Coverage Report

Created: 2025-07-23 07:03

/src/fftw3/rdft/scalar/r2cb/hb_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Wed Jul 23 07:02:28 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hb_8 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 66 FP additions, 36 FP multiplications,
32
 * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
33
 * 33 stack variables, 1 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     {
41
    INT m;
42
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs)) {
43
         E T7, T1i, T1n, Tk, TD, TV, T1b, TQ, Te, T1e, T1o, T1j, TE, TF, TR;
44
         E Tv, TW;
45
         {
46
        E T3, Tg, TC, T19, T6, Tz, Tj, T1a;
47
        {
48
       E T1, T2, TA, TB;
49
       T1 = cr[0];
50
       T2 = ci[WS(rs, 3)];
51
       T3 = T1 + T2;
52
       Tg = T1 - T2;
53
       TA = ci[WS(rs, 7)];
54
       TB = cr[WS(rs, 4)];
55
       TC = TA + TB;
56
       T19 = TA - TB;
57
        }
58
        {
59
       E T4, T5, Th, Ti;
60
       T4 = cr[WS(rs, 2)];
61
       T5 = ci[WS(rs, 1)];
62
       T6 = T4 + T5;
63
       Tz = T4 - T5;
64
       Th = ci[WS(rs, 5)];
65
       Ti = cr[WS(rs, 6)];
66
       Tj = Th + Ti;
67
       T1a = Th - Ti;
68
        }
69
        T7 = T3 + T6;
70
        T1i = T3 - T6;
71
        T1n = T19 - T1a;
72
        Tk = Tg - Tj;
73
        TD = Tz + TC;
74
        TV = TC - Tz;
75
        T1b = T19 + T1a;
76
        TQ = Tg + Tj;
77
         }
78
         {
79
        E Ta, Tl, Tt, T1d, Td, Tq, To, T1c, Tp, Tu;
80
        {
81
       E T8, T9, Tr, Ts;
82
       T8 = cr[WS(rs, 1)];
83
       T9 = ci[WS(rs, 2)];
84
       Ta = T8 + T9;
85
       Tl = T8 - T9;
86
       Tr = ci[WS(rs, 4)];
87
       Ts = cr[WS(rs, 7)];
88
       Tt = Tr + Ts;
89
       T1d = Tr - Ts;
90
        }
91
        {
92
       E Tb, Tc, Tm, Tn;
93
       Tb = ci[0];
94
       Tc = cr[WS(rs, 3)];
95
       Td = Tb + Tc;
96
       Tq = Tb - Tc;
97
       Tm = ci[WS(rs, 6)];
98
       Tn = cr[WS(rs, 5)];
99
       To = Tm + Tn;
100
       T1c = Tm - Tn;
101
        }
102
        Te = Ta + Td;
103
        T1e = T1c + T1d;
104
        T1o = Ta - Td;
105
        T1j = T1d - T1c;
106
        TE = Tl + To;
107
        TF = Tq + Tt;
108
        TR = TE + TF;
109
        Tp = Tl - To;
110
        Tu = Tq - Tt;
111
        Tv = Tp + Tu;
112
        TW = Tp - Tu;
113
         }
114
         cr[0] = T7 + Te;
115
         ci[0] = T1b + T1e;
116
         {
117
        E TS, TX, TT, TY, TP, TU;
118
        TS = FNMS(KP707106781, TR, TQ);
119
        TX = FMA(KP707106781, TW, TV);
120
        TP = W[4];
121
        TT = TP * TS;
122
        TY = TP * TX;
123
        TU = W[5];
124
        cr[WS(rs, 3)] = FNMS(TU, TX, TT);
125
        ci[WS(rs, 3)] = FMA(TU, TS, TY);
126
         }
127
         {
128
        E T1s, T1v, T1t, T1w, T1r, T1u;
129
        T1s = T1i + T1j;
130
        T1v = T1o + T1n;
131
        T1r = W[2];
132
        T1t = T1r * T1s;
133
        T1w = T1r * T1v;
134
        T1u = W[3];
135
        cr[WS(rs, 2)] = FNMS(T1u, T1v, T1t);
136
        ci[WS(rs, 2)] = FMA(T1u, T1s, T1w);
137
         }
138
         {
139
        E T10, T13, T11, T14, TZ, T12;
140
        T10 = FMA(KP707106781, TR, TQ);
141
        T13 = FNMS(KP707106781, TW, TV);
142
        TZ = W[12];
143
        T11 = TZ * T10;
144
        T14 = TZ * T13;
145
        T12 = W[13];
146
        cr[WS(rs, 7)] = FNMS(T12, T13, T11);
147
        ci[WS(rs, 7)] = FMA(T12, T10, T14);
148
         }
149
         {
150
        E T1f, T15, T17, T18, T1g, T16;
151
        T1f = T1b - T1e;
152
        T16 = T7 - Te;
153
        T15 = W[6];
154
        T17 = T15 * T16;
155
        T18 = W[7];
156
        T1g = T18 * T16;
157
        cr[WS(rs, 4)] = FNMS(T18, T1f, T17);
158
        ci[WS(rs, 4)] = FMA(T15, T1f, T1g);
159
         }
160
         {
161
        E T1k, T1p, T1l, T1q, T1h, T1m;
162
        T1k = T1i - T1j;
163
        T1p = T1n - T1o;
164
        T1h = W[10];
165
        T1l = T1h * T1k;
166
        T1q = T1h * T1p;
167
        T1m = W[11];
168
        cr[WS(rs, 6)] = FNMS(T1m, T1p, T1l);
169
        ci[WS(rs, 6)] = FMA(T1m, T1k, T1q);
170
         }
171
         {
172
        E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw;
173
        TG = TE - TF;
174
        TH = FNMS(KP707106781, TG, TD);
175
        TN = FMA(KP707106781, TG, TD);
176
        TK = FMA(KP707106781, Tv, Tk);
177
        TJ = W[0];
178
        TL = TJ * TK;
179
        TM = W[1];
180
        TO = TM * TK;
181
        Tw = FNMS(KP707106781, Tv, Tk);
182
        Tf = W[8];
183
        Tx = Tf * Tw;
184
        Ty = W[9];
185
        TI = Ty * Tw;
186
        cr[WS(rs, 5)] = FNMS(Ty, TH, Tx);
187
        ci[WS(rs, 5)] = FMA(Tf, TH, TI);
188
        cr[WS(rs, 1)] = FNMS(TM, TN, TL);
189
        ci[WS(rs, 1)] = FMA(TJ, TN, TO);
190
         }
191
    }
192
     }
193
}
194
195
static const tw_instr twinstr[] = {
196
     { TW_FULL, 1, 8 },
197
     { TW_NEXT, 1, 0 }
198
};
199
200
static const hc2hc_desc desc = { 8, "hb_8", twinstr, &GENUS, { 44, 14, 22, 0 } };
201
202
void X(codelet_hb_8) (planner *p) {
203
     X(khc2hc_register) (p, hb_8, &desc);
204
}
205
#else
206
207
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hb_8 -include rdft/scalar/hb.h */
208
209
/*
210
 * This function contains 66 FP additions, 32 FP multiplications,
211
 * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
212
 * 30 stack variables, 1 constants, and 32 memory accesses
213
 */
214
#include "rdft/scalar/hb.h"
215
216
static void hb_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
217
0
{
218
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
219
0
     {
220
0
    INT m;
221
0
    for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs)) {
222
0
         E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS;
223
0
         E TD;
224
0
         {
225
0
        E T3, TK, Tn, TL, T6, TW, Tk, TX;
226
0
        {
227
0
       E T1, T2, Tl, Tm;
228
0
       T1 = cr[0];
229
0
       T2 = ci[WS(rs, 3)];
230
0
       T3 = T1 + T2;
231
0
       TK = T1 - T2;
232
0
       Tl = ci[WS(rs, 5)];
233
0
       Tm = cr[WS(rs, 6)];
234
0
       Tn = Tl - Tm;
235
0
       TL = Tl + Tm;
236
0
        }
237
0
        {
238
0
       E T4, T5, Ti, Tj;
239
0
       T4 = cr[WS(rs, 2)];
240
0
       T5 = ci[WS(rs, 1)];
241
0
       T6 = T4 + T5;
242
0
       TW = T4 - T5;
243
0
       Ti = ci[WS(rs, 7)];
244
0
       Tj = cr[WS(rs, 4)];
245
0
       Tk = Ti - Tj;
246
0
       TX = Ti + Tj;
247
0
        }
248
0
        T7 = T3 + T6;
249
0
        T18 = TK + TL;
250
0
        T1c = TX - TW;
251
0
        To = Tk + Tn;
252
0
        Ty = T3 - T6;
253
0
        TM = TK - TL;
254
0
        TY = TW + TX;
255
0
        TC = Tk - Tn;
256
0
         }
257
0
         {
258
0
        E Ta, TN, Tu, TR, Td, TQ, Tr, TO;
259
0
        {
260
0
       E T8, T9, Ts, Tt;
261
0
       T8 = cr[WS(rs, 1)];
262
0
       T9 = ci[WS(rs, 2)];
263
0
       Ta = T8 + T9;
264
0
       TN = T8 - T9;
265
0
       Ts = ci[WS(rs, 4)];
266
0
       Tt = cr[WS(rs, 7)];
267
0
       Tu = Ts - Tt;
268
0
       TR = Ts + Tt;
269
0
        }
270
0
        {
271
0
       E Tb, Tc, Tp, Tq;
272
0
       Tb = ci[0];
273
0
       Tc = cr[WS(rs, 3)];
274
0
       Td = Tb + Tc;
275
0
       TQ = Tb - Tc;
276
0
       Tp = ci[WS(rs, 6)];
277
0
       Tq = cr[WS(rs, 5)];
278
0
       Tr = Tp - Tq;
279
0
       TO = Tp + Tq;
280
0
        }
281
0
        Te = Ta + Td;
282
0
        TZ = TN + TO;
283
0
        T10 = TQ + TR;
284
0
        Tv = Tr + Tu;
285
0
        Tz = Tu - Tr;
286
0
        TP = TN - TO;
287
0
        TS = TQ - TR;
288
0
        TD = Ta - Td;
289
0
         }
290
0
         cr[0] = T7 + Te;
291
0
         ci[0] = To + Tv;
292
0
         {
293
0
        E Tg, Tw, Tf, Th;
294
0
        Tg = T7 - Te;
295
0
        Tw = To - Tv;
296
0
        Tf = W[6];
297
0
        Th = W[7];
298
0
        cr[WS(rs, 4)] = FNMS(Th, Tw, Tf * Tg);
299
0
        ci[WS(rs, 4)] = FMA(Th, Tg, Tf * Tw);
300
0
         }
301
0
         {
302
0
        E TG, TI, TF, TH;
303
0
        TG = Ty + Tz;
304
0
        TI = TD + TC;
305
0
        TF = W[2];
306
0
        TH = W[3];
307
0
        cr[WS(rs, 2)] = FNMS(TH, TI, TF * TG);
308
0
        ci[WS(rs, 2)] = FMA(TF, TI, TH * TG);
309
0
         }
310
0
         {
311
0
        E TA, TE, Tx, TB;
312
0
        TA = Ty - Tz;
313
0
        TE = TC - TD;
314
0
        Tx = W[10];
315
0
        TB = W[11];
316
0
        cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA);
317
0
        ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA);
318
0
         }
319
0
         {
320
0
        E T1a, T1g, T1e, T1i, T19, T1d;
321
0
        T19 = KP707106781 * (TZ + T10);
322
0
        T1a = T18 - T19;
323
0
        T1g = T18 + T19;
324
0
        T1d = KP707106781 * (TP - TS);
325
0
        T1e = T1c + T1d;
326
0
        T1i = T1c - T1d;
327
0
        {
328
0
       E T17, T1b, T1f, T1h;
329
0
       T17 = W[4];
330
0
       T1b = W[5];
331
0
       cr[WS(rs, 3)] = FNMS(T1b, T1e, T17 * T1a);
332
0
       ci[WS(rs, 3)] = FMA(T17, T1e, T1b * T1a);
333
0
       T1f = W[12];
334
0
       T1h = W[13];
335
0
       cr[WS(rs, 7)] = FNMS(T1h, T1i, T1f * T1g);
336
0
       ci[WS(rs, 7)] = FMA(T1f, T1i, T1h * T1g);
337
0
        }
338
0
         }
339
0
         {
340
0
        E TU, T14, T12, T16, TT, T11;
341
0
        TT = KP707106781 * (TP + TS);
342
0
        TU = TM - TT;
343
0
        T14 = TM + TT;
344
0
        T11 = KP707106781 * (TZ - T10);
345
0
        T12 = TY - T11;
346
0
        T16 = TY + T11;
347
0
        {
348
0
       E TJ, TV, T13, T15;
349
0
       TJ = W[8];
350
0
       TV = W[9];
351
0
       cr[WS(rs, 5)] = FNMS(TV, T12, TJ * TU);
352
0
       ci[WS(rs, 5)] = FMA(TV, TU, TJ * T12);
353
0
       T13 = W[0];
354
0
       T15 = W[1];
355
0
       cr[WS(rs, 1)] = FNMS(T15, T16, T13 * T14);
356
0
       ci[WS(rs, 1)] = FMA(T15, T14, T13 * T16);
357
0
        }
358
0
         }
359
0
    }
360
0
     }
361
0
}
362
363
static const tw_instr twinstr[] = {
364
     { TW_FULL, 1, 8 },
365
     { TW_NEXT, 1, 0 }
366
};
367
368
static const hc2hc_desc desc = { 8, "hb_8", twinstr, &GENUS, { 52, 18, 14, 0 } };
369
370
1
void X(codelet_hb_8) (planner *p) {
371
1
     X(khc2hc_register) (p, hb_8, &desc);
372
1
}
373
#endif