Coverage Report

Created: 2025-07-23 07:03

/src/fftw3/rdft/scalar/r2cb/r2cb_15.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Wed Jul 23 07:02:24 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 64 FP additions, 43 FP multiplications,
32
 * (or, 21 additions, 0 multiplications, 43 fused multiply/add),
33
 * 46 stack variables, 9 constants, and 30 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
40
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
43
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
44
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
45
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
46
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
47
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
48
     {
49
    INT i;
50
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
51
         E T3, Tt, Th, TC, TY, TZ, TD, TH, TI, Tm, Tu, Tr, Tv, T8, Td;
52
         E Te;
53
         {
54
        E Tg, T1, T2, Tf;
55
        Tg = Ci[WS(csi, 5)];
56
        T1 = Cr[0];
57
        T2 = Cr[WS(csr, 5)];
58
        Tf = T1 - T2;
59
        T3 = FMA(KP2_000000000, T2, T1);
60
        Tt = FNMS(KP1_732050807, Tg, Tf);
61
        Th = FMA(KP1_732050807, Tg, Tf);
62
         }
63
         {
64
        E T4, TA, T9, TF, T5, T6, T7, Ta, Tb, Tc, Tq, TG, Tl, TB, Ti;
65
        E Tn;
66
        T4 = Cr[WS(csr, 3)];
67
        TA = Ci[WS(csi, 3)];
68
        T9 = Cr[WS(csr, 6)];
69
        TF = Ci[WS(csi, 6)];
70
        T5 = Cr[WS(csr, 7)];
71
        T6 = Cr[WS(csr, 2)];
72
        T7 = T5 + T6;
73
        Ta = Cr[WS(csr, 4)];
74
        Tb = Cr[WS(csr, 1)];
75
        Tc = Ta + Tb;
76
        {
77
       E To, Tp, Tj, Tk;
78
       To = Ci[WS(csi, 4)];
79
       Tp = Ci[WS(csi, 1)];
80
       Tq = To + Tp;
81
       TG = Tp - To;
82
       Tj = Ci[WS(csi, 7)];
83
       Tk = Ci[WS(csi, 2)];
84
       Tl = Tj - Tk;
85
       TB = Tj + Tk;
86
        }
87
        TC = FMA(KP500000000, TB, TA);
88
        TY = TG + TF;
89
        TZ = TA - TB;
90
        TD = T5 - T6;
91
        TH = FNMS(KP500000000, TG, TF);
92
        TI = Ta - Tb;
93
        Ti = FNMS(KP2_000000000, T4, T7);
94
        Tm = FMA(KP1_732050807, Tl, Ti);
95
        Tu = FNMS(KP1_732050807, Tl, Ti);
96
        Tn = FNMS(KP2_000000000, T9, Tc);
97
        Tr = FMA(KP1_732050807, Tq, Tn);
98
        Tv = FNMS(KP1_732050807, Tq, Tn);
99
        T8 = T4 + T7;
100
        Td = T9 + Tc;
101
        Te = T8 + Td;
102
         }
103
         R0[0] = FMA(KP2_000000000, Te, T3);
104
         {
105
        E T10, T12, TX, T11, TV, TW;
106
        T10 = FNMS(KP618033988, TZ, TY);
107
        T12 = FMA(KP618033988, TY, TZ);
108
        TV = FNMS(KP500000000, Te, T3);
109
        TW = T8 - Td;
110
        TX = FNMS(KP1_118033988, TW, TV);
111
        T11 = FMA(KP1_118033988, TW, TV);
112
        R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX);
113
        R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11);
114
        R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX);
115
        R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11);
116
         }
117
         {
118
        E TO, Ts, TN, TS, TU, TQ, TR, TT, TP;
119
        TO = Tr - Tm;
120
        Ts = Tm + Tr;
121
        TN = FMA(KP250000000, Ts, Th);
122
        TQ = FNMS(KP866025403, TI, TH);
123
        TR = FNMS(KP866025403, TD, TC);
124
        TS = FNMS(KP618033988, TR, TQ);
125
        TU = FMA(KP618033988, TQ, TR);
126
        R1[WS(rs, 2)] = Th - Ts;
127
        TT = FMA(KP559016994, TO, TN);
128
        R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT);
129
        R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT);
130
        TP = FNMS(KP559016994, TO, TN);
131
        R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP);
132
        R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP);
133
         }
134
         {
135
        E Ty, Tw, Tx, TK, TM, TE, TJ, TL, Tz;
136
        Ty = Tv - Tu;
137
        Tw = Tu + Tv;
138
        Tx = FMA(KP250000000, Tw, Tt);
139
        TE = FMA(KP866025403, TD, TC);
140
        TJ = FMA(KP866025403, TI, TH);
141
        TK = FMA(KP618033988, TJ, TE);
142
        TM = FNMS(KP618033988, TE, TJ);
143
        R0[WS(rs, 5)] = Tt - Tw;
144
        TL = FNMS(KP559016994, Ty, Tx);
145
        R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL);
146
        R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL);
147
        Tz = FMA(KP559016994, Ty, Tx);
148
        R1[0] = FNMS(KP1_902113032, TK, Tz);
149
        R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz);
150
         }
151
    }
152
     }
153
}
154
155
static const kr2c_desc desc = { 15, "r2cb_15", { 21, 0, 43, 0 }, &GENUS };
156
157
void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc);
158
}
159
160
#else
161
162
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */
163
164
/*
165
 * This function contains 64 FP additions, 31 FP multiplications,
166
 * (or, 47 additions, 14 multiplications, 17 fused multiply/add),
167
 * 44 stack variables, 7 constants, and 30 memory accesses
168
 */
169
#include "rdft/scalar/r2cb.h"
170
171
static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
172
0
{
173
0
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
174
0
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
175
0
     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
176
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
177
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
178
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
179
0
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
180
0
     {
181
0
    INT i;
182
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
183
0
         E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td;
184
0
         E Te;
185
0
         {
186
0
        E Th, T1, T2, Tf, Tg;
187
0
        Tg = Ci[WS(csi, 5)];
188
0
        Th = KP1_732050807 * Tg;
189
0
        T1 = Cr[0];
190
0
        T2 = Cr[WS(csr, 5)];
191
0
        Tf = T1 - T2;
192
0
        T3 = FMA(KP2_000000000, T2, T1);
193
0
        Tu = Tf - Th;
194
0
        Ti = Tf + Th;
195
0
         }
196
0
         {
197
0
        E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj;
198
0
        E To;
199
0
        T4 = Cr[WS(csr, 3)];
200
0
        TD = Ci[WS(csi, 3)];
201
0
        T9 = Cr[WS(csr, 6)];
202
0
        TI = Ci[WS(csi, 6)];
203
0
        T5 = Cr[WS(csr, 7)];
204
0
        T6 = Cr[WS(csr, 2)];
205
0
        T7 = T5 + T6;
206
0
        Ta = Cr[WS(csr, 4)];
207
0
        Tb = Cr[WS(csr, 1)];
208
0
        Tc = Ta + Tb;
209
0
        {
210
0
       E Tp, Tq, Tk, Tl;
211
0
       Tp = Ci[WS(csi, 4)];
212
0
       Tq = Ci[WS(csi, 1)];
213
0
       Tr = KP866025403 * (Tp + Tq);
214
0
       TH = Tp - Tq;
215
0
       Tk = Ci[WS(csi, 7)];
216
0
       Tl = Ci[WS(csi, 2)];
217
0
       Tm = KP866025403 * (Tk - Tl);
218
0
       TC = Tk + Tl;
219
0
        }
220
0
        TB = KP866025403 * (T5 - T6);
221
0
        TZ = TD - TC;
222
0
        T10 = TI - TH;
223
0
        TE = FMA(KP500000000, TC, TD);
224
0
        TG = KP866025403 * (Ta - Tb);
225
0
        TJ = FMA(KP500000000, TH, TI);
226
0
        Tj = FNMS(KP500000000, T7, T4);
227
0
        Tn = Tj - Tm;
228
0
        Tv = Tj + Tm;
229
0
        To = FNMS(KP500000000, Tc, T9);
230
0
        Ts = To - Tr;
231
0
        Tw = To + Tr;
232
0
        T8 = T4 + T7;
233
0
        Td = T9 + Tc;
234
0
        Te = T8 + Td;
235
0
         }
236
0
         R0[0] = FMA(KP2_000000000, Te, T3);
237
0
         {
238
0
        E T11, T13, TY, T12, TW, TX;
239
0
        T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ);
240
0
        T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10);
241
0
        TW = FNMS(KP500000000, Te, T3);
242
0
        TX = KP1_118033988 * (T8 - Td);
243
0
        TY = TW - TX;
244
0
        T12 = TX + TW;
245
0
        R0[WS(rs, 6)] = TY - T11;
246
0
        R1[WS(rs, 4)] = T12 + T13;
247
0
        R1[WS(rs, 1)] = TY + T11;
248
0
        R0[WS(rs, 3)] = T12 - T13;
249
0
         }
250
0
         {
251
0
        E TP, Tt, TO, TT, TV, TR, TS, TU, TQ;
252
0
        TP = KP1_118033988 * (Tn - Ts);
253
0
        Tt = Tn + Ts;
254
0
        TO = FNMS(KP500000000, Tt, Ti);
255
0
        TR = TE - TB;
256
0
        TS = TJ - TG;
257
0
        TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR);
258
0
        TV = FMA(KP1_902113032, TR, KP1_175570504 * TS);
259
0
        R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti);
260
0
        TU = TP + TO;
261
0
        R1[WS(rs, 5)] = TU - TV;
262
0
        R0[WS(rs, 7)] = TU + TV;
263
0
        TQ = TO - TP;
264
0
        R0[WS(rs, 1)] = TQ - TT;
265
0
        R0[WS(rs, 4)] = TQ + TT;
266
0
         }
267
0
         {
268
0
        E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA;
269
0
        Tz = KP1_118033988 * (Tv - Tw);
270
0
        Tx = Tv + Tw;
271
0
        Ty = FNMS(KP500000000, Tx, Tu);
272
0
        TF = TB + TE;
273
0
        TK = TG + TJ;
274
0
        TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF);
275
0
        TN = FMA(KP1_902113032, TF, KP1_175570504 * TK);
276
0
        R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu);
277
0
        TM = Tz + Ty;
278
0
        R1[0] = TM - TN;
279
0
        R0[WS(rs, 2)] = TM + TN;
280
0
        TA = Ty - Tz;
281
0
        R1[WS(rs, 3)] = TA - TL;
282
0
        R1[WS(rs, 6)] = TA + TL;
283
0
         }
284
0
    }
285
0
     }
286
0
}
287
288
static const kr2c_desc desc = { 15, "r2cb_15", { 47, 14, 17, 0 }, &GENUS };
289
290
1
void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc);
291
1
}
292
293
#endif