/src/fftw3/rdft/scalar/r2cf/r2cfII_15.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Wed Jul 23 07:01:47 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 72 FP additions, 41 FP multiplications, |
32 | | * (or, 38 additions, 7 multiplications, 34 fused multiply/add), |
33 | | * 42 stack variables, 12 constants, and 30 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cfII.h" |
36 | | |
37 | | static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP823639103, +0.823639103546331925877420039278190003029660514); |
40 | | DK(KP910592997, +0.910592997310029334643087372129977886038870291); |
41 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
42 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
43 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
44 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
45 | | DK(KP690983005, +0.690983005625052575897706582817180941139845410); |
46 | | DK(KP447213595, +0.447213595499957939281834733746255247088123672); |
47 | | DK(KP552786404, +0.552786404500042060718165266253744752911876328); |
48 | | DK(KP809016994, +0.809016994374947424102293417182819058860154590); |
49 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
50 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
51 | | { |
52 | | INT i; |
53 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { |
54 | | E Ta, Tl, T1, T6, T7, TX, TT, T8, Tg, Th, TM, TZ, Tj, Tz, Tr; |
55 | | E Ts, TP, TY, Tu, TC; |
56 | | Ta = R0[WS(rs, 5)]; |
57 | | Tl = R1[WS(rs, 2)]; |
58 | | { |
59 | | E T2, T5, T3, T4, TR, TS; |
60 | | T1 = R0[0]; |
61 | | T2 = R0[WS(rs, 3)]; |
62 | | T5 = R1[WS(rs, 4)]; |
63 | | T3 = R0[WS(rs, 6)]; |
64 | | T4 = R1[WS(rs, 1)]; |
65 | | TR = T2 + T5; |
66 | | TS = T3 + T4; |
67 | | T6 = T2 + T3 - T4 - T5; |
68 | | T7 = FNMS(KP250000000, T6, T1); |
69 | | TX = FNMS(KP618033988, TR, TS); |
70 | | TT = FMA(KP618033988, TS, TR); |
71 | | T8 = (T3 + T5 - T2) - T4; |
72 | | } |
73 | | { |
74 | | E Tf, TL, TK, Ti, Ty; |
75 | | { |
76 | | E Tb, Tc, Td, Te; |
77 | | Tb = R1[0]; |
78 | | Tg = R0[WS(rs, 2)]; |
79 | | Tc = R1[WS(rs, 3)]; |
80 | | Td = R1[WS(rs, 6)]; |
81 | | Te = Tc + Td; |
82 | | Tf = Tb - Te; |
83 | | TL = Tc - Td; |
84 | | Th = Tb + Te; |
85 | | TK = Tg + Tb; |
86 | | } |
87 | | TM = FMA(KP618033988, TL, TK); |
88 | | TZ = FNMS(KP618033988, TK, TL); |
89 | | Ti = FMA(KP809016994, Th, Tg); |
90 | | Tj = FNMS(KP552786404, Ti, Tf); |
91 | | Ty = FMA(KP447213595, Th, Tf); |
92 | | Tz = FNMS(KP690983005, Ty, Tg); |
93 | | } |
94 | | { |
95 | | E Tq, TO, TN, Tt, TB; |
96 | | { |
97 | | E Tm, Tn, To, Tp; |
98 | | Tm = R0[WS(rs, 7)]; |
99 | | Tr = R1[WS(rs, 5)]; |
100 | | Tn = R0[WS(rs, 1)]; |
101 | | To = R0[WS(rs, 4)]; |
102 | | Tp = Tn + To; |
103 | | Tq = Tm - Tp; |
104 | | TO = To - Tn; |
105 | | Ts = Tm + Tp; |
106 | | TN = Tr + Tm; |
107 | | } |
108 | | TP = FMA(KP618033988, TO, TN); |
109 | | TY = FNMS(KP618033988, TN, TO); |
110 | | Tt = FMA(KP809016994, Ts, Tr); |
111 | | Tu = FNMS(KP552786404, Tt, Tq); |
112 | | TB = FMA(KP447213595, Ts, Tq); |
113 | | TC = FNMS(KP690983005, TB, Tr); |
114 | | } |
115 | | { |
116 | | E TF, TG, TH, TI; |
117 | | TF = T1 + T6; |
118 | | TG = Ts - Tr - Tl; |
119 | | TH = Ta + Tg - Th; |
120 | | TI = TG + TH; |
121 | | Cr[WS(csr, 2)] = FNMS(KP500000000, TI, TF); |
122 | | Ci[WS(csi, 2)] = KP866025403 * (TH - TG); |
123 | | Cr[WS(csr, 7)] = TF + TI; |
124 | | } |
125 | | { |
126 | | E Tx, T14, T10, T11, TE, T12, TA, TD, T13; |
127 | | Tx = FMA(KP559016994, T8, T7); |
128 | | T14 = TZ - TY; |
129 | | T10 = TY + TZ; |
130 | | T11 = FMA(KP500000000, T10, TX); |
131 | | TA = FNMS(KP809016994, Tz, Ta); |
132 | | TD = FNMS(KP809016994, TC, Tl); |
133 | | TE = TA - TD; |
134 | | T12 = TD + TA; |
135 | | Cr[WS(csr, 1)] = Tx + TE; |
136 | | Ci[WS(csi, 1)] = KP951056516 * (T10 - TX); |
137 | | Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP910592997, T12, T11)); |
138 | | Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP910592997, T12, T11))); |
139 | | T13 = FNMS(KP500000000, TE, Tx); |
140 | | Cr[WS(csr, 3)] = FNMS(KP823639103, T14, T13); |
141 | | Cr[WS(csr, 6)] = FMA(KP823639103, T14, T13); |
142 | | } |
143 | | { |
144 | | E T9, TQ, TU, TV, Tw, TW, Tk, Tv, TJ; |
145 | | T9 = FNMS(KP559016994, T8, T7); |
146 | | TQ = TM - TP; |
147 | | TU = TP + TM; |
148 | | TV = FMA(KP500000000, TU, TT); |
149 | | Tk = FNMS(KP559016994, Tj, Ta); |
150 | | Tv = FNMS(KP559016994, Tu, Tl); |
151 | | Tw = Tk - Tv; |
152 | | TW = Tv + Tk; |
153 | | Cr[WS(csr, 4)] = T9 + Tw; |
154 | | Ci[WS(csi, 4)] = KP951056516 * (TT - TU); |
155 | | Ci[0] = -(KP951056516 * (FMA(KP910592997, TW, TV))); |
156 | | Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP910592997, TW, TV))); |
157 | | TJ = FNMS(KP500000000, Tw, T9); |
158 | | Cr[WS(csr, 5)] = FNMS(KP823639103, TQ, TJ); |
159 | | Cr[0] = FMA(KP823639103, TQ, TJ); |
160 | | } |
161 | | } |
162 | | } |
163 | | } |
164 | | |
165 | | static const kr2c_desc desc = { 15, "r2cfII_15", { 38, 7, 34, 0 }, &GENUS }; |
166 | | |
167 | | void X(codelet_r2cfII_15) (planner *p) { X(kr2c_register) (p, r2cfII_15, &desc); |
168 | | } |
169 | | |
170 | | #else |
171 | | |
172 | | /* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */ |
173 | | |
174 | | /* |
175 | | * This function contains 72 FP additions, 33 FP multiplications, |
176 | | * (or, 54 additions, 15 multiplications, 18 fused multiply/add), |
177 | | * 37 stack variables, 8 constants, and 30 memory accesses |
178 | | */ |
179 | | #include "rdft/scalar/r2cfII.h" |
180 | | |
181 | | static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
182 | 0 | { |
183 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
184 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
185 | 0 | DK(KP809016994, +0.809016994374947424102293417182819058860154590); |
186 | 0 | DK(KP309016994, +0.309016994374947424102293417182819058860154590); |
187 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
188 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
189 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
190 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
191 | 0 | { |
192 | 0 | INT i; |
193 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) { |
194 | 0 | E T1, T2, Tx, TR, TE, T7, TD, Th, Tm, Tr, TQ, TA, TB, Tf, Te; |
195 | 0 | E Tu, TS, Td, TH, TO; |
196 | 0 | T1 = R0[WS(rs, 5)]; |
197 | 0 | { |
198 | 0 | E T3, Tv, T6, Tw, T4, T5; |
199 | 0 | T2 = R0[WS(rs, 2)]; |
200 | 0 | T3 = R1[0]; |
201 | 0 | Tv = T2 + T3; |
202 | 0 | T4 = R1[WS(rs, 3)]; |
203 | 0 | T5 = R1[WS(rs, 6)]; |
204 | 0 | T6 = T4 + T5; |
205 | 0 | Tw = T4 - T5; |
206 | 0 | Tx = FMA(KP951056516, Tv, KP587785252 * Tw); |
207 | 0 | TR = FNMS(KP587785252, Tv, KP951056516 * Tw); |
208 | 0 | TE = KP559016994 * (T3 - T6); |
209 | 0 | T7 = T3 + T6; |
210 | 0 | TD = KP250000000 * T7; |
211 | 0 | } |
212 | 0 | { |
213 | 0 | E Ti, Tl, Tj, Tk, Tp, Tq; |
214 | 0 | Th = R0[0]; |
215 | 0 | Ti = R1[WS(rs, 4)]; |
216 | 0 | Tl = R0[WS(rs, 6)]; |
217 | 0 | Tj = R1[WS(rs, 1)]; |
218 | 0 | Tk = R0[WS(rs, 3)]; |
219 | 0 | Tp = Tk + Ti; |
220 | 0 | Tq = Tl + Tj; |
221 | 0 | Tm = Ti + Tj - (Tk + Tl); |
222 | 0 | Tr = FMA(KP951056516, Tp, KP587785252 * Tq); |
223 | 0 | TQ = FNMS(KP951056516, Tq, KP587785252 * Tp); |
224 | 0 | TA = FMA(KP250000000, Tm, Th); |
225 | 0 | TB = KP559016994 * (Tl + Ti - (Tk + Tj)); |
226 | 0 | } |
227 | 0 | { |
228 | 0 | E T9, Tt, Tc, Ts, Ta, Tb, TG; |
229 | 0 | Tf = R1[WS(rs, 2)]; |
230 | 0 | T9 = R0[WS(rs, 7)]; |
231 | 0 | Te = R1[WS(rs, 5)]; |
232 | 0 | Tt = T9 + Te; |
233 | 0 | Ta = R0[WS(rs, 1)]; |
234 | 0 | Tb = R0[WS(rs, 4)]; |
235 | 0 | Tc = Ta + Tb; |
236 | 0 | Ts = Ta - Tb; |
237 | 0 | Tu = FNMS(KP951056516, Tt, KP587785252 * Ts); |
238 | 0 | TS = FMA(KP951056516, Ts, KP587785252 * Tt); |
239 | 0 | Td = T9 + Tc; |
240 | 0 | TG = KP559016994 * (T9 - Tc); |
241 | 0 | TH = FNMS(KP309016994, Te, TG) + FNMA(KP250000000, Td, Tf); |
242 | 0 | TO = FMS(KP809016994, Te, Tf) + FNMA(KP250000000, Td, TG); |
243 | 0 | } |
244 | 0 | { |
245 | 0 | E Tn, T8, Tg, To; |
246 | 0 | Tn = Th - Tm; |
247 | 0 | T8 = T1 + T2 - T7; |
248 | 0 | Tg = Td - Te - Tf; |
249 | 0 | To = T8 + Tg; |
250 | 0 | Ci[WS(csi, 2)] = KP866025403 * (T8 - Tg); |
251 | 0 | Cr[WS(csr, 2)] = FNMS(KP500000000, To, Tn); |
252 | 0 | Cr[WS(csr, 7)] = Tn + To; |
253 | 0 | } |
254 | 0 | { |
255 | 0 | E TM, TX, TT, TV, TP, TU, TN, TW; |
256 | 0 | TM = TB + TA; |
257 | 0 | TX = KP866025403 * (TR + TS); |
258 | 0 | TT = TR - TS; |
259 | 0 | TV = FMS(KP500000000, TT, TQ); |
260 | 0 | TN = T1 + TE + FNMS(KP809016994, T2, TD); |
261 | 0 | TP = TN + TO; |
262 | 0 | TU = KP866025403 * (TO - TN); |
263 | 0 | Cr[WS(csr, 1)] = TM + TP; |
264 | 0 | Ci[WS(csi, 1)] = TQ + TT; |
265 | 0 | Ci[WS(csi, 6)] = TU - TV; |
266 | 0 | Ci[WS(csi, 3)] = TU + TV; |
267 | 0 | TW = FNMS(KP500000000, TP, TM); |
268 | 0 | Cr[WS(csr, 3)] = TW - TX; |
269 | 0 | Cr[WS(csr, 6)] = TW + TX; |
270 | 0 | } |
271 | 0 | { |
272 | 0 | E Tz, TC, Ty, TK, TI, TL, TF, TJ; |
273 | 0 | Tz = KP866025403 * (Tx + Tu); |
274 | 0 | TC = TA - TB; |
275 | 0 | Ty = Tu - Tx; |
276 | 0 | TK = FMS(KP500000000, Ty, Tr); |
277 | 0 | TF = FMA(KP309016994, T2, T1) + TD - TE; |
278 | 0 | TI = TF + TH; |
279 | 0 | TL = KP866025403 * (TH - TF); |
280 | 0 | Ci[WS(csi, 4)] = Tr + Ty; |
281 | 0 | Cr[WS(csr, 4)] = TC + TI; |
282 | 0 | Ci[WS(csi, 5)] = TK - TL; |
283 | 0 | Ci[0] = TK + TL; |
284 | 0 | TJ = FNMS(KP500000000, TI, TC); |
285 | 0 | Cr[0] = Tz + TJ; |
286 | 0 | Cr[WS(csr, 5)] = TJ - Tz; |
287 | 0 | } |
288 | 0 | } |
289 | 0 | } |
290 | 0 | } |
291 | | |
292 | | static const kr2c_desc desc = { 15, "r2cfII_15", { 54, 15, 18, 0 }, &GENUS }; |
293 | | |
294 | 1 | void X(codelet_r2cfII_15) (planner *p) { X(kr2c_register) (p, r2cfII_15, &desc); |
295 | 1 | } |
296 | | |
297 | | #endif |