Coverage Report

Created: 2025-07-23 07:03

/src/fftw3/rdft/scalar/r2cf/hc2cfdft_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Wed Jul 23 07:02:07 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 206 FP additions, 132 FP multiplications,
32
 * (or, 136 additions, 62 multiplications, 70 fused multiply/add),
33
 * 67 stack variables, 4 constants, and 64 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
46
         E T1f, T2e, T1c, T2g, T1K, T3D, T2W, T3H, TR, T2j, T2R, T3E, T11, T2l, T1v;
47
         E T3G, Ta, T2p, Tk, T2r, T3o, T3p, T1Y, T3z, T2G, T3w, Tv, T2u, TF, T2w;
48
         E T3r, T3s, T2b, T3A, T2L, T3x;
49
         {
50
        E T1d, T1e, T1I, T16, T1A, T1D, T1E, T1C, T1G, T1H, T2U, T1b, T1z, T2S, T1w;
51
        E T1y, T14, T15;
52
        T1d = Ip[0];
53
        T1e = Im[0];
54
        T1I = T1d + T1e;
55
        T14 = Ip[WS(rs, 4)];
56
        T15 = Im[WS(rs, 4)];
57
        T16 = T14 - T15;
58
        T1A = T14 + T15;
59
        {
60
       E T1F, T19, T1a, T1x;
61
       T1D = Rm[0];
62
       T1E = Rp[0];
63
       T1F = T1D - T1E;
64
       T1C = W[0];
65
       T1G = T1C * T1F;
66
       T1H = W[1];
67
       T2U = T1H * T1F;
68
       T19 = Rp[WS(rs, 4)];
69
       T1a = Rm[WS(rs, 4)];
70
       T1x = T1a - T19;
71
       T1b = T19 + T1a;
72
       T1z = W[17];
73
       T2S = T1z * T1x;
74
       T1w = W[16];
75
       T1y = T1w * T1x;
76
        }
77
        T1f = T1d - T1e;
78
        T2e = T1E + T1D;
79
        {
80
       E T17, T2f, T13, T18;
81
       T13 = W[14];
82
       T17 = T13 * T16;
83
       T2f = T13 * T1b;
84
       T18 = W[15];
85
       T1c = FNMS(T18, T1b, T17);
86
       T2g = FMA(T18, T16, T2f);
87
        }
88
        {
89
       E T1B, T1J, T2T, T2V;
90
       T1B = FNMS(T1z, T1A, T1y);
91
       T1J = FNMS(T1H, T1I, T1G);
92
       T1K = T1B + T1J;
93
       T3D = T1J - T1B;
94
       T2T = FMA(T1w, T1A, T2S);
95
       T2V = FMA(T1C, T1I, T2U);
96
       T2W = T2T + T2V;
97
       T3H = T2V - T2T;
98
        }
99
         }
100
         {
101
        E TL, T1n, TQ, T1m, T2N, T1j, T1l, TV, T1t, T10, T1s, T2P, T1p, T1r;
102
        {
103
       E TJ, TK, TO, TP, T1k;
104
       TJ = Ip[WS(rs, 2)];
105
       TK = Im[WS(rs, 2)];
106
       TL = TJ - TK;
107
       T1n = TJ + TK;
108
       TO = Rp[WS(rs, 2)];
109
       TP = Rm[WS(rs, 2)];
110
       T1k = TP - TO;
111
       TQ = TO + TP;
112
       T1m = W[9];
113
       T2N = T1m * T1k;
114
       T1j = W[8];
115
       T1l = T1j * T1k;
116
        }
117
        {
118
       E TT, TU, TY, TZ, T1q;
119
       TT = Ip[WS(rs, 6)];
120
       TU = Im[WS(rs, 6)];
121
       TV = TT - TU;
122
       T1t = TT + TU;
123
       TY = Rp[WS(rs, 6)];
124
       TZ = Rm[WS(rs, 6)];
125
       T1q = TZ - TY;
126
       T10 = TY + TZ;
127
       T1s = W[25];
128
       T2P = T1s * T1q;
129
       T1p = W[24];
130
       T1r = T1p * T1q;
131
        }
132
        {
133
       E T2O, T2Q, T1o, T1u;
134
       {
135
            E TM, T2i, TI, TN;
136
            TI = W[6];
137
            TM = TI * TL;
138
            T2i = TI * TQ;
139
            TN = W[7];
140
            TR = FNMS(TN, TQ, TM);
141
            T2j = FMA(TN, TL, T2i);
142
       }
143
       T2O = FMA(T1j, T1n, T2N);
144
       T2Q = FMA(T1p, T1t, T2P);
145
       T2R = T2O + T2Q;
146
       T3E = T2O - T2Q;
147
       {
148
            E TW, T2k, TS, TX;
149
            TS = W[22];
150
            TW = TS * TV;
151
            T2k = TS * T10;
152
            TX = W[23];
153
            T11 = FNMS(TX, T10, TW);
154
            T2l = FMA(TX, TV, T2k);
155
       }
156
       T1o = FNMS(T1m, T1n, T1l);
157
       T1u = FNMS(T1s, T1t, T1r);
158
       T1v = T1o + T1u;
159
       T3G = T1o - T1u;
160
        }
161
         }
162
         {
163
        E T4, T1Q, T9, T1N, T5, T2o, T1O, T2C, Te, T1W, Tj, T1T, Tf, T2q, T1U;
164
        E T2E, T6, Tg;
165
        {
166
       E T1, T1M, Tb, T1S;
167
       {
168
            E T2, T3, T7, T8;
169
            T2 = Ip[WS(rs, 1)];
170
            T3 = Im[WS(rs, 1)];
171
            T4 = T2 - T3;
172
            T1Q = T2 + T3;
173
            T7 = Rp[WS(rs, 1)];
174
            T8 = Rm[WS(rs, 1)];
175
            T9 = T7 + T8;
176
            T1N = T7 - T8;
177
       }
178
       T1 = W[2];
179
       T5 = T1 * T4;
180
       T2o = T1 * T9;
181
       T1M = W[4];
182
       T1O = T1M * T1N;
183
       T2C = T1M * T1Q;
184
       {
185
            E Tc, Td, Th, Ti;
186
            Tc = Ip[WS(rs, 5)];
187
            Td = Im[WS(rs, 5)];
188
            Te = Tc - Td;
189
            T1W = Tc + Td;
190
            Th = Rp[WS(rs, 5)];
191
            Ti = Rm[WS(rs, 5)];
192
            Tj = Th + Ti;
193
            T1T = Th - Ti;
194
       }
195
       Tb = W[18];
196
       Tf = Tb * Te;
197
       T2q = Tb * Tj;
198
       T1S = W[20];
199
       T1U = T1S * T1T;
200
       T2E = T1S * T1W;
201
        }
202
        T6 = W[3];
203
        Ta = FNMS(T6, T9, T5);
204
        T2p = FMA(T6, T4, T2o);
205
        Tg = W[19];
206
        Tk = FNMS(Tg, Tj, Tf);
207
        T2r = FMA(Tg, Te, T2q);
208
        T3o = Ta - Tk;
209
        T3p = T2p - T2r;
210
        {
211
       E T1R, T2D, T1X, T2F, T1P, T1V;
212
       T1P = W[5];
213
       T1R = FMA(T1P, T1Q, T1O);
214
       T2D = FNMS(T1P, T1N, T2C);
215
       T1V = W[21];
216
       T1X = FMA(T1V, T1W, T1U);
217
       T2F = FNMS(T1V, T1T, T2E);
218
       T1Y = T1R + T1X;
219
       T3z = T1X - T1R;
220
       T2G = T2D + T2F;
221
       T3w = T2F - T2D;
222
        }
223
         }
224
         {
225
        E Tp, T23, Tu, T20, Tq, T2t, T21, T2H, Tz, T29, TE, T26, TA, T2v, T27;
226
        E T2J, Tr, TB;
227
        {
228
       E Tm, T1Z, Tw, T25;
229
       {
230
            E Tn, To, Ts, Tt;
231
            Tn = Ip[WS(rs, 7)];
232
            To = Im[WS(rs, 7)];
233
            Tp = Tn - To;
234
            T23 = Tn + To;
235
            Ts = Rp[WS(rs, 7)];
236
            Tt = Rm[WS(rs, 7)];
237
            Tu = Ts + Tt;
238
            T20 = Ts - Tt;
239
       }
240
       Tm = W[26];
241
       Tq = Tm * Tp;
242
       T2t = Tm * Tu;
243
       T1Z = W[28];
244
       T21 = T1Z * T20;
245
       T2H = T1Z * T23;
246
       {
247
            E Tx, Ty, TC, TD;
248
            Tx = Ip[WS(rs, 3)];
249
            Ty = Im[WS(rs, 3)];
250
            Tz = Tx - Ty;
251
            T29 = Tx + Ty;
252
            TC = Rp[WS(rs, 3)];
253
            TD = Rm[WS(rs, 3)];
254
            TE = TC + TD;
255
            T26 = TC - TD;
256
       }
257
       Tw = W[10];
258
       TA = Tw * Tz;
259
       T2v = Tw * TE;
260
       T25 = W[12];
261
       T27 = T25 * T26;
262
       T2J = T25 * T29;
263
        }
264
        Tr = W[27];
265
        Tv = FNMS(Tr, Tu, Tq);
266
        T2u = FMA(Tr, Tp, T2t);
267
        TB = W[11];
268
        TF = FNMS(TB, TE, TA);
269
        T2w = FMA(TB, Tz, T2v);
270
        T3r = T2u - T2w;
271
        T3s = Tv - TF;
272
        {
273
       E T24, T2I, T2a, T2K, T22, T28;
274
       T22 = W[29];
275
       T24 = FMA(T22, T23, T21);
276
       T2I = FNMS(T22, T20, T2H);
277
       T28 = W[13];
278
       T2a = FMA(T28, T29, T27);
279
       T2K = FNMS(T28, T26, T2J);
280
       T2b = T24 + T2a;
281
       T3A = T2I - T2K;
282
       T2L = T2I + T2K;
283
       T3x = T2a - T24;
284
        }
285
         }
286
         {
287
        E TH, T3c, T36, T3g, T39, T3h, T1h, T32, T2d, T2A, T2y, T31, T2Y, T30, T2n;
288
        E T3b;
289
        {
290
       E Tl, TG, T34, T35;
291
       Tl = Ta + Tk;
292
       TG = Tv + TF;
293
       TH = Tl + TG;
294
       T3c = Tl - TG;
295
       T34 = T2L - T2G;
296
       T35 = T1Y - T2b;
297
       T36 = T34 + T35;
298
       T3g = T34 - T35;
299
        }
300
        {
301
       E T37, T38, T12, T1g;
302
       T37 = T1K - T1v;
303
       T38 = T2W - T2R;
304
       T39 = T37 - T38;
305
       T3h = T37 + T38;
306
       T12 = TR + T11;
307
       T1g = T1c + T1f;
308
       T1h = T12 + T1g;
309
       T32 = T1g - T12;
310
        }
311
        {
312
       E T1L, T2c, T2s, T2x;
313
       T1L = T1v + T1K;
314
       T2c = T1Y + T2b;
315
       T2d = T1L - T2c;
316
       T2A = T2c + T1L;
317
       T2s = T2p + T2r;
318
       T2x = T2u + T2w;
319
       T2y = T2s + T2x;
320
       T31 = T2x - T2s;
321
        }
322
        {
323
       E T2M, T2X, T2h, T2m;
324
       T2M = T2G + T2L;
325
       T2X = T2R + T2W;
326
       T2Y = T2M - T2X;
327
       T30 = T2M + T2X;
328
       T2h = T2e + T2g;
329
       T2m = T2j + T2l;
330
       T2n = T2h + T2m;
331
       T3b = T2h - T2m;
332
        }
333
        {
334
       E T1i, T2Z, T2z, T2B;
335
       T1i = TH + T1h;
336
       Ip[0] = KP500000000 * (T1i + T2d);
337
       Im[WS(rs, 7)] = KP500000000 * (T2d - T1i);
338
       T2Z = T2n + T2y;
339
       Rm[WS(rs, 7)] = KP500000000 * (T2Z - T30);
340
       Rp[0] = KP500000000 * (T2Z + T30);
341
       T2z = T2n - T2y;
342
       Rm[WS(rs, 3)] = KP500000000 * (T2z - T2A);
343
       Rp[WS(rs, 4)] = KP500000000 * (T2z + T2A);
344
       T2B = T1h - TH;
345
       Ip[WS(rs, 4)] = KP500000000 * (T2B + T2Y);
346
       Im[WS(rs, 3)] = KP500000000 * (T2Y - T2B);
347
        }
348
        {
349
       E T33, T3a, T3j, T3k;
350
       T33 = T31 + T32;
351
       T3a = T36 + T39;
352
       Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3a, T33));
353
       Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3a, T33)));
354
       T3j = T3b + T3c;
355
       T3k = T3g + T3h;
356
       Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3k, T3j));
357
       Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3k, T3j));
358
        }
359
        {
360
       E T3d, T3e, T3f, T3i;
361
       T3d = T3b - T3c;
362
       T3e = T39 - T36;
363
       Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3e, T3d));
364
       Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3e, T3d));
365
       T3f = T32 - T31;
366
       T3i = T3g - T3h;
367
       Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3i, T3f));
368
       Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3i, T3f)));
369
        }
370
         }
371
         {
372
        E T3n, T3Z, T44, T4e, T47, T4f, T3u, T4a, T3C, T3U, T3N, T49, T3Q, T40, T3J;
373
        E T3V;
374
        {
375
       E T3l, T3m, T42, T43;
376
       T3l = T1f - T1c;
377
       T3m = T2j - T2l;
378
       T3n = T3l - T3m;
379
       T3Z = T3m + T3l;
380
       T42 = T3w - T3x;
381
       T43 = T3A - T3z;
382
       T44 = FMA(KP414213562, T43, T42);
383
       T4e = FNMS(KP414213562, T42, T43);
384
        }
385
        {
386
       E T45, T46, T3q, T3t;
387
       T45 = T3E + T3D;
388
       T46 = T3H - T3G;
389
       T47 = FMA(KP414213562, T46, T45);
390
       T4f = FNMS(KP414213562, T45, T46);
391
       T3q = T3o - T3p;
392
       T3t = T3r + T3s;
393
       T3u = T3q + T3t;
394
       T4a = T3q - T3t;
395
        }
396
        {
397
       E T3y, T3B, T3L, T3M;
398
       T3y = T3w + T3x;
399
       T3B = T3z + T3A;
400
       T3C = FMA(KP414213562, T3B, T3y);
401
       T3U = FNMS(KP414213562, T3y, T3B);
402
       T3L = T2e - T2g;
403
       T3M = TR - T11;
404
       T3N = T3L + T3M;
405
       T49 = T3L - T3M;
406
        }
407
        {
408
       E T3O, T3P, T3F, T3I;
409
       T3O = T3p + T3o;
410
       T3P = T3r - T3s;
411
       T3Q = T3O + T3P;
412
       T40 = T3P - T3O;
413
       T3F = T3D - T3E;
414
       T3I = T3G + T3H;
415
       T3J = FNMS(KP414213562, T3I, T3F);
416
       T3V = FMA(KP414213562, T3F, T3I);
417
        }
418
        {
419
       E T3v, T3K, T3X, T3Y;
420
       T3v = FMA(KP707106781, T3u, T3n);
421
       T3K = T3C + T3J;
422
       Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3K, T3v));
423
       Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3K, T3v)));
424
       T3X = FMA(KP707106781, T3Q, T3N);
425
       T3Y = T3U + T3V;
426
       Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T3Y, T3X));
427
       Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3Y, T3X));
428
        }
429
        {
430
       E T3R, T3S, T3T, T3W;
431
       T3R = FNMS(KP707106781, T3Q, T3N);
432
       T3S = T3J - T3C;
433
       Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T3S, T3R));
434
       Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3S, T3R));
435
       T3T = FNMS(KP707106781, T3u, T3n);
436
       T3W = T3U - T3V;
437
       Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3W, T3T));
438
       Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3T)));
439
        }
440
        {
441
       E T41, T48, T4h, T4i;
442
       T41 = FNMS(KP707106781, T40, T3Z);
443
       T48 = T44 - T47;
444
       Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T48, T41));
445
       Im[0] = -(KP500000000 * (FNMS(KP923879532, T48, T41)));
446
       T4h = FNMS(KP707106781, T4a, T49);
447
       T4i = T4e + T4f;
448
       Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4i, T4h));
449
       Rm[0] = KP500000000 * (FMA(KP923879532, T4i, T4h));
450
        }
451
        {
452
       E T4b, T4c, T4d, T4g;
453
       T4b = FMA(KP707106781, T4a, T49);
454
       T4c = T44 + T47;
455
       Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4c, T4b));
456
       Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4c, T4b));
457
       T4d = FMA(KP707106781, T40, T3Z);
458
       T4g = T4e - T4f;
459
       Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4g, T4d));
460
       Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4g, T4d)));
461
        }
462
         }
463
    }
464
     }
465
}
466
467
static const tw_instr twinstr[] = {
468
     { TW_FULL, 1, 16 },
469
     { TW_NEXT, 1, 0 }
470
};
471
472
static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 136, 62, 70, 0 } };
473
474
void X(codelet_hc2cfdft_16) (planner *p) {
475
     X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT);
476
}
477
#else
478
479
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */
480
481
/*
482
 * This function contains 206 FP additions, 100 FP multiplications,
483
 * (or, 168 additions, 62 multiplications, 38 fused multiply/add),
484
 * 61 stack variables, 4 constants, and 64 memory accesses
485
 */
486
#include "rdft/scalar/hc2cf.h"
487
488
static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
489
0
{
490
0
     DK(KP461939766, +0.461939766255643378064091594698394143411208313);
491
0
     DK(KP191341716, +0.191341716182544885864229992015199433380672281);
492
0
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
493
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
494
0
     {
495
0
    INT m;
496
0
    for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
497
0
         E T19, T3h, T21, T2Y, T1o, T3d, T2s, T39, TW, T3i, T24, T2Z, T1z, T3c, T2p;
498
0
         E T3a, Tj, T2S, T28, T2R, T1L, T36, T2i, T32, TC, T2V, T2b, T2U, T1W, T35;
499
0
         E T2l, T33;
500
0
         {
501
0
        E T10, T1m, T14, T1k, T18, T1h, T1f, T1Z;
502
0
        {
503
0
       E TY, TZ, T12, T13;
504
0
       TY = Ip[WS(rs, 4)];
505
0
       TZ = Im[WS(rs, 4)];
506
0
       T10 = TY - TZ;
507
0
       T1m = TY + TZ;
508
0
       T12 = Rp[WS(rs, 4)];
509
0
       T13 = Rm[WS(rs, 4)];
510
0
       T14 = T12 + T13;
511
0
       T1k = T12 - T13;
512
0
        }
513
0
        {
514
0
       E T16, T17, T1d, T1e;
515
0
       T16 = Ip[0];
516
0
       T17 = Im[0];
517
0
       T18 = T16 - T17;
518
0
       T1h = T16 + T17;
519
0
       T1d = Rm[0];
520
0
       T1e = Rp[0];
521
0
       T1f = T1d - T1e;
522
0
       T1Z = T1e + T1d;
523
0
        }
524
0
        {
525
0
       E T15, T20, TX, T11;
526
0
       TX = W[14];
527
0
       T11 = W[15];
528
0
       T15 = FNMS(T11, T14, TX * T10);
529
0
       T20 = FMA(TX, T14, T11 * T10);
530
0
       T19 = T15 + T18;
531
0
       T3h = T1Z - T20;
532
0
       T21 = T1Z + T20;
533
0
       T2Y = T18 - T15;
534
0
        }
535
0
        {
536
0
       E T1i, T2r, T1n, T2q;
537
0
       {
538
0
            E T1c, T1g, T1j, T1l;
539
0
            T1c = W[0];
540
0
            T1g = W[1];
541
0
            T1i = FNMS(T1g, T1h, T1c * T1f);
542
0
            T2r = FMA(T1g, T1f, T1c * T1h);
543
0
            T1j = W[16];
544
0
            T1l = W[17];
545
0
            T1n = FMA(T1j, T1k, T1l * T1m);
546
0
            T2q = FNMS(T1l, T1k, T1j * T1m);
547
0
       }
548
0
       T1o = T1i - T1n;
549
0
       T3d = T2r - T2q;
550
0
       T2s = T2q + T2r;
551
0
       T39 = T1n + T1i;
552
0
        }
553
0
         }
554
0
         {
555
0
        E TH, T1s, TL, T1q, TQ, T1x, TU, T1v;
556
0
        {
557
0
       E TF, TG, TJ, TK;
558
0
       TF = Ip[WS(rs, 2)];
559
0
       TG = Im[WS(rs, 2)];
560
0
       TH = TF - TG;
561
0
       T1s = TF + TG;
562
0
       TJ = Rp[WS(rs, 2)];
563
0
       TK = Rm[WS(rs, 2)];
564
0
       TL = TJ + TK;
565
0
       T1q = TJ - TK;
566
0
        }
567
0
        {
568
0
       E TO, TP, TS, TT;
569
0
       TO = Ip[WS(rs, 6)];
570
0
       TP = Im[WS(rs, 6)];
571
0
       TQ = TO - TP;
572
0
       T1x = TO + TP;
573
0
       TS = Rp[WS(rs, 6)];
574
0
       TT = Rm[WS(rs, 6)];
575
0
       TU = TS + TT;
576
0
       T1v = TS - TT;
577
0
        }
578
0
        {
579
0
       E TM, T22, TV, T23;
580
0
       {
581
0
            E TE, TI, TN, TR;
582
0
            TE = W[6];
583
0
            TI = W[7];
584
0
            TM = FNMS(TI, TL, TE * TH);
585
0
            T22 = FMA(TE, TL, TI * TH);
586
0
            TN = W[22];
587
0
            TR = W[23];
588
0
            TV = FNMS(TR, TU, TN * TQ);
589
0
            T23 = FMA(TN, TU, TR * TQ);
590
0
       }
591
0
       TW = TM + TV;
592
0
       T3i = TM - TV;
593
0
       T24 = T22 + T23;
594
0
       T2Z = T22 - T23;
595
0
        }
596
0
        {
597
0
       E T1t, T2n, T1y, T2o;
598
0
       {
599
0
            E T1p, T1r, T1u, T1w;
600
0
            T1p = W[8];
601
0
            T1r = W[9];
602
0
            T1t = FMA(T1p, T1q, T1r * T1s);
603
0
            T2n = FNMS(T1r, T1q, T1p * T1s);
604
0
            T1u = W[24];
605
0
            T1w = W[25];
606
0
            T1y = FMA(T1u, T1v, T1w * T1x);
607
0
            T2o = FNMS(T1w, T1v, T1u * T1x);
608
0
       }
609
0
       T1z = T1t + T1y;
610
0
       T3c = T1y - T1t;
611
0
       T2p = T2n + T2o;
612
0
       T3a = T2n - T2o;
613
0
        }
614
0
         }
615
0
         {
616
0
        E T4, T1E, T8, T1C, Td, T1J, Th, T1H;
617
0
        {
618
0
       E T2, T3, T6, T7;
619
0
       T2 = Ip[WS(rs, 1)];
620
0
       T3 = Im[WS(rs, 1)];
621
0
       T4 = T2 - T3;
622
0
       T1E = T2 + T3;
623
0
       T6 = Rp[WS(rs, 1)];
624
0
       T7 = Rm[WS(rs, 1)];
625
0
       T8 = T6 + T7;
626
0
       T1C = T6 - T7;
627
0
        }
628
0
        {
629
0
       E Tb, Tc, Tf, Tg;
630
0
       Tb = Ip[WS(rs, 5)];
631
0
       Tc = Im[WS(rs, 5)];
632
0
       Td = Tb - Tc;
633
0
       T1J = Tb + Tc;
634
0
       Tf = Rp[WS(rs, 5)];
635
0
       Tg = Rm[WS(rs, 5)];
636
0
       Th = Tf + Tg;
637
0
       T1H = Tf - Tg;
638
0
        }
639
0
        {
640
0
       E T9, T26, Ti, T27;
641
0
       {
642
0
            E T1, T5, Ta, Te;
643
0
            T1 = W[2];
644
0
            T5 = W[3];
645
0
            T9 = FNMS(T5, T8, T1 * T4);
646
0
            T26 = FMA(T1, T8, T5 * T4);
647
0
            Ta = W[18];
648
0
            Te = W[19];
649
0
            Ti = FNMS(Te, Th, Ta * Td);
650
0
            T27 = FMA(Ta, Th, Te * Td);
651
0
       }
652
0
       Tj = T9 + Ti;
653
0
       T2S = T26 - T27;
654
0
       T28 = T26 + T27;
655
0
       T2R = T9 - Ti;
656
0
        }
657
0
        {
658
0
       E T1F, T2g, T1K, T2h;
659
0
       {
660
0
            E T1B, T1D, T1G, T1I;
661
0
            T1B = W[4];
662
0
            T1D = W[5];
663
0
            T1F = FMA(T1B, T1C, T1D * T1E);
664
0
            T2g = FNMS(T1D, T1C, T1B * T1E);
665
0
            T1G = W[20];
666
0
            T1I = W[21];
667
0
            T1K = FMA(T1G, T1H, T1I * T1J);
668
0
            T2h = FNMS(T1I, T1H, T1G * T1J);
669
0
       }
670
0
       T1L = T1F + T1K;
671
0
       T36 = T2g - T2h;
672
0
       T2i = T2g + T2h;
673
0
       T32 = T1K - T1F;
674
0
        }
675
0
         }
676
0
         {
677
0
        E Tn, T1P, Tr, T1N, Tw, T1U, TA, T1S;
678
0
        {
679
0
       E Tl, Tm, Tp, Tq;
680
0
       Tl = Ip[WS(rs, 7)];
681
0
       Tm = Im[WS(rs, 7)];
682
0
       Tn = Tl - Tm;
683
0
       T1P = Tl + Tm;
684
0
       Tp = Rp[WS(rs, 7)];
685
0
       Tq = Rm[WS(rs, 7)];
686
0
       Tr = Tp + Tq;
687
0
       T1N = Tp - Tq;
688
0
        }
689
0
        {
690
0
       E Tu, Tv, Ty, Tz;
691
0
       Tu = Ip[WS(rs, 3)];
692
0
       Tv = Im[WS(rs, 3)];
693
0
       Tw = Tu - Tv;
694
0
       T1U = Tu + Tv;
695
0
       Ty = Rp[WS(rs, 3)];
696
0
       Tz = Rm[WS(rs, 3)];
697
0
       TA = Ty + Tz;
698
0
       T1S = Ty - Tz;
699
0
        }
700
0
        {
701
0
       E Ts, T29, TB, T2a;
702
0
       {
703
0
            E Tk, To, Tt, Tx;
704
0
            Tk = W[26];
705
0
            To = W[27];
706
0
            Ts = FNMS(To, Tr, Tk * Tn);
707
0
            T29 = FMA(Tk, Tr, To * Tn);
708
0
            Tt = W[10];
709
0
            Tx = W[11];
710
0
            TB = FNMS(Tx, TA, Tt * Tw);
711
0
            T2a = FMA(Tt, TA, Tx * Tw);
712
0
       }
713
0
       TC = Ts + TB;
714
0
       T2V = Ts - TB;
715
0
       T2b = T29 + T2a;
716
0
       T2U = T29 - T2a;
717
0
        }
718
0
        {
719
0
       E T1Q, T2j, T1V, T2k;
720
0
       {
721
0
            E T1M, T1O, T1R, T1T;
722
0
            T1M = W[28];
723
0
            T1O = W[29];
724
0
            T1Q = FMA(T1M, T1N, T1O * T1P);
725
0
            T2j = FNMS(T1O, T1N, T1M * T1P);
726
0
            T1R = W[12];
727
0
            T1T = W[13];
728
0
            T1V = FMA(T1R, T1S, T1T * T1U);
729
0
            T2k = FNMS(T1T, T1S, T1R * T1U);
730
0
       }
731
0
       T1W = T1Q + T1V;
732
0
       T35 = T1V - T1Q;
733
0
       T2l = T2j + T2k;
734
0
       T33 = T2j - T2k;
735
0
        }
736
0
         }
737
0
         {
738
0
        E T1b, T2f, T2u, T2w, T1Y, T2e, T2d, T2v;
739
0
        {
740
0
       E TD, T1a, T2m, T2t;
741
0
       TD = Tj + TC;
742
0
       T1a = TW + T19;
743
0
       T1b = TD + T1a;
744
0
       T2f = T1a - TD;
745
0
       T2m = T2i + T2l;
746
0
       T2t = T2p + T2s;
747
0
       T2u = T2m - T2t;
748
0
       T2w = T2m + T2t;
749
0
        }
750
0
        {
751
0
       E T1A, T1X, T25, T2c;
752
0
       T1A = T1o - T1z;
753
0
       T1X = T1L + T1W;
754
0
       T1Y = T1A - T1X;
755
0
       T2e = T1X + T1A;
756
0
       T25 = T21 + T24;
757
0
       T2c = T28 + T2b;
758
0
       T2d = T25 - T2c;
759
0
       T2v = T25 + T2c;
760
0
        }
761
0
        Ip[0] = KP500000000 * (T1b + T1Y);
762
0
        Rp[0] = KP500000000 * (T2v + T2w);
763
0
        Im[WS(rs, 7)] = KP500000000 * (T1Y - T1b);
764
0
        Rm[WS(rs, 7)] = KP500000000 * (T2v - T2w);
765
0
        Rm[WS(rs, 3)] = KP500000000 * (T2d - T2e);
766
0
        Im[WS(rs, 3)] = KP500000000 * (T2u - T2f);
767
0
        Rp[WS(rs, 4)] = KP500000000 * (T2d + T2e);
768
0
        Ip[WS(rs, 4)] = KP500000000 * (T2f + T2u);
769
0
         }
770
0
         {
771
0
        E T2z, T2L, T2J, T2P, T2C, T2M, T2F, T2N;
772
0
        {
773
0
       E T2x, T2y, T2H, T2I;
774
0
       T2x = T2b - T28;
775
0
       T2y = T19 - TW;
776
0
       T2z = KP500000000 * (T2x + T2y);
777
0
       T2L = KP500000000 * (T2y - T2x);
778
0
       T2H = T21 - T24;
779
0
       T2I = Tj - TC;
780
0
       T2J = KP500000000 * (T2H - T2I);
781
0
       T2P = KP500000000 * (T2H + T2I);
782
0
        }
783
0
        {
784
0
       E T2A, T2B, T2D, T2E;
785
0
       T2A = T2l - T2i;
786
0
       T2B = T1L - T1W;
787
0
       T2C = T2A + T2B;
788
0
       T2M = T2A - T2B;
789
0
       T2D = T1z + T1o;
790
0
       T2E = T2s - T2p;
791
0
       T2F = T2D - T2E;
792
0
       T2N = T2D + T2E;
793
0
        }
794
0
        {
795
0
       E T2G, T2Q, T2K, T2O;
796
0
       T2G = KP353553390 * (T2C + T2F);
797
0
       Ip[WS(rs, 2)] = T2z + T2G;
798
0
       Im[WS(rs, 5)] = T2G - T2z;
799
0
       T2Q = KP353553390 * (T2M + T2N);
800
0
       Rm[WS(rs, 5)] = T2P - T2Q;
801
0
       Rp[WS(rs, 2)] = T2P + T2Q;
802
0
       T2K = KP353553390 * (T2F - T2C);
803
0
       Rm[WS(rs, 1)] = T2J - T2K;
804
0
       Rp[WS(rs, 6)] = T2J + T2K;
805
0
       T2O = KP353553390 * (T2M - T2N);
806
0
       Ip[WS(rs, 6)] = T2L + T2O;
807
0
       Im[WS(rs, 1)] = T2O - T2L;
808
0
        }
809
0
         }
810
0
         {
811
0
        E T30, T3w, T3F, T3j, T2X, T3G, T3D, T3L, T3m, T3v, T38, T3q, T3A, T3K, T3f;
812
0
        E T3r;
813
0
        {
814
0
       E T2T, T2W, T34, T37;
815
0
       T30 = KP500000000 * (T2Y - T2Z);
816
0
       T3w = KP500000000 * (T2Z + T2Y);
817
0
       T3F = KP500000000 * (T3h - T3i);
818
0
       T3j = KP500000000 * (T3h + T3i);
819
0
       T2T = T2R - T2S;
820
0
       T2W = T2U + T2V;
821
0
       T2X = KP353553390 * (T2T + T2W);
822
0
       T3G = KP353553390 * (T2T - T2W);
823
0
       {
824
0
            E T3B, T3C, T3k, T3l;
825
0
            T3B = T3a + T39;
826
0
            T3C = T3d - T3c;
827
0
            T3D = FNMS(KP461939766, T3C, KP191341716 * T3B);
828
0
            T3L = FMA(KP461939766, T3B, KP191341716 * T3C);
829
0
            T3k = T2S + T2R;
830
0
            T3l = T2U - T2V;
831
0
            T3m = KP353553390 * (T3k + T3l);
832
0
            T3v = KP353553390 * (T3l - T3k);
833
0
       }
834
0
       T34 = T32 + T33;
835
0
       T37 = T35 - T36;
836
0
       T38 = FMA(KP191341716, T34, KP461939766 * T37);
837
0
       T3q = FNMS(KP191341716, T37, KP461939766 * T34);
838
0
       {
839
0
            E T3y, T3z, T3b, T3e;
840
0
            T3y = T33 - T32;
841
0
            T3z = T36 + T35;
842
0
            T3A = FMA(KP461939766, T3y, KP191341716 * T3z);
843
0
            T3K = FNMS(KP461939766, T3z, KP191341716 * T3y);
844
0
            T3b = T39 - T3a;
845
0
            T3e = T3c + T3d;
846
0
            T3f = FNMS(KP191341716, T3e, KP461939766 * T3b);
847
0
            T3r = FMA(KP191341716, T3b, KP461939766 * T3e);
848
0
       }
849
0
        }
850
0
        {
851
0
       E T31, T3g, T3t, T3u;
852
0
       T31 = T2X + T30;
853
0
       T3g = T38 + T3f;
854
0
       Ip[WS(rs, 1)] = T31 + T3g;
855
0
       Im[WS(rs, 6)] = T3g - T31;
856
0
       T3t = T3j + T3m;
857
0
       T3u = T3q + T3r;
858
0
       Rm[WS(rs, 6)] = T3t - T3u;
859
0
       Rp[WS(rs, 1)] = T3t + T3u;
860
0
        }
861
0
        {
862
0
       E T3n, T3o, T3p, T3s;
863
0
       T3n = T3j - T3m;
864
0
       T3o = T3f - T38;
865
0
       Rm[WS(rs, 2)] = T3n - T3o;
866
0
       Rp[WS(rs, 5)] = T3n + T3o;
867
0
       T3p = T30 - T2X;
868
0
       T3s = T3q - T3r;
869
0
       Ip[WS(rs, 5)] = T3p + T3s;
870
0
       Im[WS(rs, 2)] = T3s - T3p;
871
0
        }
872
0
        {
873
0
       E T3x, T3E, T3N, T3O;
874
0
       T3x = T3v + T3w;
875
0
       T3E = T3A + T3D;
876
0
       Ip[WS(rs, 3)] = T3x + T3E;
877
0
       Im[WS(rs, 4)] = T3E - T3x;
878
0
       T3N = T3F + T3G;
879
0
       T3O = T3K + T3L;
880
0
       Rm[WS(rs, 4)] = T3N - T3O;
881
0
       Rp[WS(rs, 3)] = T3N + T3O;
882
0
        }
883
0
        {
884
0
       E T3H, T3I, T3J, T3M;
885
0
       T3H = T3F - T3G;
886
0
       T3I = T3D - T3A;
887
0
       Rm[0] = T3H - T3I;
888
0
       Rp[WS(rs, 7)] = T3H + T3I;
889
0
       T3J = T3w - T3v;
890
0
       T3M = T3K - T3L;
891
0
       Ip[WS(rs, 7)] = T3J + T3M;
892
0
       Im[0] = T3M - T3J;
893
0
        }
894
0
         }
895
0
    }
896
0
     }
897
0
}
898
899
static const tw_instr twinstr[] = {
900
     { TW_FULL, 1, 16 },
901
     { TW_NEXT, 1, 0 }
902
};
903
904
static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 168, 62, 38, 0 } };
905
906
1
void X(codelet_hc2cfdft_16) (planner *p) {
907
1
     X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT);
908
1
}
909
#endif