/src/fftw3/dft/scalar/codelets/n1_8.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Aug 26 06:31:28 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 8 -name n1_8 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 52 FP additions, 8 FP multiplications, |
32 | | * (or, 44 additions, 0 multiplications, 8 fused multiply/add), |
33 | | * 28 stack variables, 1 constants, and 32 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
40 | | { |
41 | | INT i; |
42 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { |
43 | | E T3, Tn, Ti, TC, T6, TB, Tl, To, Td, TN, Tz, TH, Ta, TM, Tu; |
44 | | E TG; |
45 | | { |
46 | | E T1, T2, Tj, Tk; |
47 | | T1 = ri[0]; |
48 | | T2 = ri[WS(is, 4)]; |
49 | | T3 = T1 + T2; |
50 | | Tn = T1 - T2; |
51 | | { |
52 | | E Tg, Th, T4, T5; |
53 | | Tg = ii[0]; |
54 | | Th = ii[WS(is, 4)]; |
55 | | Ti = Tg + Th; |
56 | | TC = Tg - Th; |
57 | | T4 = ri[WS(is, 2)]; |
58 | | T5 = ri[WS(is, 6)]; |
59 | | T6 = T4 + T5; |
60 | | TB = T4 - T5; |
61 | | } |
62 | | Tj = ii[WS(is, 2)]; |
63 | | Tk = ii[WS(is, 6)]; |
64 | | Tl = Tj + Tk; |
65 | | To = Tj - Tk; |
66 | | { |
67 | | E Tb, Tc, Tv, Tw, Tx, Ty; |
68 | | Tb = ri[WS(is, 7)]; |
69 | | Tc = ri[WS(is, 3)]; |
70 | | Tv = Tb - Tc; |
71 | | Tw = ii[WS(is, 7)]; |
72 | | Tx = ii[WS(is, 3)]; |
73 | | Ty = Tw - Tx; |
74 | | Td = Tb + Tc; |
75 | | TN = Tw + Tx; |
76 | | Tz = Tv - Ty; |
77 | | TH = Tv + Ty; |
78 | | } |
79 | | { |
80 | | E T8, T9, Tq, Tr, Ts, Tt; |
81 | | T8 = ri[WS(is, 1)]; |
82 | | T9 = ri[WS(is, 5)]; |
83 | | Tq = T8 - T9; |
84 | | Tr = ii[WS(is, 1)]; |
85 | | Ts = ii[WS(is, 5)]; |
86 | | Tt = Tr - Ts; |
87 | | Ta = T8 + T9; |
88 | | TM = Tr + Ts; |
89 | | Tu = Tq + Tt; |
90 | | TG = Tt - Tq; |
91 | | } |
92 | | } |
93 | | { |
94 | | E T7, Te, TP, TQ; |
95 | | T7 = T3 + T6; |
96 | | Te = Ta + Td; |
97 | | ro[WS(os, 4)] = T7 - Te; |
98 | | ro[0] = T7 + Te; |
99 | | TP = Ti + Tl; |
100 | | TQ = TM + TN; |
101 | | io[WS(os, 4)] = TP - TQ; |
102 | | io[0] = TP + TQ; |
103 | | } |
104 | | { |
105 | | E Tf, Tm, TL, TO; |
106 | | Tf = Td - Ta; |
107 | | Tm = Ti - Tl; |
108 | | io[WS(os, 2)] = Tf + Tm; |
109 | | io[WS(os, 6)] = Tm - Tf; |
110 | | TL = T3 - T6; |
111 | | TO = TM - TN; |
112 | | ro[WS(os, 6)] = TL - TO; |
113 | | ro[WS(os, 2)] = TL + TO; |
114 | | } |
115 | | { |
116 | | E Tp, TA, TJ, TK; |
117 | | Tp = Tn + To; |
118 | | TA = Tu + Tz; |
119 | | ro[WS(os, 5)] = FNMS(KP707106781, TA, Tp); |
120 | | ro[WS(os, 1)] = FMA(KP707106781, TA, Tp); |
121 | | TJ = TC - TB; |
122 | | TK = TG + TH; |
123 | | io[WS(os, 5)] = FNMS(KP707106781, TK, TJ); |
124 | | io[WS(os, 1)] = FMA(KP707106781, TK, TJ); |
125 | | } |
126 | | { |
127 | | E TD, TE, TF, TI; |
128 | | TD = TB + TC; |
129 | | TE = Tz - Tu; |
130 | | io[WS(os, 7)] = FNMS(KP707106781, TE, TD); |
131 | | io[WS(os, 3)] = FMA(KP707106781, TE, TD); |
132 | | TF = Tn - To; |
133 | | TI = TG - TH; |
134 | | ro[WS(os, 7)] = FNMS(KP707106781, TI, TF); |
135 | | ro[WS(os, 3)] = FMA(KP707106781, TI, TF); |
136 | | } |
137 | | } |
138 | | } |
139 | | } |
140 | | |
141 | | static const kdft_desc desc = { 8, "n1_8", { 44, 0, 8, 0 }, &GENUS, 0, 0, 0, 0 }; |
142 | | |
143 | | void X(codelet_n1_8) (planner *p) { X(kdft_register) (p, n1_8, &desc); |
144 | | } |
145 | | |
146 | | #else |
147 | | |
148 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 8 -name n1_8 -include dft/scalar/n.h */ |
149 | | |
150 | | /* |
151 | | * This function contains 52 FP additions, 4 FP multiplications, |
152 | | * (or, 52 additions, 4 multiplications, 0 fused multiply/add), |
153 | | * 28 stack variables, 1 constants, and 32 memory accesses |
154 | | */ |
155 | | #include "dft/scalar/n.h" |
156 | | |
157 | | static void n1_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
158 | 28 | { |
159 | 28 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
160 | 28 | { |
161 | 28 | INT i; |
162 | 173 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) { |
163 | 145 | E T3, Tn, Ti, TC, T6, TB, Tl, To, Td, TN, Tz, TH, Ta, TM, Tu; |
164 | 145 | E TG; |
165 | 145 | { |
166 | 145 | E T1, T2, Tj, Tk; |
167 | 145 | T1 = ri[0]; |
168 | 145 | T2 = ri[WS(is, 4)]; |
169 | 145 | T3 = T1 + T2; |
170 | 145 | Tn = T1 - T2; |
171 | 145 | { |
172 | 145 | E Tg, Th, T4, T5; |
173 | 145 | Tg = ii[0]; |
174 | 145 | Th = ii[WS(is, 4)]; |
175 | 145 | Ti = Tg + Th; |
176 | 145 | TC = Tg - Th; |
177 | 145 | T4 = ri[WS(is, 2)]; |
178 | 145 | T5 = ri[WS(is, 6)]; |
179 | 145 | T6 = T4 + T5; |
180 | 145 | TB = T4 - T5; |
181 | 145 | } |
182 | 145 | Tj = ii[WS(is, 2)]; |
183 | 145 | Tk = ii[WS(is, 6)]; |
184 | 145 | Tl = Tj + Tk; |
185 | 145 | To = Tj - Tk; |
186 | 145 | { |
187 | 145 | E Tb, Tc, Tv, Tw, Tx, Ty; |
188 | 145 | Tb = ri[WS(is, 7)]; |
189 | 145 | Tc = ri[WS(is, 3)]; |
190 | 145 | Tv = Tb - Tc; |
191 | 145 | Tw = ii[WS(is, 7)]; |
192 | 145 | Tx = ii[WS(is, 3)]; |
193 | 145 | Ty = Tw - Tx; |
194 | 145 | Td = Tb + Tc; |
195 | 145 | TN = Tw + Tx; |
196 | 145 | Tz = Tv - Ty; |
197 | 145 | TH = Tv + Ty; |
198 | 145 | } |
199 | 145 | { |
200 | 145 | E T8, T9, Tq, Tr, Ts, Tt; |
201 | 145 | T8 = ri[WS(is, 1)]; |
202 | 145 | T9 = ri[WS(is, 5)]; |
203 | 145 | Tq = T8 - T9; |
204 | 145 | Tr = ii[WS(is, 1)]; |
205 | 145 | Ts = ii[WS(is, 5)]; |
206 | 145 | Tt = Tr - Ts; |
207 | 145 | Ta = T8 + T9; |
208 | 145 | TM = Tr + Ts; |
209 | 145 | Tu = Tq + Tt; |
210 | 145 | TG = Tt - Tq; |
211 | 145 | } |
212 | 145 | } |
213 | 145 | { |
214 | 145 | E T7, Te, TP, TQ; |
215 | 145 | T7 = T3 + T6; |
216 | 145 | Te = Ta + Td; |
217 | 145 | ro[WS(os, 4)] = T7 - Te; |
218 | 145 | ro[0] = T7 + Te; |
219 | 145 | TP = Ti + Tl; |
220 | 145 | TQ = TM + TN; |
221 | 145 | io[WS(os, 4)] = TP - TQ; |
222 | 145 | io[0] = TP + TQ; |
223 | 145 | } |
224 | 145 | { |
225 | 145 | E Tf, Tm, TL, TO; |
226 | 145 | Tf = Td - Ta; |
227 | 145 | Tm = Ti - Tl; |
228 | 145 | io[WS(os, 2)] = Tf + Tm; |
229 | 145 | io[WS(os, 6)] = Tm - Tf; |
230 | 145 | TL = T3 - T6; |
231 | 145 | TO = TM - TN; |
232 | 145 | ro[WS(os, 6)] = TL - TO; |
233 | 145 | ro[WS(os, 2)] = TL + TO; |
234 | 145 | } |
235 | 145 | { |
236 | 145 | E Tp, TA, TJ, TK; |
237 | 145 | Tp = Tn + To; |
238 | 145 | TA = KP707106781 * (Tu + Tz); |
239 | 145 | ro[WS(os, 5)] = Tp - TA; |
240 | 145 | ro[WS(os, 1)] = Tp + TA; |
241 | 145 | TJ = TC - TB; |
242 | 145 | TK = KP707106781 * (TG + TH); |
243 | 145 | io[WS(os, 5)] = TJ - TK; |
244 | 145 | io[WS(os, 1)] = TJ + TK; |
245 | 145 | } |
246 | 145 | { |
247 | 145 | E TD, TE, TF, TI; |
248 | 145 | TD = TB + TC; |
249 | 145 | TE = KP707106781 * (Tz - Tu); |
250 | 145 | io[WS(os, 7)] = TD - TE; |
251 | 145 | io[WS(os, 3)] = TD + TE; |
252 | 145 | TF = Tn - To; |
253 | 145 | TI = KP707106781 * (TG - TH); |
254 | 145 | ro[WS(os, 7)] = TF - TI; |
255 | 145 | ro[WS(os, 3)] = TF + TI; |
256 | 145 | } |
257 | 145 | } |
258 | 28 | } |
259 | 28 | } |
260 | | |
261 | | static const kdft_desc desc = { 8, "n1_8", { 52, 4, 0, 0 }, &GENUS, 0, 0, 0, 0 }; |
262 | | |
263 | 1 | void X(codelet_n1_8) (planner *p) { X(kdft_register) (p, n1_8, &desc); |
264 | 1 | } |
265 | | |
266 | | #endif |