Coverage Report

Created: 2025-07-23 07:03

/src/fftw3/rdft/scalar/r2cf/r2cfII_15.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Wed Jul 23 07:01:47 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */
29
30
/*
31
 * This function contains 72 FP additions, 41 FP multiplications,
32
 * (or, 38 additions, 7 multiplications, 34 fused multiply/add),
33
 * 42 stack variables, 12 constants, and 30 memory accesses
34
 */
35
#include "rdft/scalar/r2cfII.h"
36
37
static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP823639103, +0.823639103546331925877420039278190003029660514);
40
     DK(KP910592997, +0.910592997310029334643087372129977886038870291);
41
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
42
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
43
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
44
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
45
     DK(KP690983005, +0.690983005625052575897706582817180941139845410);
46
     DK(KP447213595, +0.447213595499957939281834733746255247088123672);
47
     DK(KP552786404, +0.552786404500042060718165266253744752911876328);
48
     DK(KP809016994, +0.809016994374947424102293417182819058860154590);
49
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
50
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
51
     {
52
    INT i;
53
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
54
         E Ta, Tl, T1, T6, T7, TX, TT, T8, Tg, Th, TM, TZ, Tj, Tz, Tr;
55
         E Ts, TP, TY, Tu, TC;
56
         Ta = R0[WS(rs, 5)];
57
         Tl = R1[WS(rs, 2)];
58
         {
59
        E T2, T5, T3, T4, TR, TS;
60
        T1 = R0[0];
61
        T2 = R0[WS(rs, 3)];
62
        T5 = R1[WS(rs, 4)];
63
        T3 = R0[WS(rs, 6)];
64
        T4 = R1[WS(rs, 1)];
65
        TR = T2 + T5;
66
        TS = T3 + T4;
67
        T6 = T2 + T3 - T4 - T5;
68
        T7 = FNMS(KP250000000, T6, T1);
69
        TX = FNMS(KP618033988, TR, TS);
70
        TT = FMA(KP618033988, TS, TR);
71
        T8 = (T3 + T5 - T2) - T4;
72
         }
73
         {
74
        E Tf, TL, TK, Ti, Ty;
75
        {
76
       E Tb, Tc, Td, Te;
77
       Tb = R1[0];
78
       Tg = R0[WS(rs, 2)];
79
       Tc = R1[WS(rs, 3)];
80
       Td = R1[WS(rs, 6)];
81
       Te = Tc + Td;
82
       Tf = Tb - Te;
83
       TL = Tc - Td;
84
       Th = Tb + Te;
85
       TK = Tg + Tb;
86
        }
87
        TM = FMA(KP618033988, TL, TK);
88
        TZ = FNMS(KP618033988, TK, TL);
89
        Ti = FMA(KP809016994, Th, Tg);
90
        Tj = FNMS(KP552786404, Ti, Tf);
91
        Ty = FMA(KP447213595, Th, Tf);
92
        Tz = FNMS(KP690983005, Ty, Tg);
93
         }
94
         {
95
        E Tq, TO, TN, Tt, TB;
96
        {
97
       E Tm, Tn, To, Tp;
98
       Tm = R0[WS(rs, 7)];
99
       Tr = R1[WS(rs, 5)];
100
       Tn = R0[WS(rs, 1)];
101
       To = R0[WS(rs, 4)];
102
       Tp = Tn + To;
103
       Tq = Tm - Tp;
104
       TO = To - Tn;
105
       Ts = Tm + Tp;
106
       TN = Tr + Tm;
107
        }
108
        TP = FMA(KP618033988, TO, TN);
109
        TY = FNMS(KP618033988, TN, TO);
110
        Tt = FMA(KP809016994, Ts, Tr);
111
        Tu = FNMS(KP552786404, Tt, Tq);
112
        TB = FMA(KP447213595, Ts, Tq);
113
        TC = FNMS(KP690983005, TB, Tr);
114
         }
115
         {
116
        E TF, TG, TH, TI;
117
        TF = T1 + T6;
118
        TG = Ts - Tr - Tl;
119
        TH = Ta + Tg - Th;
120
        TI = TG + TH;
121
        Cr[WS(csr, 2)] = FNMS(KP500000000, TI, TF);
122
        Ci[WS(csi, 2)] = KP866025403 * (TH - TG);
123
        Cr[WS(csr, 7)] = TF + TI;
124
         }
125
         {
126
        E Tx, T14, T10, T11, TE, T12, TA, TD, T13;
127
        Tx = FMA(KP559016994, T8, T7);
128
        T14 = TZ - TY;
129
        T10 = TY + TZ;
130
        T11 = FMA(KP500000000, T10, TX);
131
        TA = FNMS(KP809016994, Tz, Ta);
132
        TD = FNMS(KP809016994, TC, Tl);
133
        TE = TA - TD;
134
        T12 = TD + TA;
135
        Cr[WS(csr, 1)] = Tx + TE;
136
        Ci[WS(csi, 1)] = KP951056516 * (T10 - TX);
137
        Ci[WS(csi, 3)] = KP951056516 * (FNMS(KP910592997, T12, T11));
138
        Ci[WS(csi, 6)] = -(KP951056516 * (FMA(KP910592997, T12, T11)));
139
        T13 = FNMS(KP500000000, TE, Tx);
140
        Cr[WS(csr, 3)] = FNMS(KP823639103, T14, T13);
141
        Cr[WS(csr, 6)] = FMA(KP823639103, T14, T13);
142
         }
143
         {
144
        E T9, TQ, TU, TV, Tw, TW, Tk, Tv, TJ;
145
        T9 = FNMS(KP559016994, T8, T7);
146
        TQ = TM - TP;
147
        TU = TP + TM;
148
        TV = FMA(KP500000000, TU, TT);
149
        Tk = FNMS(KP559016994, Tj, Ta);
150
        Tv = FNMS(KP559016994, Tu, Tl);
151
        Tw = Tk - Tv;
152
        TW = Tv + Tk;
153
        Cr[WS(csr, 4)] = T9 + Tw;
154
        Ci[WS(csi, 4)] = KP951056516 * (TT - TU);
155
        Ci[0] = -(KP951056516 * (FMA(KP910592997, TW, TV)));
156
        Ci[WS(csi, 5)] = -(KP951056516 * (FNMS(KP910592997, TW, TV)));
157
        TJ = FNMS(KP500000000, Tw, T9);
158
        Cr[WS(csr, 5)] = FNMS(KP823639103, TQ, TJ);
159
        Cr[0] = FMA(KP823639103, TQ, TJ);
160
         }
161
    }
162
     }
163
}
164
165
static const kr2c_desc desc = { 15, "r2cfII_15", { 38, 7, 34, 0 }, &GENUS };
166
167
void X(codelet_r2cfII_15) (planner *p) { X(kr2c_register) (p, r2cfII_15, &desc);
168
}
169
170
#else
171
172
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 15 -name r2cfII_15 -dft-II -include rdft/scalar/r2cfII.h */
173
174
/*
175
 * This function contains 72 FP additions, 33 FP multiplications,
176
 * (or, 54 additions, 15 multiplications, 18 fused multiply/add),
177
 * 37 stack variables, 8 constants, and 30 memory accesses
178
 */
179
#include "rdft/scalar/r2cfII.h"
180
181
static void r2cfII_15(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
182
0
{
183
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
184
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
185
0
     DK(KP809016994, +0.809016994374947424102293417182819058860154590);
186
0
     DK(KP309016994, +0.309016994374947424102293417182819058860154590);
187
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
188
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
189
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
190
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
191
0
     {
192
0
    INT i;
193
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(60, rs), MAKE_VOLATILE_STRIDE(60, csr), MAKE_VOLATILE_STRIDE(60, csi)) {
194
0
         E T1, T2, Tx, TR, TE, T7, TD, Th, Tm, Tr, TQ, TA, TB, Tf, Te;
195
0
         E Tu, TS, Td, TH, TO;
196
0
         T1 = R0[WS(rs, 5)];
197
0
         {
198
0
        E T3, Tv, T6, Tw, T4, T5;
199
0
        T2 = R0[WS(rs, 2)];
200
0
        T3 = R1[0];
201
0
        Tv = T2 + T3;
202
0
        T4 = R1[WS(rs, 3)];
203
0
        T5 = R1[WS(rs, 6)];
204
0
        T6 = T4 + T5;
205
0
        Tw = T4 - T5;
206
0
        Tx = FMA(KP951056516, Tv, KP587785252 * Tw);
207
0
        TR = FNMS(KP587785252, Tv, KP951056516 * Tw);
208
0
        TE = KP559016994 * (T3 - T6);
209
0
        T7 = T3 + T6;
210
0
        TD = KP250000000 * T7;
211
0
         }
212
0
         {
213
0
        E Ti, Tl, Tj, Tk, Tp, Tq;
214
0
        Th = R0[0];
215
0
        Ti = R1[WS(rs, 4)];
216
0
        Tl = R0[WS(rs, 6)];
217
0
        Tj = R1[WS(rs, 1)];
218
0
        Tk = R0[WS(rs, 3)];
219
0
        Tp = Tk + Ti;
220
0
        Tq = Tl + Tj;
221
0
        Tm = Ti + Tj - (Tk + Tl);
222
0
        Tr = FMA(KP951056516, Tp, KP587785252 * Tq);
223
0
        TQ = FNMS(KP951056516, Tq, KP587785252 * Tp);
224
0
        TA = FMA(KP250000000, Tm, Th);
225
0
        TB = KP559016994 * (Tl + Ti - (Tk + Tj));
226
0
         }
227
0
         {
228
0
        E T9, Tt, Tc, Ts, Ta, Tb, TG;
229
0
        Tf = R1[WS(rs, 2)];
230
0
        T9 = R0[WS(rs, 7)];
231
0
        Te = R1[WS(rs, 5)];
232
0
        Tt = T9 + Te;
233
0
        Ta = R0[WS(rs, 1)];
234
0
        Tb = R0[WS(rs, 4)];
235
0
        Tc = Ta + Tb;
236
0
        Ts = Ta - Tb;
237
0
        Tu = FNMS(KP951056516, Tt, KP587785252 * Ts);
238
0
        TS = FMA(KP951056516, Ts, KP587785252 * Tt);
239
0
        Td = T9 + Tc;
240
0
        TG = KP559016994 * (T9 - Tc);
241
0
        TH = FNMS(KP309016994, Te, TG) + FNMA(KP250000000, Td, Tf);
242
0
        TO = FMS(KP809016994, Te, Tf) + FNMA(KP250000000, Td, TG);
243
0
         }
244
0
         {
245
0
        E Tn, T8, Tg, To;
246
0
        Tn = Th - Tm;
247
0
        T8 = T1 + T2 - T7;
248
0
        Tg = Td - Te - Tf;
249
0
        To = T8 + Tg;
250
0
        Ci[WS(csi, 2)] = KP866025403 * (T8 - Tg);
251
0
        Cr[WS(csr, 2)] = FNMS(KP500000000, To, Tn);
252
0
        Cr[WS(csr, 7)] = Tn + To;
253
0
         }
254
0
         {
255
0
        E TM, TX, TT, TV, TP, TU, TN, TW;
256
0
        TM = TB + TA;
257
0
        TX = KP866025403 * (TR + TS);
258
0
        TT = TR - TS;
259
0
        TV = FMS(KP500000000, TT, TQ);
260
0
        TN = T1 + TE + FNMS(KP809016994, T2, TD);
261
0
        TP = TN + TO;
262
0
        TU = KP866025403 * (TO - TN);
263
0
        Cr[WS(csr, 1)] = TM + TP;
264
0
        Ci[WS(csi, 1)] = TQ + TT;
265
0
        Ci[WS(csi, 6)] = TU - TV;
266
0
        Ci[WS(csi, 3)] = TU + TV;
267
0
        TW = FNMS(KP500000000, TP, TM);
268
0
        Cr[WS(csr, 3)] = TW - TX;
269
0
        Cr[WS(csr, 6)] = TW + TX;
270
0
         }
271
0
         {
272
0
        E Tz, TC, Ty, TK, TI, TL, TF, TJ;
273
0
        Tz = KP866025403 * (Tx + Tu);
274
0
        TC = TA - TB;
275
0
        Ty = Tu - Tx;
276
0
        TK = FMS(KP500000000, Ty, Tr);
277
0
        TF = FMA(KP309016994, T2, T1) + TD - TE;
278
0
        TI = TF + TH;
279
0
        TL = KP866025403 * (TH - TF);
280
0
        Ci[WS(csi, 4)] = Tr + Ty;
281
0
        Cr[WS(csr, 4)] = TC + TI;
282
0
        Ci[WS(csi, 5)] = TK - TL;
283
0
        Ci[0] = TK + TL;
284
0
        TJ = FNMS(KP500000000, TI, TC);
285
0
        Cr[0] = Tz + TJ;
286
0
        Cr[WS(csr, 5)] = TJ - Tz;
287
0
         }
288
0
    }
289
0
     }
290
0
}
291
292
static const kr2c_desc desc = { 15, "r2cfII_15", { 54, 15, 18, 0 }, &GENUS };
293
294
1
void X(codelet_r2cfII_15) (planner *p) { X(kr2c_register) (p, r2cfII_15, &desc);
295
1
}
296
297
#endif