/src/fftw3/rdft/scalar/r2cb/hb_8.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Wed Jul 23 07:02:28 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hb_8 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 66 FP additions, 36 FP multiplications, |
32 | | * (or, 44 additions, 14 multiplications, 22 fused multiply/add), |
33 | | * 33 stack variables, 1 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT m; |
42 | | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs)) { |
43 | | E T7, T1i, T1n, Tk, TD, TV, T1b, TQ, Te, T1e, T1o, T1j, TE, TF, TR; |
44 | | E Tv, TW; |
45 | | { |
46 | | E T3, Tg, TC, T19, T6, Tz, Tj, T1a; |
47 | | { |
48 | | E T1, T2, TA, TB; |
49 | | T1 = cr[0]; |
50 | | T2 = ci[WS(rs, 3)]; |
51 | | T3 = T1 + T2; |
52 | | Tg = T1 - T2; |
53 | | TA = ci[WS(rs, 7)]; |
54 | | TB = cr[WS(rs, 4)]; |
55 | | TC = TA + TB; |
56 | | T19 = TA - TB; |
57 | | } |
58 | | { |
59 | | E T4, T5, Th, Ti; |
60 | | T4 = cr[WS(rs, 2)]; |
61 | | T5 = ci[WS(rs, 1)]; |
62 | | T6 = T4 + T5; |
63 | | Tz = T4 - T5; |
64 | | Th = ci[WS(rs, 5)]; |
65 | | Ti = cr[WS(rs, 6)]; |
66 | | Tj = Th + Ti; |
67 | | T1a = Th - Ti; |
68 | | } |
69 | | T7 = T3 + T6; |
70 | | T1i = T3 - T6; |
71 | | T1n = T19 - T1a; |
72 | | Tk = Tg - Tj; |
73 | | TD = Tz + TC; |
74 | | TV = TC - Tz; |
75 | | T1b = T19 + T1a; |
76 | | TQ = Tg + Tj; |
77 | | } |
78 | | { |
79 | | E Ta, Tl, Tt, T1d, Td, Tq, To, T1c, Tp, Tu; |
80 | | { |
81 | | E T8, T9, Tr, Ts; |
82 | | T8 = cr[WS(rs, 1)]; |
83 | | T9 = ci[WS(rs, 2)]; |
84 | | Ta = T8 + T9; |
85 | | Tl = T8 - T9; |
86 | | Tr = ci[WS(rs, 4)]; |
87 | | Ts = cr[WS(rs, 7)]; |
88 | | Tt = Tr + Ts; |
89 | | T1d = Tr - Ts; |
90 | | } |
91 | | { |
92 | | E Tb, Tc, Tm, Tn; |
93 | | Tb = ci[0]; |
94 | | Tc = cr[WS(rs, 3)]; |
95 | | Td = Tb + Tc; |
96 | | Tq = Tb - Tc; |
97 | | Tm = ci[WS(rs, 6)]; |
98 | | Tn = cr[WS(rs, 5)]; |
99 | | To = Tm + Tn; |
100 | | T1c = Tm - Tn; |
101 | | } |
102 | | Te = Ta + Td; |
103 | | T1e = T1c + T1d; |
104 | | T1o = Ta - Td; |
105 | | T1j = T1d - T1c; |
106 | | TE = Tl + To; |
107 | | TF = Tq + Tt; |
108 | | TR = TE + TF; |
109 | | Tp = Tl - To; |
110 | | Tu = Tq - Tt; |
111 | | Tv = Tp + Tu; |
112 | | TW = Tp - Tu; |
113 | | } |
114 | | cr[0] = T7 + Te; |
115 | | ci[0] = T1b + T1e; |
116 | | { |
117 | | E TS, TX, TT, TY, TP, TU; |
118 | | TS = FNMS(KP707106781, TR, TQ); |
119 | | TX = FMA(KP707106781, TW, TV); |
120 | | TP = W[4]; |
121 | | TT = TP * TS; |
122 | | TY = TP * TX; |
123 | | TU = W[5]; |
124 | | cr[WS(rs, 3)] = FNMS(TU, TX, TT); |
125 | | ci[WS(rs, 3)] = FMA(TU, TS, TY); |
126 | | } |
127 | | { |
128 | | E T1s, T1v, T1t, T1w, T1r, T1u; |
129 | | T1s = T1i + T1j; |
130 | | T1v = T1o + T1n; |
131 | | T1r = W[2]; |
132 | | T1t = T1r * T1s; |
133 | | T1w = T1r * T1v; |
134 | | T1u = W[3]; |
135 | | cr[WS(rs, 2)] = FNMS(T1u, T1v, T1t); |
136 | | ci[WS(rs, 2)] = FMA(T1u, T1s, T1w); |
137 | | } |
138 | | { |
139 | | E T10, T13, T11, T14, TZ, T12; |
140 | | T10 = FMA(KP707106781, TR, TQ); |
141 | | T13 = FNMS(KP707106781, TW, TV); |
142 | | TZ = W[12]; |
143 | | T11 = TZ * T10; |
144 | | T14 = TZ * T13; |
145 | | T12 = W[13]; |
146 | | cr[WS(rs, 7)] = FNMS(T12, T13, T11); |
147 | | ci[WS(rs, 7)] = FMA(T12, T10, T14); |
148 | | } |
149 | | { |
150 | | E T1f, T15, T17, T18, T1g, T16; |
151 | | T1f = T1b - T1e; |
152 | | T16 = T7 - Te; |
153 | | T15 = W[6]; |
154 | | T17 = T15 * T16; |
155 | | T18 = W[7]; |
156 | | T1g = T18 * T16; |
157 | | cr[WS(rs, 4)] = FNMS(T18, T1f, T17); |
158 | | ci[WS(rs, 4)] = FMA(T15, T1f, T1g); |
159 | | } |
160 | | { |
161 | | E T1k, T1p, T1l, T1q, T1h, T1m; |
162 | | T1k = T1i - T1j; |
163 | | T1p = T1n - T1o; |
164 | | T1h = W[10]; |
165 | | T1l = T1h * T1k; |
166 | | T1q = T1h * T1p; |
167 | | T1m = W[11]; |
168 | | cr[WS(rs, 6)] = FNMS(T1m, T1p, T1l); |
169 | | ci[WS(rs, 6)] = FMA(T1m, T1k, T1q); |
170 | | } |
171 | | { |
172 | | E TH, TN, TJ, TL, TM, TO, Tf, Tx, Ty, TI, TG, TK, Tw; |
173 | | TG = TE - TF; |
174 | | TH = FNMS(KP707106781, TG, TD); |
175 | | TN = FMA(KP707106781, TG, TD); |
176 | | TK = FMA(KP707106781, Tv, Tk); |
177 | | TJ = W[0]; |
178 | | TL = TJ * TK; |
179 | | TM = W[1]; |
180 | | TO = TM * TK; |
181 | | Tw = FNMS(KP707106781, Tv, Tk); |
182 | | Tf = W[8]; |
183 | | Tx = Tf * Tw; |
184 | | Ty = W[9]; |
185 | | TI = Ty * Tw; |
186 | | cr[WS(rs, 5)] = FNMS(Ty, TH, Tx); |
187 | | ci[WS(rs, 5)] = FMA(Tf, TH, TI); |
188 | | cr[WS(rs, 1)] = FNMS(TM, TN, TL); |
189 | | ci[WS(rs, 1)] = FMA(TJ, TN, TO); |
190 | | } |
191 | | } |
192 | | } |
193 | | } |
194 | | |
195 | | static const tw_instr twinstr[] = { |
196 | | { TW_FULL, 1, 8 }, |
197 | | { TW_NEXT, 1, 0 } |
198 | | }; |
199 | | |
200 | | static const hc2hc_desc desc = { 8, "hb_8", twinstr, &GENUS, { 44, 14, 22, 0 } }; |
201 | | |
202 | | void X(codelet_hb_8) (planner *p) { |
203 | | X(khc2hc_register) (p, hb_8, &desc); |
204 | | } |
205 | | #else |
206 | | |
207 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 8 -dif -name hb_8 -include rdft/scalar/hb.h */ |
208 | | |
209 | | /* |
210 | | * This function contains 66 FP additions, 32 FP multiplications, |
211 | | * (or, 52 additions, 18 multiplications, 14 fused multiply/add), |
212 | | * 30 stack variables, 1 constants, and 32 memory accesses |
213 | | */ |
214 | | #include "rdft/scalar/hb.h" |
215 | | |
216 | | static void hb_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
217 | 0 | { |
218 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
219 | 0 | { |
220 | 0 | INT m; |
221 | 0 | for (m = mb, W = W + ((mb - 1) * 14); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 14, MAKE_VOLATILE_STRIDE(16, rs)) { |
222 | 0 | E T7, T18, T1c, To, Ty, TM, TY, TC, Te, TZ, T10, Tv, Tz, TP, TS; |
223 | 0 | E TD; |
224 | 0 | { |
225 | 0 | E T3, TK, Tn, TL, T6, TW, Tk, TX; |
226 | 0 | { |
227 | 0 | E T1, T2, Tl, Tm; |
228 | 0 | T1 = cr[0]; |
229 | 0 | T2 = ci[WS(rs, 3)]; |
230 | 0 | T3 = T1 + T2; |
231 | 0 | TK = T1 - T2; |
232 | 0 | Tl = ci[WS(rs, 5)]; |
233 | 0 | Tm = cr[WS(rs, 6)]; |
234 | 0 | Tn = Tl - Tm; |
235 | 0 | TL = Tl + Tm; |
236 | 0 | } |
237 | 0 | { |
238 | 0 | E T4, T5, Ti, Tj; |
239 | 0 | T4 = cr[WS(rs, 2)]; |
240 | 0 | T5 = ci[WS(rs, 1)]; |
241 | 0 | T6 = T4 + T5; |
242 | 0 | TW = T4 - T5; |
243 | 0 | Ti = ci[WS(rs, 7)]; |
244 | 0 | Tj = cr[WS(rs, 4)]; |
245 | 0 | Tk = Ti - Tj; |
246 | 0 | TX = Ti + Tj; |
247 | 0 | } |
248 | 0 | T7 = T3 + T6; |
249 | 0 | T18 = TK + TL; |
250 | 0 | T1c = TX - TW; |
251 | 0 | To = Tk + Tn; |
252 | 0 | Ty = T3 - T6; |
253 | 0 | TM = TK - TL; |
254 | 0 | TY = TW + TX; |
255 | 0 | TC = Tk - Tn; |
256 | 0 | } |
257 | 0 | { |
258 | 0 | E Ta, TN, Tu, TR, Td, TQ, Tr, TO; |
259 | 0 | { |
260 | 0 | E T8, T9, Ts, Tt; |
261 | 0 | T8 = cr[WS(rs, 1)]; |
262 | 0 | T9 = ci[WS(rs, 2)]; |
263 | 0 | Ta = T8 + T9; |
264 | 0 | TN = T8 - T9; |
265 | 0 | Ts = ci[WS(rs, 4)]; |
266 | 0 | Tt = cr[WS(rs, 7)]; |
267 | 0 | Tu = Ts - Tt; |
268 | 0 | TR = Ts + Tt; |
269 | 0 | } |
270 | 0 | { |
271 | 0 | E Tb, Tc, Tp, Tq; |
272 | 0 | Tb = ci[0]; |
273 | 0 | Tc = cr[WS(rs, 3)]; |
274 | 0 | Td = Tb + Tc; |
275 | 0 | TQ = Tb - Tc; |
276 | 0 | Tp = ci[WS(rs, 6)]; |
277 | 0 | Tq = cr[WS(rs, 5)]; |
278 | 0 | Tr = Tp - Tq; |
279 | 0 | TO = Tp + Tq; |
280 | 0 | } |
281 | 0 | Te = Ta + Td; |
282 | 0 | TZ = TN + TO; |
283 | 0 | T10 = TQ + TR; |
284 | 0 | Tv = Tr + Tu; |
285 | 0 | Tz = Tu - Tr; |
286 | 0 | TP = TN - TO; |
287 | 0 | TS = TQ - TR; |
288 | 0 | TD = Ta - Td; |
289 | 0 | } |
290 | 0 | cr[0] = T7 + Te; |
291 | 0 | ci[0] = To + Tv; |
292 | 0 | { |
293 | 0 | E Tg, Tw, Tf, Th; |
294 | 0 | Tg = T7 - Te; |
295 | 0 | Tw = To - Tv; |
296 | 0 | Tf = W[6]; |
297 | 0 | Th = W[7]; |
298 | 0 | cr[WS(rs, 4)] = FNMS(Th, Tw, Tf * Tg); |
299 | 0 | ci[WS(rs, 4)] = FMA(Th, Tg, Tf * Tw); |
300 | 0 | } |
301 | 0 | { |
302 | 0 | E TG, TI, TF, TH; |
303 | 0 | TG = Ty + Tz; |
304 | 0 | TI = TD + TC; |
305 | 0 | TF = W[2]; |
306 | 0 | TH = W[3]; |
307 | 0 | cr[WS(rs, 2)] = FNMS(TH, TI, TF * TG); |
308 | 0 | ci[WS(rs, 2)] = FMA(TF, TI, TH * TG); |
309 | 0 | } |
310 | 0 | { |
311 | 0 | E TA, TE, Tx, TB; |
312 | 0 | TA = Ty - Tz; |
313 | 0 | TE = TC - TD; |
314 | 0 | Tx = W[10]; |
315 | 0 | TB = W[11]; |
316 | 0 | cr[WS(rs, 6)] = FNMS(TB, TE, Tx * TA); |
317 | 0 | ci[WS(rs, 6)] = FMA(Tx, TE, TB * TA); |
318 | 0 | } |
319 | 0 | { |
320 | 0 | E T1a, T1g, T1e, T1i, T19, T1d; |
321 | 0 | T19 = KP707106781 * (TZ + T10); |
322 | 0 | T1a = T18 - T19; |
323 | 0 | T1g = T18 + T19; |
324 | 0 | T1d = KP707106781 * (TP - TS); |
325 | 0 | T1e = T1c + T1d; |
326 | 0 | T1i = T1c - T1d; |
327 | 0 | { |
328 | 0 | E T17, T1b, T1f, T1h; |
329 | 0 | T17 = W[4]; |
330 | 0 | T1b = W[5]; |
331 | 0 | cr[WS(rs, 3)] = FNMS(T1b, T1e, T17 * T1a); |
332 | 0 | ci[WS(rs, 3)] = FMA(T17, T1e, T1b * T1a); |
333 | 0 | T1f = W[12]; |
334 | 0 | T1h = W[13]; |
335 | 0 | cr[WS(rs, 7)] = FNMS(T1h, T1i, T1f * T1g); |
336 | 0 | ci[WS(rs, 7)] = FMA(T1f, T1i, T1h * T1g); |
337 | 0 | } |
338 | 0 | } |
339 | 0 | { |
340 | 0 | E TU, T14, T12, T16, TT, T11; |
341 | 0 | TT = KP707106781 * (TP + TS); |
342 | 0 | TU = TM - TT; |
343 | 0 | T14 = TM + TT; |
344 | 0 | T11 = KP707106781 * (TZ - T10); |
345 | 0 | T12 = TY - T11; |
346 | 0 | T16 = TY + T11; |
347 | 0 | { |
348 | 0 | E TJ, TV, T13, T15; |
349 | 0 | TJ = W[8]; |
350 | 0 | TV = W[9]; |
351 | 0 | cr[WS(rs, 5)] = FNMS(TV, T12, TJ * TU); |
352 | 0 | ci[WS(rs, 5)] = FMA(TV, TU, TJ * T12); |
353 | 0 | T13 = W[0]; |
354 | 0 | T15 = W[1]; |
355 | 0 | cr[WS(rs, 1)] = FNMS(T15, T16, T13 * T14); |
356 | 0 | ci[WS(rs, 1)] = FMA(T15, T14, T13 * T16); |
357 | 0 | } |
358 | 0 | } |
359 | 0 | } |
360 | 0 | } |
361 | 0 | } |
362 | | |
363 | | static const tw_instr twinstr[] = { |
364 | | { TW_FULL, 1, 8 }, |
365 | | { TW_NEXT, 1, 0 } |
366 | | }; |
367 | | |
368 | | static const hc2hc_desc desc = { 8, "hb_8", twinstr, &GENUS, { 52, 18, 14, 0 } }; |
369 | | |
370 | 1 | void X(codelet_hb_8) (planner *p) { |
371 | 1 | X(khc2hc_register) (p, hb_8, &desc); |
372 | 1 | } |
373 | | #endif |