T6m - T6n; |
1639 | 0 | T6s = T6q - T6r; |
1640 | 0 | T6l = W[48]; |
1641 | 0 | T6p = W[49]; |
1642 | 0 | cr[WS(rs, 25)] = FNMS(T6p, T6s, T6l * T6o); |
1643 | 0 | ci[WS(rs, 25)] = FMA(T6l, T6s, T6p * T6o); |
1644 | 0 | } |
1645 | 0 | } |
1646 | 0 | { |
1647 | 0 | E T7u, T7Q, T7J, T7R, T7B, T7V, T7G, T7U; |
1648 | 0 | { |
1649 | 0 | E T7s, T7t, T7H, T7I; |
1650 | 0 | T7s = T6y + T6z; |
1651 | 0 | T7t = T73 + T74; |
1652 | 0 | T7u = T7s - T7t; |
1653 | 0 | T7Q = T7s + T7t; |
1654 | 0 | T7H = FMA(KP195090322, T7w, KP980785280 * T7v); |
1655 | 0 | T7I = FMA(KP195090322, T7z, KP980785280 * T7y); |
1656 | 0 | T7J = T7H - T7I; |
1657 | 0 | T7R = T7H + T7I; |
1658 | 0 | } |
1659 | 0 | { |
1660 | 0 | E T7x, T7A, T7E, T7F; |
1661 | 0 | T7x = FNMS(KP980785280, T7w, KP195090322 * T7v); |
1662 | 0 | T7A = FNMS(KP980785280, T7z, KP195090322 * T7y); |
1663 | 0 | T7B = T7x + T7A; |
1664 | 0 | T7V = T7x - T7A; |
1665 | 0 | T7E = T70 - T71; |
1666 | 0 | T7F = T6D - T6G; |
1667 | 0 | T7G = T7E + T7F; |
1668 | 0 | T7U = T7E - T7F; |
1669 | 0 | } |
1670 | 0 | { |
1671 | 0 | E T7C, T7K, T7r, T7D; |
1672 | 0 | T7C = T7u - T7B; |
1673 | 0 | T7K = T7G - T7J; |
1674 | 0 | T7r = W[44]; |
1675 | 0 | T7D = W[45]; |
1676 | 0 | cr[WS(rs, 23)] = FNMS(T7D, T7K, T7r * T7C); |
1677 | 0 | ci[WS(rs, 23)] = FMA(T7D, T7C, T7r * T7K); |
1678 | 0 | } |
1679 | 0 | { |
1680 | 0 | E T7Y, T80, T7X, T7Z; |
1681 | 0 | T7Y = T7Q + T7R; |
1682 | 0 | T80 = T7U - T7V; |
1683 | 0 | T7X = W[60]; |
1684 | 0 | T7Z = W[61]; |
1685 | 0 | cr[WS(rs, 31)] = FNMS(T7Z, T80, T7X * T7Y); |
1686 | 0 | ci[WS(rs, 31)] = FMA(T7X, T80, T7Z * T7Y); |
1687 | 0 | } |
1688 | 0 | { |
1689 | 0 | E T7M, T7O, T7L, T7N; |
1690 | 0 | T7M = T7u + T7B; |
1691 | 0 | T7O = T7G + T7J; |
1692 | 0 | T7L = W[12]; |
1693 | 0 | T7N = W[13]; |
1694 | 0 | cr[WS(rs, 7)] = FNMS(T7N, T7O, T7L * T7M); |
1695 | 0 | ci[WS(rs, 7)] = FMA(T7N, T7M, T7L * T7O); |
1696 | 0 | } |
1697 | 0 | { |
1698 | 0 | E T7S, T7W, T7P, T7T; |
1699 | 0 | T7S = T7Q - T7R; |
1700 | 0 | T7W = T7U + T7V; |
1701 | 0 | T7P = W[28]; |
1702 | 0 | T7T = W[29]; |
1703 | 0 | cr[WS(rs, 15)] = FNMS(T7T, T7W, T7P * T7S); |
1704 | 0 | ci[WS(rs, 15)] = FMA(T7P, T7W, T7T * T7S); |
1705 | 0 | } |
1706 | 0 | } |
1707 | 0 | { |
1708 | 0 | E T4M, T5M, T5F, T5N, T5p, T5R, T5C, T5Q; |
1709 | 0 | { |
1710 | 0 | E T4w, T4L, T5D, T5E; |
1711 | 0 | T4w = T4o - T4v; |
1712 | 0 | T4L = T4D - T4K; |
1713 | 0 | T4M = T4w + T4L; |
1714 | 0 | T5M = T4w - T4L; |
1715 | 0 | T5D = FMA(KP831469612, T4X, KP555570233 * T54); |
1716 | 0 | T5E = FNMS(KP831469612, T5g, KP555570233 * T5n); |
1717 | 0 | T5F = T5D + T5E; |
1718 | 0 | T5N = T5E - T5D; |
1719 | 0 | } |
1720 | 0 | { |
1721 | 0 | E T55, T5o, T5y, T5B; |
1722 | 0 | T55 = FNMS(KP831469612, T54, KP555570233 * T4X); |
1723 | 0 | T5o = FMA(KP555570233, T5g, KP831469612 * T5n); |
1724 | 0 | T5p = T55 + T5o; |
1725 | 0 | T5R = T55 - T5o; |
1726 | 0 | T5y = T5u - T5x; |
1727 | 0 | T5B = T5z - T5A; |
1728 | 0 | T5C = T5y + T5B; |
1729 | 0 | T5Q = T5y - T5B; |
1730 | 0 | } |
1731 | 0 | { |
1732 | 0 | E T5q, T5G, T4l, T5r; |
1733 | 0 | T5q = T4M - T5p; |
1734 | 0 | T5G = T5C - T5F; |
1735 | 0 | T4l = W[40]; |
1736 | 0 | T5r = W[41]; |
1737 | 0 | cr[WS(rs, 21)] = FNMS(T5r, T5G, T4l * T5q); |
1738 | 0 | ci[WS(rs, 21)] = FMA(T5r, T5q, T4l * T5G); |
1739 | 0 | } |
1740 | 0 | { |
1741 | 0 | E T5U, T5W, T5T, T5V; |
1742 | 0 | T5U = T5M + T5N; |
1743 | 0 | T5W = T5Q + T5R; |
1744 | 0 | T5T = W[24]; |
1745 | 0 | T5V = W[25]; |
1746 | 0 | cr[WS(rs, 13)] = FNMS(T5V, T5W, T5T * T5U); |
1747 | 0 | ci[WS(rs, 13)] = FMA(T5T, T5W, T5V * T5U); |
1748 | 0 | } |
1749 | 0 | { |
1750 | 0 | E T5I, T5K, T5H, T5J; |
1751 | 0 | T5I = T4M + T5p; |
1752 | 0 | T5K = T5C + T5F; |
1753 | 0 | T5H = W[8]; |
1754 | 0 | T5J = W[9]; |
1755 | 0 | cr[WS(rs, 5)] = FNMS(T5J, T5K, T5H * T5I); |
1756 | 0 | ci[WS(rs, 5)] = FMA(T5J, T5I, T5H * T5K); |
1757 | 0 | } |
1758 | 0 | { |
1759 | 0 | E T5O, T5S, T5L, T5P; |
1760 | 0 | T5O = T5M - T5N; |
1761 | 0 | T5S = T5Q - T5R; |
1762 | 0 | T5L = W[56]; |
1763 | 0 | T5P = W[57]; |
1764 | 0 | cr[WS(rs, 29)] = FNMS(T5P, T5S, T5L * T5O); |
1765 | 0 | ci[WS(rs, 29)] = FMA(T5L, T5S, T5P * T5O); |
1766 | 0 | } |
1767 | 0 | } |
1768 | 0 | { |
1769 | 0 | E T6I, T7g, T79, T7h, T6X, T7l, T76, T7k; |
1770 | 0 | { |
1771 | 0 | E T6A, T6H, T77, T78; |
1772 | 0 | T6A = T6y - T6z; |
1773 | 0 | T6H = T6D + T6G; |
1774 | 0 | T6I = T6A - T6H; |
1775 | 0 | T7g = T6A + T6H; |
1776 | 0 | T77 = FNMS(KP555570233, T6S, KP831469612 * T6V); |
1777 | 0 | T78 = FMA(KP555570233, T6L, KP831469612 * T6O); |
1778 | 0 | T79 = T77 - T78; |
1779 | 0 | T7h = T77 + T78; |
1780 | 0 | } |
1781 | 0 | { |
1782 | 0 | E T6P, T6W, T72, T75; |
1783 | 0 | T6P = FNMS(KP555570233, T6O, KP831469612 * T6L); |
1784 | 0 | T6W = FMA(KP831469612, T6S, KP555570233 * T6V); |
1785 | 0 | T6X = T6P - T6W; |
1786 | 0 | T7l = T6W + T6P; |
1787 | 0 | T72 = T70 + T71; |
1788 | 0 | T75 = T73 - T74; |
1789 | 0 | T76 = T72 - T75; |
1790 | 0 | T7k = T72 + T75; |
1791 | 0 | } |
1792 | 0 | { |
1793 | 0 | E T6Y, T7a, T6x, T6Z; |
1794 | 0 | T6Y = T6I - T6X; |
1795 | 0 | T7a = T76 - T79; |
1796 | 0 | T6x = W[52]; |
1797 | 0 | T6Z = W[53]; |
1798 | 0 | cr[WS(rs, 27)] = FNMS(T6Z, T7a, T6x * T6Y); |
1799 | 0 | ci[WS(rs, 27)] = FMA(T6Z, T6Y, T6x * T7a); |
1800 | 0 | } |
1801 | 0 | { |
1802 | 0 | E T7o, T7q, T7n, T7p; |
1803 | 0 | T7o = T7g + T7h; |
1804 | 0 | T7q = T7k + T7l; |
1805 | 0 | T7n = W[4]; |
1806 | 0 | T7p = W[5]; |
1807 | 0 | cr[WS(rs, 3)] = FNMS(T7p, T7q, T7n * T7o); |
1808 | 0 | ci[WS(rs, 3)] = FMA(T7n, T7q, T7p * T7o); |
1809 | 0 | } |
1810 | 0 | { |
1811 | 0 | E T7c, T7e, T7b, T7d; |
1812 | 0 | T7c = T6I + T6X; |
1813 | 0 | T7e = T76 + T79; |
1814 | 0 | T7b = W[20]; |
1815 | 0 | T7d = W[21]; |
1816 | 0 | cr[WS(rs, 11)] = FNMS(T7d, T7e, T7b * T7c); |
1817 | 0 | ci[WS(rs, 11)] = FMA(T7d, T7c, T7b * T7e); |
1818 | 0 | } |
1819 | 0 | { |
1820 | 0 | E T7i, T7m, T7f, T7j; |
1821 | 0 | T7i = T7g - T7h; |
1822 | 0 | T7m = T7k - T7l; |
1823 | 0 | T7f = W[36]; |
1824 | 0 | T7j = W[37]; |
1825 | 0 | cr[WS(rs, 19)] = FNMS(T7j, T7m, T7f * T7i); |
1826 | 0 | ci[WS(rs, 19)] = FMA(T7f, T7m, T7j * T7i); |
1827 | 0 | } |
1828 | 0 | } |
1829 | 0 | } |
1830 | 0 | } |
1831 | 0 | } |
1832 | | |
1833 | | static const tw_instr twinstr[] = { |
1834 | | { TW_FULL, 1, 32 }, |
1835 | | { TW_NEXT, 1, 0 } |
1836 | | }; |
1837 | | |
1838 | | static const hc2hc_desc desc = { 32, "hb_32", twinstr, &GENUS, { 340, 114, 94, 0 } }; |
1839 | | |
1840 | 1 | void X(codelet_hb_32) (planner *p) { |
1841 | 1 | X(khc2hc_register) (p, hb_32, &desc); |
1842 | 1 | } |
1843 | | #endif |