/src/fftw3/rdft/scalar/r2cb/r2cb_15.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Wed Jul 23 07:02:24 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 64 FP additions, 43 FP multiplications, |
32 | | * (or, 21 additions, 0 multiplications, 43 fused multiply/add), |
33 | | * 46 stack variables, 9 constants, and 30 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
40 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
43 | | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
44 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
45 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
46 | | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
47 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
48 | | { |
49 | | INT i; |
50 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { |
51 | | E T3, Tt, Th, TC, TY, TZ, TD, TH, TI, Tm, Tu, Tr, Tv, T8, Td; |
52 | | E Te; |
53 | | { |
54 | | E Tg, T1, T2, Tf; |
55 | | Tg = Ci[WS(csi, 5)]; |
56 | | T1 = Cr[0]; |
57 | | T2 = Cr[WS(csr, 5)]; |
58 | | Tf = T1 - T2; |
59 | | T3 = FMA(KP2_000000000, T2, T1); |
60 | | Tt = FNMS(KP1_732050807, Tg, Tf); |
61 | | Th = FMA(KP1_732050807, Tg, Tf); |
62 | | } |
63 | | { |
64 | | E T4, TA, T9, TF, T5, T6, T7, Ta, Tb, Tc, Tq, TG, Tl, TB, Ti; |
65 | | E Tn; |
66 | | T4 = Cr[WS(csr, 3)]; |
67 | | TA = Ci[WS(csi, 3)]; |
68 | | T9 = Cr[WS(csr, 6)]; |
69 | | TF = Ci[WS(csi, 6)]; |
70 | | T5 = Cr[WS(csr, 7)]; |
71 | | T6 = Cr[WS(csr, 2)]; |
72 | | T7 = T5 + T6; |
73 | | Ta = Cr[WS(csr, 4)]; |
74 | | Tb = Cr[WS(csr, 1)]; |
75 | | Tc = Ta + Tb; |
76 | | { |
77 | | E To, Tp, Tj, Tk; |
78 | | To = Ci[WS(csi, 4)]; |
79 | | Tp = Ci[WS(csi, 1)]; |
80 | | Tq = To + Tp; |
81 | | TG = Tp - To; |
82 | | Tj = Ci[WS(csi, 7)]; |
83 | | Tk = Ci[WS(csi, 2)]; |
84 | | Tl = Tj - Tk; |
85 | | TB = Tj + Tk; |
86 | | } |
87 | | TC = FMA(KP500000000, TB, TA); |
88 | | TY = TG + TF; |
89 | | TZ = TA - TB; |
90 | | TD = T5 - T6; |
91 | | TH = FNMS(KP500000000, TG, TF); |
92 | | TI = Ta - Tb; |
93 | | Ti = FNMS(KP2_000000000, T4, T7); |
94 | | Tm = FMA(KP1_732050807, Tl, Ti); |
95 | | Tu = FNMS(KP1_732050807, Tl, Ti); |
96 | | Tn = FNMS(KP2_000000000, T9, Tc); |
97 | | Tr = FMA(KP1_732050807, Tq, Tn); |
98 | | Tv = FNMS(KP1_732050807, Tq, Tn); |
99 | | T8 = T4 + T7; |
100 | | Td = T9 + Tc; |
101 | | Te = T8 + Td; |
102 | | } |
103 | | R0[0] = FMA(KP2_000000000, Te, T3); |
104 | | { |
105 | | E T10, T12, TX, T11, TV, TW; |
106 | | T10 = FNMS(KP618033988, TZ, TY); |
107 | | T12 = FMA(KP618033988, TY, TZ); |
108 | | TV = FNMS(KP500000000, Te, T3); |
109 | | TW = T8 - Td; |
110 | | TX = FNMS(KP1_118033988, TW, TV); |
111 | | T11 = FMA(KP1_118033988, TW, TV); |
112 | | R1[WS(rs, 1)] = FNMS(KP1_902113032, T10, TX); |
113 | | R1[WS(rs, 4)] = FMA(KP1_902113032, T12, T11); |
114 | | R0[WS(rs, 6)] = FMA(KP1_902113032, T10, TX); |
115 | | R0[WS(rs, 3)] = FNMS(KP1_902113032, T12, T11); |
116 | | } |
117 | | { |
118 | | E TO, Ts, TN, TS, TU, TQ, TR, TT, TP; |
119 | | TO = Tr - Tm; |
120 | | Ts = Tm + Tr; |
121 | | TN = FMA(KP250000000, Ts, Th); |
122 | | TQ = FNMS(KP866025403, TI, TH); |
123 | | TR = FNMS(KP866025403, TD, TC); |
124 | | TS = FNMS(KP618033988, TR, TQ); |
125 | | TU = FMA(KP618033988, TQ, TR); |
126 | | R1[WS(rs, 2)] = Th - Ts; |
127 | | TT = FMA(KP559016994, TO, TN); |
128 | | R1[WS(rs, 5)] = FNMS(KP1_902113032, TU, TT); |
129 | | R0[WS(rs, 7)] = FMA(KP1_902113032, TU, TT); |
130 | | TP = FNMS(KP559016994, TO, TN); |
131 | | R0[WS(rs, 4)] = FNMS(KP1_902113032, TS, TP); |
132 | | R0[WS(rs, 1)] = FMA(KP1_902113032, TS, TP); |
133 | | } |
134 | | { |
135 | | E Ty, Tw, Tx, TK, TM, TE, TJ, TL, Tz; |
136 | | Ty = Tv - Tu; |
137 | | Tw = Tu + Tv; |
138 | | Tx = FMA(KP250000000, Tw, Tt); |
139 | | TE = FMA(KP866025403, TD, TC); |
140 | | TJ = FMA(KP866025403, TI, TH); |
141 | | TK = FMA(KP618033988, TJ, TE); |
142 | | TM = FNMS(KP618033988, TE, TJ); |
143 | | R0[WS(rs, 5)] = Tt - Tw; |
144 | | TL = FNMS(KP559016994, Ty, Tx); |
145 | | R1[WS(rs, 6)] = FNMS(KP1_902113032, TM, TL); |
146 | | R1[WS(rs, 3)] = FMA(KP1_902113032, TM, TL); |
147 | | Tz = FMA(KP559016994, Ty, Tx); |
148 | | R1[0] = FNMS(KP1_902113032, TK, Tz); |
149 | | R0[WS(rs, 2)] = FMA(KP1_902113032, TK, Tz); |
150 | | } |
151 | | } |
152 | | } |
153 | | } |
154 | | |
155 | | static const kr2c_desc desc = { 15, "r2cb_15", { 21, 0, 43, 0 }, &GENUS }; |
156 | | |
157 | | void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc); |
158 | | } |
159 | | |
160 | | #else |
161 | | |
162 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 15 -name r2cb_15 -include rdft/scalar/r2cb.h */ |
163 | | |
164 | | /* |
165 | | * This function contains 64 FP additions, 31 FP multiplications, |
166 | | * (or, 47 additions, 14 multiplications, 17 fused multiply/add), |
167 | | * 44 stack variables, 7 constants, and 30 memory accesses |
168 | | */ |
169 | | #include "rdft/scalar/r2cb.h" |
170 | | |
171 | | static void r2cb_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
172 | 0 | { |
173 | 0 | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
174 | 0 | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
175 | 0 | DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); |
176 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
177 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
178 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
179 | 0 | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
180 | 0 | { |
181 | 0 | INT i; |
182 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { |
183 | 0 | E T3, Tu, Ti, TB, TZ, T10, TE, TG, TJ, Tn, Tv, Ts, Tw, T8, Td; |
184 | 0 | E Te; |
185 | 0 | { |
186 | 0 | E Th, T1, T2, Tf, Tg; |
187 | 0 | Tg = Ci[WS(csi, 5)]; |
188 | 0 | Th = KP1_732050807 * Tg; |
189 | 0 | T1 = Cr[0]; |
190 | 0 | T2 = Cr[WS(csr, 5)]; |
191 | 0 | Tf = T1 - T2; |
192 | 0 | T3 = FMA(KP2_000000000, T2, T1); |
193 | 0 | Tu = Tf - Th; |
194 | 0 | Ti = Tf + Th; |
195 | 0 | } |
196 | 0 | { |
197 | 0 | E T4, TD, T9, TI, T5, T6, T7, Ta, Tb, Tc, Tr, TH, Tm, TC, Tj; |
198 | 0 | E To; |
199 | 0 | T4 = Cr[WS(csr, 3)]; |
200 | 0 | TD = Ci[WS(csi, 3)]; |
201 | 0 | T9 = Cr[WS(csr, 6)]; |
202 | 0 | TI = Ci[WS(csi, 6)]; |
203 | 0 | T5 = Cr[WS(csr, 7)]; |
204 | 0 | T6 = Cr[WS(csr, 2)]; |
205 | 0 | T7 = T5 + T6; |
206 | 0 | Ta = Cr[WS(csr, 4)]; |
207 | 0 | Tb = Cr[WS(csr, 1)]; |
208 | 0 | Tc = Ta + Tb; |
209 | 0 | { |
210 | 0 | E Tp, Tq, Tk, Tl; |
211 | 0 | Tp = Ci[WS(csi, 4)]; |
212 | 0 | Tq = Ci[WS(csi, 1)]; |
213 | 0 | Tr = KP866025403 * (Tp + Tq); |
214 | 0 | TH = Tp - Tq; |
215 | 0 | Tk = Ci[WS(csi, 7)]; |
216 | 0 | Tl = Ci[WS(csi, 2)]; |
217 | 0 | Tm = KP866025403 * (Tk - Tl); |
218 | 0 | TC = Tk + Tl; |
219 | 0 | } |
220 | 0 | TB = KP866025403 * (T5 - T6); |
221 | 0 | TZ = TD - TC; |
222 | 0 | T10 = TI - TH; |
223 | 0 | TE = FMA(KP500000000, TC, TD); |
224 | 0 | TG = KP866025403 * (Ta - Tb); |
225 | 0 | TJ = FMA(KP500000000, TH, TI); |
226 | 0 | Tj = FNMS(KP500000000, T7, T4); |
227 | 0 | Tn = Tj - Tm; |
228 | 0 | Tv = Tj + Tm; |
229 | 0 | To = FNMS(KP500000000, Tc, T9); |
230 | 0 | Ts = To - Tr; |
231 | 0 | Tw = To + Tr; |
232 | 0 | T8 = T4 + T7; |
233 | 0 | Td = T9 + Tc; |
234 | 0 | Te = T8 + Td; |
235 | 0 | } |
236 | 0 | R0[0] = FMA(KP2_000000000, Te, T3); |
237 | 0 | { |
238 | 0 | E T11, T13, TY, T12, TW, TX; |
239 | 0 | T11 = FNMS(KP1_902113032, T10, KP1_175570504 * TZ); |
240 | 0 | T13 = FMA(KP1_902113032, TZ, KP1_175570504 * T10); |
241 | 0 | TW = FNMS(KP500000000, Te, T3); |
242 | 0 | TX = KP1_118033988 * (T8 - Td); |
243 | 0 | TY = TW - TX; |
244 | 0 | T12 = TX + TW; |
245 | 0 | R0[WS(rs, 6)] = TY - T11; |
246 | 0 | R1[WS(rs, 4)] = T12 + T13; |
247 | 0 | R1[WS(rs, 1)] = TY + T11; |
248 | 0 | R0[WS(rs, 3)] = T12 - T13; |
249 | 0 | } |
250 | 0 | { |
251 | 0 | E TP, Tt, TO, TT, TV, TR, TS, TU, TQ; |
252 | 0 | TP = KP1_118033988 * (Tn - Ts); |
253 | 0 | Tt = Tn + Ts; |
254 | 0 | TO = FNMS(KP500000000, Tt, Ti); |
255 | 0 | TR = TE - TB; |
256 | 0 | TS = TJ - TG; |
257 | 0 | TT = FNMS(KP1_902113032, TS, KP1_175570504 * TR); |
258 | 0 | TV = FMA(KP1_902113032, TR, KP1_175570504 * TS); |
259 | 0 | R1[WS(rs, 2)] = FMA(KP2_000000000, Tt, Ti); |
260 | 0 | TU = TP + TO; |
261 | 0 | R1[WS(rs, 5)] = TU - TV; |
262 | 0 | R0[WS(rs, 7)] = TU + TV; |
263 | 0 | TQ = TO - TP; |
264 | 0 | R0[WS(rs, 1)] = TQ - TT; |
265 | 0 | R0[WS(rs, 4)] = TQ + TT; |
266 | 0 | } |
267 | 0 | { |
268 | 0 | E Tz, Tx, Ty, TL, TN, TF, TK, TM, TA; |
269 | 0 | Tz = KP1_118033988 * (Tv - Tw); |
270 | 0 | Tx = Tv + Tw; |
271 | 0 | Ty = FNMS(KP500000000, Tx, Tu); |
272 | 0 | TF = TB + TE; |
273 | 0 | TK = TG + TJ; |
274 | 0 | TL = FNMS(KP1_902113032, TK, KP1_175570504 * TF); |
275 | 0 | TN = FMA(KP1_902113032, TF, KP1_175570504 * TK); |
276 | 0 | R0[WS(rs, 5)] = FMA(KP2_000000000, Tx, Tu); |
277 | 0 | TM = Tz + Ty; |
278 | 0 | R1[0] = TM - TN; |
279 | 0 | R0[WS(rs, 2)] = TM + TN; |
280 | 0 | TA = Ty - Tz; |
281 | 0 | R1[WS(rs, 3)] = TA - TL; |
282 | 0 | R1[WS(rs, 6)] = TA + TL; |
283 | 0 | } |
284 | 0 | } |
285 | 0 | } |
286 | 0 | } |
287 | | |
288 | | static const kr2c_desc desc = { 15, "r2cb_15", { 47, 14, 17, 0 }, &GENUS }; |
289 | | |
290 | 1 | void X(codelet_r2cb_15) (planner *p) { X(kr2c_register) (p, r2cb_15, &desc); |
291 | 1 | } |
292 | | |
293 | | #endif |