/src/fftw3/rdft/scalar/r2cf/hc2cfdft_16.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Wed Jul 23 07:02:07 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 206 FP additions, 132 FP multiplications, |
32 | | * (or, 136 additions, 62 multiplications, 70 fused multiply/add), |
33 | | * 67 stack variables, 4 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
41 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
42 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { |
46 | | E T1f, T2e, T1c, T2g, T1K, T3D, T2W, T3H, TR, T2j, T2R, T3E, T11, T2l, T1v; |
47 | | E T3G, Ta, T2p, Tk, T2r, T3o, T3p, T1Y, T3z, T2G, T3w, Tv, T2u, TF, T2w; |
48 | | E T3r, T3s, T2b, T3A, T2L, T3x; |
49 | | { |
50 | | E T1d, T1e, T1I, T16, T1A, T1D, T1E, T1C, T1G, T1H, T2U, T1b, T1z, T2S, T1w; |
51 | | E T1y, T14, T15; |
52 | | T1d = Ip[0]; |
53 | | T1e = Im[0]; |
54 | | T1I = T1d + T1e; |
55 | | T14 = Ip[WS(rs, 4)]; |
56 | | T15 = Im[WS(rs, 4)]; |
57 | | T16 = T14 - T15; |
58 | | T1A = T14 + T15; |
59 | | { |
60 | | E T1F, T19, T1a, T1x; |
61 | | T1D = Rm[0]; |
62 | | T1E = Rp[0]; |
63 | | T1F = T1D - T1E; |
64 | | T1C = W[0]; |
65 | | T1G = T1C * T1F; |
66 | | T1H = W[1]; |
67 | | T2U = T1H * T1F; |
68 | | T19 = Rp[WS(rs, 4)]; |
69 | | T1a = Rm[WS(rs, 4)]; |
70 | | T1x = T1a - T19; |
71 | | T1b = T19 + T1a; |
72 | | T1z = W[17]; |
73 | | T2S = T1z * T1x; |
74 | | T1w = W[16]; |
75 | | T1y = T1w * T1x; |
76 | | } |
77 | | T1f = T1d - T1e; |
78 | | T2e = T1E + T1D; |
79 | | { |
80 | | E T17, T2f, T13, T18; |
81 | | T13 = W[14]; |
82 | | T17 = T13 * T16; |
83 | | T2f = T13 * T1b; |
84 | | T18 = W[15]; |
85 | | T1c = FNMS(T18, T1b, T17); |
86 | | T2g = FMA(T18, T16, T2f); |
87 | | } |
88 | | { |
89 | | E T1B, T1J, T2T, T2V; |
90 | | T1B = FNMS(T1z, T1A, T1y); |
91 | | T1J = FNMS(T1H, T1I, T1G); |
92 | | T1K = T1B + T1J; |
93 | | T3D = T1J - T1B; |
94 | | T2T = FMA(T1w, T1A, T2S); |
95 | | T2V = FMA(T1C, T1I, T2U); |
96 | | T2W = T2T + T2V; |
97 | | T3H = T2V - T2T; |
98 | | } |
99 | | } |
100 | | { |
101 | | E TL, T1n, TQ, T1m, T2N, T1j, T1l, TV, T1t, T10, T1s, T2P, T1p, T1r; |
102 | | { |
103 | | E TJ, TK, TO, TP, T1k; |
104 | | TJ = Ip[WS(rs, 2)]; |
105 | | TK = Im[WS(rs, 2)]; |
106 | | TL = TJ - TK; |
107 | | T1n = TJ + TK; |
108 | | TO = Rp[WS(rs, 2)]; |
109 | | TP = Rm[WS(rs, 2)]; |
110 | | T1k = TP - TO; |
111 | | TQ = TO + TP; |
112 | | T1m = W[9]; |
113 | | T2N = T1m * T1k; |
114 | | T1j = W[8]; |
115 | | T1l = T1j * T1k; |
116 | | } |
117 | | { |
118 | | E TT, TU, TY, TZ, T1q; |
119 | | TT = Ip[WS(rs, 6)]; |
120 | | TU = Im[WS(rs, 6)]; |
121 | | TV = TT - TU; |
122 | | T1t = TT + TU; |
123 | | TY = Rp[WS(rs, 6)]; |
124 | | TZ = Rm[WS(rs, 6)]; |
125 | | T1q = TZ - TY; |
126 | | T10 = TY + TZ; |
127 | | T1s = W[25]; |
128 | | T2P = T1s * T1q; |
129 | | T1p = W[24]; |
130 | | T1r = T1p * T1q; |
131 | | } |
132 | | { |
133 | | E T2O, T2Q, T1o, T1u; |
134 | | { |
135 | | E TM, T2i, TI, TN; |
136 | | TI = W[6]; |
137 | | TM = TI * TL; |
138 | | T2i = TI * TQ; |
139 | | TN = W[7]; |
140 | | TR = FNMS(TN, TQ, TM); |
141 | | T2j = FMA(TN, TL, T2i); |
142 | | } |
143 | | T2O = FMA(T1j, T1n, T2N); |
144 | | T2Q = FMA(T1p, T1t, T2P); |
145 | | T2R = T2O + T2Q; |
146 | | T3E = T2O - T2Q; |
147 | | { |
148 | | E TW, T2k, TS, TX; |
149 | | TS = W[22]; |
150 | | TW = TS * TV; |
151 | | T2k = TS * T10; |
152 | | TX = W[23]; |
153 | | T11 = FNMS(TX, T10, TW); |
154 | | T2l = FMA(TX, TV, T2k); |
155 | | } |
156 | | T1o = FNMS(T1m, T1n, T1l); |
157 | | T1u = FNMS(T1s, T1t, T1r); |
158 | | T1v = T1o + T1u; |
159 | | T3G = T1o - T1u; |
160 | | } |
161 | | } |
162 | | { |
163 | | E T4, T1Q, T9, T1N, T5, T2o, T1O, T2C, Te, T1W, Tj, T1T, Tf, T2q, T1U; |
164 | | E T2E, T6, Tg; |
165 | | { |
166 | | E T1, T1M, Tb, T1S; |
167 | | { |
168 | | E T2, T3, T7, T8; |
169 | | T2 = Ip[WS(rs, 1)]; |
170 | | T3 = Im[WS(rs, 1)]; |
171 | | T4 = T2 - T3; |
172 | | T1Q = T2 + T3; |
173 | | T7 = Rp[WS(rs, 1)]; |
174 | | T8 = Rm[WS(rs, 1)]; |
175 | | T9 = T7 + T8; |
176 | | T1N = T7 - T8; |
177 | | } |
178 | | T1 = W[2]; |
179 | | T5 = T1 * T4; |
180 | | T2o = T1 * T9; |
181 | | T1M = W[4]; |
182 | | T1O = T1M * T1N; |
183 | | T2C = T1M * T1Q; |
184 | | { |
185 | | E Tc, Td, Th, Ti; |
186 | | Tc = Ip[WS(rs, 5)]; |
187 | | Td = Im[WS(rs, 5)]; |
188 | | Te = Tc - Td; |
189 | | T1W = Tc + Td; |
190 | | Th = Rp[WS(rs, 5)]; |
191 | | Ti = Rm[WS(rs, 5)]; |
192 | | Tj = Th + Ti; |
193 | | T1T = Th - Ti; |
194 | | } |
195 | | Tb = W[18]; |
196 | | Tf = Tb * Te; |
197 | | T2q = Tb * Tj; |
198 | | T1S = W[20]; |
199 | | T1U = T1S * T1T; |
200 | | T2E = T1S * T1W; |
201 | | } |
202 | | T6 = W[3]; |
203 | | Ta = FNMS(T6, T9, T5); |
204 | | T2p = FMA(T6, T4, T2o); |
205 | | Tg = W[19]; |
206 | | Tk = FNMS(Tg, Tj, Tf); |
207 | | T2r = FMA(Tg, Te, T2q); |
208 | | T3o = Ta - Tk; |
209 | | T3p = T2p - T2r; |
210 | | { |
211 | | E T1R, T2D, T1X, T2F, T1P, T1V; |
212 | | T1P = W[5]; |
213 | | T1R = FMA(T1P, T1Q, T1O); |
214 | | T2D = FNMS(T1P, T1N, T2C); |
215 | | T1V = W[21]; |
216 | | T1X = FMA(T1V, T1W, T1U); |
217 | | T2F = FNMS(T1V, T1T, T2E); |
218 | | T1Y = T1R + T1X; |
219 | | T3z = T1X - T1R; |
220 | | T2G = T2D + T2F; |
221 | | T3w = T2F - T2D; |
222 | | } |
223 | | } |
224 | | { |
225 | | E Tp, T23, Tu, T20, Tq, T2t, T21, T2H, Tz, T29, TE, T26, TA, T2v, T27; |
226 | | E T2J, Tr, TB; |
227 | | { |
228 | | E Tm, T1Z, Tw, T25; |
229 | | { |
230 | | E Tn, To, Ts, Tt; |
231 | | Tn = Ip[WS(rs, 7)]; |
232 | | To = Im[WS(rs, 7)]; |
233 | | Tp = Tn - To; |
234 | | T23 = Tn + To; |
235 | | Ts = Rp[WS(rs, 7)]; |
236 | | Tt = Rm[WS(rs, 7)]; |
237 | | Tu = Ts + Tt; |
238 | | T20 = Ts - Tt; |
239 | | } |
240 | | Tm = W[26]; |
241 | | Tq = Tm * Tp; |
242 | | T2t = Tm * Tu; |
243 | | T1Z = W[28]; |
244 | | T21 = T1Z * T20; |
245 | | T2H = T1Z * T23; |
246 | | { |
247 | | E Tx, Ty, TC, TD; |
248 | | Tx = Ip[WS(rs, 3)]; |
249 | | Ty = Im[WS(rs, 3)]; |
250 | | Tz = Tx - Ty; |
251 | | T29 = Tx + Ty; |
252 | | TC = Rp[WS(rs, 3)]; |
253 | | TD = Rm[WS(rs, 3)]; |
254 | | TE = TC + TD; |
255 | | T26 = TC - TD; |
256 | | } |
257 | | Tw = W[10]; |
258 | | TA = Tw * Tz; |
259 | | T2v = Tw * TE; |
260 | | T25 = W[12]; |
261 | | T27 = T25 * T26; |
262 | | T2J = T25 * T29; |
263 | | } |
264 | | Tr = W[27]; |
265 | | Tv = FNMS(Tr, Tu, Tq); |
266 | | T2u = FMA(Tr, Tp, T2t); |
267 | | TB = W[11]; |
268 | | TF = FNMS(TB, TE, TA); |
269 | | T2w = FMA(TB, Tz, T2v); |
270 | | T3r = T2u - T2w; |
271 | | T3s = Tv - TF; |
272 | | { |
273 | | E T24, T2I, T2a, T2K, T22, T28; |
274 | | T22 = W[29]; |
275 | | T24 = FMA(T22, T23, T21); |
276 | | T2I = FNMS(T22, T20, T2H); |
277 | | T28 = W[13]; |
278 | | T2a = FMA(T28, T29, T27); |
279 | | T2K = FNMS(T28, T26, T2J); |
280 | | T2b = T24 + T2a; |
281 | | T3A = T2I - T2K; |
282 | | T2L = T2I + T2K; |
283 | | T3x = T2a - T24; |
284 | | } |
285 | | } |
286 | | { |
287 | | E TH, T3c, T36, T3g, T39, T3h, T1h, T32, T2d, T2A, T2y, T31, T2Y, T30, T2n; |
288 | | E T3b; |
289 | | { |
290 | | E Tl, TG, T34, T35; |
291 | | Tl = Ta + Tk; |
292 | | TG = Tv + TF; |
293 | | TH = Tl + TG; |
294 | | T3c = Tl - TG; |
295 | | T34 = T2L - T2G; |
296 | | T35 = T1Y - T2b; |
297 | | T36 = T34 + T35; |
298 | | T3g = T34 - T35; |
299 | | } |
300 | | { |
301 | | E T37, T38, T12, T1g; |
302 | | T37 = T1K - T1v; |
303 | | T38 = T2W - T2R; |
304 | | T39 = T37 - T38; |
305 | | T3h = T37 + T38; |
306 | | T12 = TR + T11; |
307 | | T1g = T1c + T1f; |
308 | | T1h = T12 + T1g; |
309 | | T32 = T1g - T12; |
310 | | } |
311 | | { |
312 | | E T1L, T2c, T2s, T2x; |
313 | | T1L = T1v + T1K; |
314 | | T2c = T1Y + T2b; |
315 | | T2d = T1L - T2c; |
316 | | T2A = T2c + T1L; |
317 | | T2s = T2p + T2r; |
318 | | T2x = T2u + T2w; |
319 | | T2y = T2s + T2x; |
320 | | T31 = T2x - T2s; |
321 | | } |
322 | | { |
323 | | E T2M, T2X, T2h, T2m; |
324 | | T2M = T2G + T2L; |
325 | | T2X = T2R + T2W; |
326 | | T2Y = T2M - T2X; |
327 | | T30 = T2M + T2X; |
328 | | T2h = T2e + T2g; |
329 | | T2m = T2j + T2l; |
330 | | T2n = T2h + T2m; |
331 | | T3b = T2h - T2m; |
332 | | } |
333 | | { |
334 | | E T1i, T2Z, T2z, T2B; |
335 | | T1i = TH + T1h; |
336 | | Ip[0] = KP500000000 * (T1i + T2d); |
337 | | Im[WS(rs, 7)] = KP500000000 * (T2d - T1i); |
338 | | T2Z = T2n + T2y; |
339 | | Rm[WS(rs, 7)] = KP500000000 * (T2Z - T30); |
340 | | Rp[0] = KP500000000 * (T2Z + T30); |
341 | | T2z = T2n - T2y; |
342 | | Rm[WS(rs, 3)] = KP500000000 * (T2z - T2A); |
343 | | Rp[WS(rs, 4)] = KP500000000 * (T2z + T2A); |
344 | | T2B = T1h - TH; |
345 | | Ip[WS(rs, 4)] = KP500000000 * (T2B + T2Y); |
346 | | Im[WS(rs, 3)] = KP500000000 * (T2Y - T2B); |
347 | | } |
348 | | { |
349 | | E T33, T3a, T3j, T3k; |
350 | | T33 = T31 + T32; |
351 | | T3a = T36 + T39; |
352 | | Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3a, T33)); |
353 | | Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3a, T33))); |
354 | | T3j = T3b + T3c; |
355 | | T3k = T3g + T3h; |
356 | | Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3k, T3j)); |
357 | | Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3k, T3j)); |
358 | | } |
359 | | { |
360 | | E T3d, T3e, T3f, T3i; |
361 | | T3d = T3b - T3c; |
362 | | T3e = T39 - T36; |
363 | | Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3e, T3d)); |
364 | | Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3e, T3d)); |
365 | | T3f = T32 - T31; |
366 | | T3i = T3g - T3h; |
367 | | Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3i, T3f)); |
368 | | Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3i, T3f))); |
369 | | } |
370 | | } |
371 | | { |
372 | | E T3n, T3Z, T44, T4e, T47, T4f, T3u, T4a, T3C, T3U, T3N, T49, T3Q, T40, T3J; |
373 | | E T3V; |
374 | | { |
375 | | E T3l, T3m, T42, T43; |
376 | | T3l = T1f - T1c; |
377 | | T3m = T2j - T2l; |
378 | | T3n = T3l - T3m; |
379 | | T3Z = T3m + T3l; |
380 | | T42 = T3w - T3x; |
381 | | T43 = T3A - T3z; |
382 | | T44 = FMA(KP414213562, T43, T42); |
383 | | T4e = FNMS(KP414213562, T42, T43); |
384 | | } |
385 | | { |
386 | | E T45, T46, T3q, T3t; |
387 | | T45 = T3E + T3D; |
388 | | T46 = T3H - T3G; |
389 | | T47 = FMA(KP414213562, T46, T45); |
390 | | T4f = FNMS(KP414213562, T45, T46); |
391 | | T3q = T3o - T3p; |
392 | | T3t = T3r + T3s; |
393 | | T3u = T3q + T3t; |
394 | | T4a = T3q - T3t; |
395 | | } |
396 | | { |
397 | | E T3y, T3B, T3L, T3M; |
398 | | T3y = T3w + T3x; |
399 | | T3B = T3z + T3A; |
400 | | T3C = FMA(KP414213562, T3B, T3y); |
401 | | T3U = FNMS(KP414213562, T3y, T3B); |
402 | | T3L = T2e - T2g; |
403 | | T3M = TR - T11; |
404 | | T3N = T3L + T3M; |
405 | | T49 = T3L - T3M; |
406 | | } |
407 | | { |
408 | | E T3O, T3P, T3F, T3I; |
409 | | T3O = T3p + T3o; |
410 | | T3P = T3r - T3s; |
411 | | T3Q = T3O + T3P; |
412 | | T40 = T3P - T3O; |
413 | | T3F = T3D - T3E; |
414 | | T3I = T3G + T3H; |
415 | | T3J = FNMS(KP414213562, T3I, T3F); |
416 | | T3V = FMA(KP414213562, T3F, T3I); |
417 | | } |
418 | | { |
419 | | E T3v, T3K, T3X, T3Y; |
420 | | T3v = FMA(KP707106781, T3u, T3n); |
421 | | T3K = T3C + T3J; |
422 | | Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3K, T3v)); |
423 | | Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3K, T3v))); |
424 | | T3X = FMA(KP707106781, T3Q, T3N); |
425 | | T3Y = T3U + T3V; |
426 | | Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T3Y, T3X)); |
427 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3Y, T3X)); |
428 | | } |
429 | | { |
430 | | E T3R, T3S, T3T, T3W; |
431 | | T3R = FNMS(KP707106781, T3Q, T3N); |
432 | | T3S = T3J - T3C; |
433 | | Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T3S, T3R)); |
434 | | Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3S, T3R)); |
435 | | T3T = FNMS(KP707106781, T3u, T3n); |
436 | | T3W = T3U - T3V; |
437 | | Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T3W, T3T)); |
438 | | Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3T))); |
439 | | } |
440 | | { |
441 | | E T41, T48, T4h, T4i; |
442 | | T41 = FNMS(KP707106781, T40, T3Z); |
443 | | T48 = T44 - T47; |
444 | | Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T48, T41)); |
445 | | Im[0] = -(KP500000000 * (FNMS(KP923879532, T48, T41))); |
446 | | T4h = FNMS(KP707106781, T4a, T49); |
447 | | T4i = T4e + T4f; |
448 | | Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4i, T4h)); |
449 | | Rm[0] = KP500000000 * (FMA(KP923879532, T4i, T4h)); |
450 | | } |
451 | | { |
452 | | E T4b, T4c, T4d, T4g; |
453 | | T4b = FMA(KP707106781, T4a, T49); |
454 | | T4c = T44 + T47; |
455 | | Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4c, T4b)); |
456 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4c, T4b)); |
457 | | T4d = FMA(KP707106781, T40, T3Z); |
458 | | T4g = T4e - T4f; |
459 | | Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4g, T4d)); |
460 | | Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4g, T4d))); |
461 | | } |
462 | | } |
463 | | } |
464 | | } |
465 | | } |
466 | | |
467 | | static const tw_instr twinstr[] = { |
468 | | { TW_FULL, 1, 16 }, |
469 | | { TW_NEXT, 1, 0 } |
470 | | }; |
471 | | |
472 | | static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 136, 62, 70, 0 } }; |
473 | | |
474 | | void X(codelet_hc2cfdft_16) (planner *p) { |
475 | | X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT); |
476 | | } |
477 | | #else |
478 | | |
479 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 16 -dit -name hc2cfdft_16 -include rdft/scalar/hc2cf.h */ |
480 | | |
481 | | /* |
482 | | * This function contains 206 FP additions, 100 FP multiplications, |
483 | | * (or, 168 additions, 62 multiplications, 38 fused multiply/add), |
484 | | * 61 stack variables, 4 constants, and 64 memory accesses |
485 | | */ |
486 | | #include "rdft/scalar/hc2cf.h" |
487 | | |
488 | | static void hc2cfdft_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
489 | 0 | { |
490 | 0 | DK(KP461939766, +0.461939766255643378064091594698394143411208313); |
491 | 0 | DK(KP191341716, +0.191341716182544885864229992015199433380672281); |
492 | 0 | DK(KP353553390, +0.353553390593273762200422181052424519642417969); |
493 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
494 | 0 | { |
495 | 0 | INT m; |
496 | 0 | for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { |
497 | 0 | E T19, T3h, T21, T2Y, T1o, T3d, T2s, T39, TW, T3i, T24, T2Z, T1z, T3c, T2p; |
498 | 0 | E T3a, Tj, T2S, T28, T2R, T1L, T36, T2i, T32, TC, T2V, T2b, T2U, T1W, T35; |
499 | 0 | E T2l, T33; |
500 | 0 | { |
501 | 0 | E T10, T1m, T14, T1k, T18, T1h, T1f, T1Z; |
502 | 0 | { |
503 | 0 | E TY, TZ, T12, T13; |
504 | 0 | TY = Ip[WS(rs, 4)]; |
505 | 0 | TZ = Im[WS(rs, 4)]; |
506 | 0 | T10 = TY - TZ; |
507 | 0 | T1m = TY + TZ; |
508 | 0 | T12 = Rp[WS(rs, 4)]; |
509 | 0 | T13 = Rm[WS(rs, 4)]; |
510 | 0 | T14 = T12 + T13; |
511 | 0 | T1k = T12 - T13; |
512 | 0 | } |
513 | 0 | { |
514 | 0 | E T16, T17, T1d, T1e; |
515 | 0 | T16 = Ip[0]; |
516 | 0 | T17 = Im[0]; |
517 | 0 | T18 = T16 - T17; |
518 | 0 | T1h = T16 + T17; |
519 | 0 | T1d = Rm[0]; |
520 | 0 | T1e = Rp[0]; |
521 | 0 | T1f = T1d - T1e; |
522 | 0 | T1Z = T1e + T1d; |
523 | 0 | } |
524 | 0 | { |
525 | 0 | E T15, T20, TX, T11; |
526 | 0 | TX = W[14]; |
527 | 0 | T11 = W[15]; |
528 | 0 | T15 = FNMS(T11, T14, TX * T10); |
529 | 0 | T20 = FMA(TX, T14, T11 * T10); |
530 | 0 | T19 = T15 + T18; |
531 | 0 | T3h = T1Z - T20; |
532 | 0 | T21 = T1Z + T20; |
533 | 0 | T2Y = T18 - T15; |
534 | 0 | } |
535 | 0 | { |
536 | 0 | E T1i, T2r, T1n, T2q; |
537 | 0 | { |
538 | 0 | E T1c, T1g, T1j, T1l; |
539 | 0 | T1c = W[0]; |
540 | 0 | T1g = W[1]; |
541 | 0 | T1i = FNMS(T1g, T1h, T1c * T1f); |
542 | 0 | T2r = FMA(T1g, T1f, T1c * T1h); |
543 | 0 | T1j = W[16]; |
544 | 0 | T1l = W[17]; |
545 | 0 | T1n = FMA(T1j, T1k, T1l * T1m); |
546 | 0 | T2q = FNMS(T1l, T1k, T1j * T1m); |
547 | 0 | } |
548 | 0 | T1o = T1i - T1n; |
549 | 0 | T3d = T2r - T2q; |
550 | 0 | T2s = T2q + T2r; |
551 | 0 | T39 = T1n + T1i; |
552 | 0 | } |
553 | 0 | } |
554 | 0 | { |
555 | 0 | E TH, T1s, TL, T1q, TQ, T1x, TU, T1v; |
556 | 0 | { |
557 | 0 | E TF, TG, TJ, TK; |
558 | 0 | TF = Ip[WS(rs, 2)]; |
559 | 0 | TG = Im[WS(rs, 2)]; |
560 | 0 | TH = TF - TG; |
561 | 0 | T1s = TF + TG; |
562 | 0 | TJ = Rp[WS(rs, 2)]; |
563 | 0 | TK = Rm[WS(rs, 2)]; |
564 | 0 | TL = TJ + TK; |
565 | 0 | T1q = TJ - TK; |
566 | 0 | } |
567 | 0 | { |
568 | 0 | E TO, TP, TS, TT; |
569 | 0 | TO = Ip[WS(rs, 6)]; |
570 | 0 | TP = Im[WS(rs, 6)]; |
571 | 0 | TQ = TO - TP; |
572 | 0 | T1x = TO + TP; |
573 | 0 | TS = Rp[WS(rs, 6)]; |
574 | 0 | TT = Rm[WS(rs, 6)]; |
575 | 0 | TU = TS + TT; |
576 | 0 | T1v = TS - TT; |
577 | 0 | } |
578 | 0 | { |
579 | 0 | E TM, T22, TV, T23; |
580 | 0 | { |
581 | 0 | E TE, TI, TN, TR; |
582 | 0 | TE = W[6]; |
583 | 0 | TI = W[7]; |
584 | 0 | TM = FNMS(TI, TL, TE * TH); |
585 | 0 | T22 = FMA(TE, TL, TI * TH); |
586 | 0 | TN = W[22]; |
587 | 0 | TR = W[23]; |
588 | 0 | TV = FNMS(TR, TU, TN * TQ); |
589 | 0 | T23 = FMA(TN, TU, TR * TQ); |
590 | 0 | } |
591 | 0 | TW = TM + TV; |
592 | 0 | T3i = TM - TV; |
593 | 0 | T24 = T22 + T23; |
594 | 0 | T2Z = T22 - T23; |
595 | 0 | } |
596 | 0 | { |
597 | 0 | E T1t, T2n, T1y, T2o; |
598 | 0 | { |
599 | 0 | E T1p, T1r, T1u, T1w; |
600 | 0 | T1p = W[8]; |
601 | 0 | T1r = W[9]; |
602 | 0 | T1t = FMA(T1p, T1q, T1r * T1s); |
603 | 0 | T2n = FNMS(T1r, T1q, T1p * T1s); |
604 | 0 | T1u = W[24]; |
605 | 0 | T1w = W[25]; |
606 | 0 | T1y = FMA(T1u, T1v, T1w * T1x); |
607 | 0 | T2o = FNMS(T1w, T1v, T1u * T1x); |
608 | 0 | } |
609 | 0 | T1z = T1t + T1y; |
610 | 0 | T3c = T1y - T1t; |
611 | 0 | T2p = T2n + T2o; |
612 | 0 | T3a = T2n - T2o; |
613 | 0 | } |
614 | 0 | } |
615 | 0 | { |
616 | 0 | E T4, T1E, T8, T1C, Td, T1J, Th, T1H; |
617 | 0 | { |
618 | 0 | E T2, T3, T6, T7; |
619 | 0 | T2 = Ip[WS(rs, 1)]; |
620 | 0 | T3 = Im[WS(rs, 1)]; |
621 | 0 | T4 = T2 - T3; |
622 | 0 | T1E = T2 + T3; |
623 | 0 | T6 = Rp[WS(rs, 1)]; |
624 | 0 | T7 = Rm[WS(rs, 1)]; |
625 | 0 | T8 = T6 + T7; |
626 | 0 | T1C = T6 - T7; |
627 | 0 | } |
628 | 0 | { |
629 | 0 | E Tb, Tc, Tf, Tg; |
630 | 0 | Tb = Ip[WS(rs, 5)]; |
631 | 0 | Tc = Im[WS(rs, 5)]; |
632 | 0 | Td = Tb - Tc; |
633 | 0 | T1J = Tb + Tc; |
634 | 0 | Tf = Rp[WS(rs, 5)]; |
635 | 0 | Tg = Rm[WS(rs, 5)]; |
636 | 0 | Th = Tf + Tg; |
637 | 0 | T1H = Tf - Tg; |
638 | 0 | } |
639 | 0 | { |
640 | 0 | E T9, T26, Ti, T27; |
641 | 0 | { |
642 | 0 | E T1, T5, Ta, Te; |
643 | 0 | T1 = W[2]; |
644 | 0 | T5 = W[3]; |
645 | 0 | T9 = FNMS(T5, T8, T1 * T4); |
646 | 0 | T26 = FMA(T1, T8, T5 * T4); |
647 | 0 | Ta = W[18]; |
648 | 0 | Te = W[19]; |
649 | 0 | Ti = FNMS(Te, Th, Ta * Td); |
650 | 0 | T27 = FMA(Ta, Th, Te * Td); |
651 | 0 | } |
652 | 0 | Tj = T9 + Ti; |
653 | 0 | T2S = T26 - T27; |
654 | 0 | T28 = T26 + T27; |
655 | 0 | T2R = T9 - Ti; |
656 | 0 | } |
657 | 0 | { |
658 | 0 | E T1F, T2g, T1K, T2h; |
659 | 0 | { |
660 | 0 | E T1B, T1D, T1G, T1I; |
661 | 0 | T1B = W[4]; |
662 | 0 | T1D = W[5]; |
663 | 0 | T1F = FMA(T1B, T1C, T1D * T1E); |
664 | 0 | T2g = FNMS(T1D, T1C, T1B * T1E); |
665 | 0 | T1G = W[20]; |
666 | 0 | T1I = W[21]; |
667 | 0 | T1K = FMA(T1G, T1H, T1I * T1J); |
668 | 0 | T2h = FNMS(T1I, T1H, T1G * T1J); |
669 | 0 | } |
670 | 0 | T1L = T1F + T1K; |
671 | 0 | T36 = T2g - T2h; |
672 | 0 | T2i = T2g + T2h; |
673 | 0 | T32 = T1K - T1F; |
674 | 0 | } |
675 | 0 | } |
676 | 0 | { |
677 | 0 | E Tn, T1P, Tr, T1N, Tw, T1U, TA, T1S; |
678 | 0 | { |
679 | 0 | E Tl, Tm, Tp, Tq; |
680 | 0 | Tl = Ip[WS(rs, 7)]; |
681 | 0 | Tm = Im[WS(rs, 7)]; |
682 | 0 | Tn = Tl - Tm; |
683 | 0 | T1P = Tl + Tm; |
684 | 0 | Tp = Rp[WS(rs, 7)]; |
685 | 0 | Tq = Rm[WS(rs, 7)]; |
686 | 0 | Tr = Tp + Tq; |
687 | 0 | T1N = Tp - Tq; |
688 | 0 | } |
689 | 0 | { |
690 | 0 | E Tu, Tv, Ty, Tz; |
691 | 0 | Tu = Ip[WS(rs, 3)]; |
692 | 0 | Tv = Im[WS(rs, 3)]; |
693 | 0 | Tw = Tu - Tv; |
694 | 0 | T1U = Tu + Tv; |
695 | 0 | Ty = Rp[WS(rs, 3)]; |
696 | 0 | Tz = Rm[WS(rs, 3)]; |
697 | 0 | TA = Ty + Tz; |
698 | 0 | T1S = Ty - Tz; |
699 | 0 | } |
700 | 0 | { |
701 | 0 | E Ts, T29, TB, T2a; |
702 | 0 | { |
703 | 0 | E Tk, To, Tt, Tx; |
704 | 0 | Tk = W[26]; |
705 | 0 | To = W[27]; |
706 | 0 | Ts = FNMS(To, Tr, Tk * Tn); |
707 | 0 | T29 = FMA(Tk, Tr, To * Tn); |
708 | 0 | Tt = W[10]; |
709 | 0 | Tx = W[11]; |
710 | 0 | TB = FNMS(Tx, TA, Tt * Tw); |
711 | 0 | T2a = FMA(Tt, TA, Tx * Tw); |
712 | 0 | } |
713 | 0 | TC = Ts + TB; |
714 | 0 | T2V = Ts - TB; |
715 | 0 | T2b = T29 + T2a; |
716 | 0 | T2U = T29 - T2a; |
717 | 0 | } |
718 | 0 | { |
719 | 0 | E T1Q, T2j, T1V, T2k; |
720 | 0 | { |
721 | 0 | E T1M, T1O, T1R, T1T; |
722 | 0 | T1M = W[28]; |
723 | 0 | T1O = W[29]; |
724 | 0 | T1Q = FMA(T1M, T1N, T1O * T1P); |
725 | 0 | T2j = FNMS(T1O, T1N, T1M * T1P); |
726 | 0 | T1R = W[12]; |
727 | 0 | T1T = W[13]; |
728 | 0 | T1V = FMA(T1R, T1S, T1T * T1U); |
729 | 0 | T2k = FNMS(T1T, T1S, T1R * T1U); |
730 | 0 | } |
731 | 0 | T1W = T1Q + T1V; |
732 | 0 | T35 = T1V - T1Q; |
733 | 0 | T2l = T2j + T2k; |
734 | 0 | T33 = T2j - T2k; |
735 | 0 | } |
736 | 0 | } |
737 | 0 | { |
738 | 0 | E T1b, T2f, T2u, T2w, T1Y, T2e, T2d, T2v; |
739 | 0 | { |
740 | 0 | E TD, T1a, T2m, T2t; |
741 | 0 | TD = Tj + TC; |
742 | 0 | T1a = TW + T19; |
743 | 0 | T1b = TD + T1a; |
744 | 0 | T2f = T1a - TD; |
745 | 0 | T2m = T2i + T2l; |
746 | 0 | T2t = T2p + T2s; |
747 | 0 | T2u = T2m - T2t; |
748 | 0 | T2w = T2m + T2t; |
749 | 0 | } |
750 | 0 | { |
751 | 0 | E T1A, T1X, T25, T2c; |
752 | 0 | T1A = T1o - T1z; |
753 | 0 | T1X = T1L + T1W; |
754 | 0 | T1Y = T1A - T1X; |
755 | 0 | T2e = T1X + T1A; |
756 | 0 | T25 = T21 + T24; |
757 | 0 | T2c = T28 + T2b; |
758 | 0 | T2d = T25 - T2c; |
759 | 0 | T2v = T25 + T2c; |
760 | 0 | } |
761 | 0 | Ip[0] = KP500000000 * (T1b + T1Y); |
762 | 0 | Rp[0] = KP500000000 * (T2v + T2w); |
763 | 0 | Im[WS(rs, 7)] = KP500000000 * (T1Y - T1b); |
764 | 0 | Rm[WS(rs, 7)] = KP500000000 * (T2v - T2w); |
765 | 0 | Rm[WS(rs, 3)] = KP500000000 * (T2d - T2e); |
766 | 0 | Im[WS(rs, 3)] = KP500000000 * (T2u - T2f); |
767 | 0 | Rp[WS(rs, 4)] = KP500000000 * (T2d + T2e); |
768 | 0 | Ip[WS(rs, 4)] = KP500000000 * (T2f + T2u); |
769 | 0 | } |
770 | 0 | { |
771 | 0 | E T2z, T2L, T2J, T2P, T2C, T2M, T2F, T2N; |
772 | 0 | { |
773 | 0 | E T2x, T2y, T2H, T2I; |
774 | 0 | T2x = T2b - T28; |
775 | 0 | T2y = T19 - TW; |
776 | 0 | T2z = KP500000000 * (T2x + T2y); |
777 | 0 | T2L = KP500000000 * (T2y - T2x); |
778 | 0 | T2H = T21 - T24; |
779 | 0 | T2I = Tj - TC; |
780 | 0 | T2J = KP500000000 * (T2H - T2I); |
781 | 0 | T2P = KP500000000 * (T2H + T2I); |
782 | 0 | } |
783 | 0 | { |
784 | 0 | E T2A, T2B, T2D, T2E; |
785 | 0 | T2A = T2l - T2i; |
786 | 0 | T2B = T1L - T1W; |
787 | 0 | T2C = T2A + T2B; |
788 | 0 | T2M = T2A - T2B; |
789 | 0 | T2D = T1z + T1o; |
790 | 0 | T2E = T2s - T2p; |
791 | 0 | T2F = T2D - T2E; |
792 | 0 | T2N = T2D + T2E; |
793 | 0 | } |
794 | 0 | { |
795 | 0 | E T2G, T2Q, T2K, T2O; |
796 | 0 | T2G = KP353553390 * (T2C + T2F); |
797 | 0 | Ip[WS(rs, 2)] = T2z + T2G; |
798 | 0 | Im[WS(rs, 5)] = T2G - T2z; |
799 | 0 | T2Q = KP353553390 * (T2M + T2N); |
800 | 0 | Rm[WS(rs, 5)] = T2P - T2Q; |
801 | 0 | Rp[WS(rs, 2)] = T2P + T2Q; |
802 | 0 | T2K = KP353553390 * (T2F - T2C); |
803 | 0 | Rm[WS(rs, 1)] = T2J - T2K; |
804 | 0 | Rp[WS(rs, 6)] = T2J + T2K; |
805 | 0 | T2O = KP353553390 * (T2M - T2N); |
806 | 0 | Ip[WS(rs, 6)] = T2L + T2O; |
807 | 0 | Im[WS(rs, 1)] = T2O - T2L; |
808 | 0 | } |
809 | 0 | } |
810 | 0 | { |
811 | 0 | E T30, T3w, T3F, T3j, T2X, T3G, T3D, T3L, T3m, T3v, T38, T3q, T3A, T3K, T3f; |
812 | 0 | E T3r; |
813 | 0 | { |
814 | 0 | E T2T, T2W, T34, T37; |
815 | 0 | T30 = KP500000000 * (T2Y - T2Z); |
816 | 0 | T3w = KP500000000 * (T2Z + T2Y); |
817 | 0 | T3F = KP500000000 * (T3h - T3i); |
818 | 0 | T3j = KP500000000 * (T3h + T3i); |
819 | 0 | T2T = T2R - T2S; |
820 | 0 | T2W = T2U + T2V; |
821 | 0 | T2X = KP353553390 * (T2T + T2W); |
822 | 0 | T3G = KP353553390 * (T2T - T2W); |
823 | 0 | { |
824 | 0 | E T3B, T3C, T3k, T3l; |
825 | 0 | T3B = T3a + T39; |
826 | 0 | T3C = T3d - T3c; |
827 | 0 | T3D = FNMS(KP461939766, T3C, KP191341716 * T3B); |
828 | 0 | T3L = FMA(KP461939766, T3B, KP191341716 * T3C); |
829 | 0 | T3k = T2S + T2R; |
830 | 0 | T3l = T2U - T2V; |
831 | 0 | T3m = KP353553390 * (T3k + T3l); |
832 | 0 | T3v = KP353553390 * (T3l - T3k); |
833 | 0 | } |
834 | 0 | T34 = T32 + T33; |
835 | 0 | T37 = T35 - T36; |
836 | 0 | T38 = FMA(KP191341716, T34, KP461939766 * T37); |
837 | 0 | T3q = FNMS(KP191341716, T37, KP461939766 * T34); |
838 | 0 | { |
839 | 0 | E T3y, T3z, T3b, T3e; |
840 | 0 | T3y = T33 - T32; |
841 | 0 | T3z = T36 + T35; |
842 | 0 | T3A = FMA(KP461939766, T3y, KP191341716 * T3z); |
843 | 0 | T3K = FNMS(KP461939766, T3z, KP191341716 * T3y); |
844 | 0 | T3b = T39 - T3a; |
845 | 0 | T3e = T3c + T3d; |
846 | 0 | T3f = FNMS(KP191341716, T3e, KP461939766 * T3b); |
847 | 0 | T3r = FMA(KP191341716, T3b, KP461939766 * T3e); |
848 | 0 | } |
849 | 0 | } |
850 | 0 | { |
851 | 0 | E T31, T3g, T3t, T3u; |
852 | 0 | T31 = T2X + T30; |
853 | 0 | T3g = T38 + T3f; |
854 | 0 | Ip[WS(rs, 1)] = T31 + T3g; |
855 | 0 | Im[WS(rs, 6)] = T3g - T31; |
856 | 0 | T3t = T3j + T3m; |
857 | 0 | T3u = T3q + T3r; |
858 | 0 | Rm[WS(rs, 6)] = T3t - T3u; |
859 | 0 | Rp[WS(rs, 1)] = T3t + T3u; |
860 | 0 | } |
861 | 0 | { |
862 | 0 | E T3n, T3o, T3p, T3s; |
863 | 0 | T3n = T3j - T3m; |
864 | 0 | T3o = T3f - T38; |
865 | 0 | Rm[WS(rs, 2)] = T3n - T3o; |
866 | 0 | Rp[WS(rs, 5)] = T3n + T3o; |
867 | 0 | T3p = T30 - T2X; |
868 | 0 | T3s = T3q - T3r; |
869 | 0 | Ip[WS(rs, 5)] = T3p + T3s; |
870 | 0 | Im[WS(rs, 2)] = T3s - T3p; |
871 | 0 | } |
872 | 0 | { |
873 | 0 | E T3x, T3E, T3N, T3O; |
874 | 0 | T3x = T3v + T3w; |
875 | 0 | T3E = T3A + T3D; |
876 | 0 | Ip[WS(rs, 3)] = T3x + T3E; |
877 | 0 | Im[WS(rs, 4)] = T3E - T3x; |
878 | 0 | T3N = T3F + T3G; |
879 | 0 | T3O = T3K + T3L; |
880 | 0 | Rm[WS(rs, 4)] = T3N - T3O; |
881 | 0 | Rp[WS(rs, 3)] = T3N + T3O; |
882 | 0 | } |
883 | 0 | { |
884 | 0 | E T3H, T3I, T3J, T3M; |
885 | 0 | T3H = T3F - T3G; |
886 | 0 | T3I = T3D - T3A; |
887 | 0 | Rm[0] = T3H - T3I; |
888 | 0 | Rp[WS(rs, 7)] = T3H + T3I; |
889 | 0 | T3J = T3w - T3v; |
890 | 0 | T3M = T3K - T3L; |
891 | 0 | Ip[WS(rs, 7)] = T3J + T3M; |
892 | 0 | Im[0] = T3M - T3J; |
893 | 0 | } |
894 | 0 | } |
895 | 0 | } |
896 | 0 | } |
897 | 0 | } |
898 | | |
899 | | static const tw_instr twinstr[] = { |
900 | | { TW_FULL, 1, 16 }, |
901 | | { TW_NEXT, 1, 0 } |
902 | | }; |
903 | | |
904 | | static const hc2c_desc desc = { 16, "hc2cfdft_16", twinstr, &GENUS, { 168, 62, 38, 0 } }; |
905 | | |
906 | 1 | void X(codelet_hc2cfdft_16) (planner *p) { |
907 | 1 | X(khc2c_register) (p, hc2cfdft_16, &desc, HC2C_VIA_DFT); |
908 | 1 | } |
909 | | #endif |