/src/fftw3/dft/scalar/codelets/q1_5.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Aug 26 06:31:47 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twidsq.native -fma -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 200 FP additions, 170 FP multiplications, |
32 | | * (or, 70 additions, 40 multiplications, 130 fused multiply/add), |
33 | | * 75 stack variables, 4 constants, and 100 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/q.h" |
36 | | |
37 | | static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
46 | | E T1, Tb, TM, Tw, T8, Ta, Tn, Tj, TH, Ts, Tq, Tr, TV, T15, T1G; |
47 | | E T1q, T12, T14, T1h, T1d, T1B, T1m, T1k, T1l, T1P, T1Z, T2A, T2k, T1W, T1Y; |
48 | | E T2b, T27, T2v, T2g, T2e, T2f, T3Z, T3V, T4j, T44, T42, T43, T3D, T3N, T4o; |
49 | | E T48, T3K, T3M, T2J, T2T, T3u, T3e, T2Q, T2S, T35, T31, T3p, T3a, T38, T39; |
50 | | { |
51 | | E T7, Tv, T4, Tu; |
52 | | T1 = rio[0]; |
53 | | { |
54 | | E T5, T6, T2, T3; |
55 | | T5 = rio[WS(rs, 2)]; |
56 | | T6 = rio[WS(rs, 3)]; |
57 | | T7 = T5 + T6; |
58 | | Tv = T5 - T6; |
59 | | T2 = rio[WS(rs, 1)]; |
60 | | T3 = rio[WS(rs, 4)]; |
61 | | T4 = T2 + T3; |
62 | | Tu = T2 - T3; |
63 | | } |
64 | | Tb = T4 - T7; |
65 | | TM = FNMS(KP618033988, Tu, Tv); |
66 | | Tw = FMA(KP618033988, Tv, Tu); |
67 | | T8 = T4 + T7; |
68 | | Ta = FNMS(KP250000000, T8, T1); |
69 | | } |
70 | | { |
71 | | E Ti, Tp, Tf, To; |
72 | | Tn = iio[0]; |
73 | | { |
74 | | E Tg, Th, Td, Te; |
75 | | Tg = iio[WS(rs, 2)]; |
76 | | Th = iio[WS(rs, 3)]; |
77 | | Ti = Tg - Th; |
78 | | Tp = Tg + Th; |
79 | | Td = iio[WS(rs, 1)]; |
80 | | Te = iio[WS(rs, 4)]; |
81 | | Tf = Td - Te; |
82 | | To = Td + Te; |
83 | | } |
84 | | Tj = FMA(KP618033988, Ti, Tf); |
85 | | TH = FNMS(KP618033988, Tf, Ti); |
86 | | Ts = To - Tp; |
87 | | Tq = To + Tp; |
88 | | Tr = FNMS(KP250000000, Tq, Tn); |
89 | | } |
90 | | { |
91 | | E T11, T1p, TY, T1o; |
92 | | TV = rio[WS(vs, 1)]; |
93 | | { |
94 | | E TZ, T10, TW, TX; |
95 | | TZ = rio[WS(vs, 1) + WS(rs, 2)]; |
96 | | T10 = rio[WS(vs, 1) + WS(rs, 3)]; |
97 | | T11 = TZ + T10; |
98 | | T1p = TZ - T10; |
99 | | TW = rio[WS(vs, 1) + WS(rs, 1)]; |
100 | | TX = rio[WS(vs, 1) + WS(rs, 4)]; |
101 | | TY = TW + TX; |
102 | | T1o = TW - TX; |
103 | | } |
104 | | T15 = TY - T11; |
105 | | T1G = FNMS(KP618033988, T1o, T1p); |
106 | | T1q = FMA(KP618033988, T1p, T1o); |
107 | | T12 = TY + T11; |
108 | | T14 = FNMS(KP250000000, T12, TV); |
109 | | } |
110 | | { |
111 | | E T1c, T1j, T19, T1i; |
112 | | T1h = iio[WS(vs, 1)]; |
113 | | { |
114 | | E T1a, T1b, T17, T18; |
115 | | T1a = iio[WS(vs, 1) + WS(rs, 2)]; |
116 | | T1b = iio[WS(vs, 1) + WS(rs, 3)]; |
117 | | T1c = T1a - T1b; |
118 | | T1j = T1a + T1b; |
119 | | T17 = iio[WS(vs, 1) + WS(rs, 1)]; |
120 | | T18 = iio[WS(vs, 1) + WS(rs, 4)]; |
121 | | T19 = T17 - T18; |
122 | | T1i = T17 + T18; |
123 | | } |
124 | | T1d = FMA(KP618033988, T1c, T19); |
125 | | T1B = FNMS(KP618033988, T19, T1c); |
126 | | T1m = T1i - T1j; |
127 | | T1k = T1i + T1j; |
128 | | T1l = FNMS(KP250000000, T1k, T1h); |
129 | | } |
130 | | { |
131 | | E T1V, T2j, T1S, T2i; |
132 | | T1P = rio[WS(vs, 2)]; |
133 | | { |
134 | | E T1T, T1U, T1Q, T1R; |
135 | | T1T = rio[WS(vs, 2) + WS(rs, 2)]; |
136 | | T1U = rio[WS(vs, 2) + WS(rs, 3)]; |
137 | | T1V = T1T + T1U; |
138 | | T2j = T1T - T1U; |
139 | | T1Q = rio[WS(vs, 2) + WS(rs, 1)]; |
140 | | T1R = rio[WS(vs, 2) + WS(rs, 4)]; |
141 | | T1S = T1Q + T1R; |
142 | | T2i = T1Q - T1R; |
143 | | } |
144 | | T1Z = T1S - T1V; |
145 | | T2A = FNMS(KP618033988, T2i, T2j); |
146 | | T2k = FMA(KP618033988, T2j, T2i); |
147 | | T1W = T1S + T1V; |
148 | | T1Y = FNMS(KP250000000, T1W, T1P); |
149 | | } |
150 | | { |
151 | | E T26, T2d, T23, T2c; |
152 | | T2b = iio[WS(vs, 2)]; |
153 | | { |
154 | | E T24, T25, T21, T22; |
155 | | T24 = iio[WS(vs, 2) + WS(rs, 2)]; |
156 | | T25 = iio[WS(vs, 2) + WS(rs, 3)]; |
157 | | T26 = T24 - T25; |
158 | | T2d = T24 + T25; |
159 | | T21 = iio[WS(vs, 2) + WS(rs, 1)]; |
160 | | T22 = iio[WS(vs, 2) + WS(rs, 4)]; |
161 | | T23 = T21 - T22; |
162 | | T2c = T21 + T22; |
163 | | } |
164 | | T27 = FMA(KP618033988, T26, T23); |
165 | | T2v = FNMS(KP618033988, T23, T26); |
166 | | T2g = T2c - T2d; |
167 | | T2e = T2c + T2d; |
168 | | T2f = FNMS(KP250000000, T2e, T2b); |
169 | | } |
170 | | { |
171 | | E T3U, T41, T3R, T40; |
172 | | T3Z = iio[WS(vs, 4)]; |
173 | | { |
174 | | E T3S, T3T, T3P, T3Q; |
175 | | T3S = iio[WS(vs, 4) + WS(rs, 2)]; |
176 | | T3T = iio[WS(vs, 4) + WS(rs, 3)]; |
177 | | T3U = T3S - T3T; |
178 | | T41 = T3S + T3T; |
179 | | T3P = iio[WS(vs, 4) + WS(rs, 1)]; |
180 | | T3Q = iio[WS(vs, 4) + WS(rs, 4)]; |
181 | | T3R = T3P - T3Q; |
182 | | T40 = T3P + T3Q; |
183 | | } |
184 | | T3V = FMA(KP618033988, T3U, T3R); |
185 | | T4j = FNMS(KP618033988, T3R, T3U); |
186 | | T44 = T40 - T41; |
187 | | T42 = T40 + T41; |
188 | | T43 = FNMS(KP250000000, T42, T3Z); |
189 | | } |
190 | | { |
191 | | E T3J, T47, T3G, T46; |
192 | | T3D = rio[WS(vs, 4)]; |
193 | | { |
194 | | E T3H, T3I, T3E, T3F; |
195 | | T3H = rio[WS(vs, 4) + WS(rs, 2)]; |
196 | | T3I = rio[WS(vs, 4) + WS(rs, 3)]; |
197 | | T3J = T3H + T3I; |
198 | | T47 = T3H - T3I; |
199 | | T3E = rio[WS(vs, 4) + WS(rs, 1)]; |
200 | | T3F = rio[WS(vs, 4) + WS(rs, 4)]; |
201 | | T3G = T3E + T3F; |
202 | | T46 = T3E - T3F; |
203 | | } |
204 | | T3N = T3G - T3J; |
205 | | T4o = FNMS(KP618033988, T46, T47); |
206 | | T48 = FMA(KP618033988, T47, T46); |
207 | | T3K = T3G + T3J; |
208 | | T3M = FNMS(KP250000000, T3K, T3D); |
209 | | } |
210 | | { |
211 | | E T2P, T3d, T2M, T3c; |
212 | | T2J = rio[WS(vs, 3)]; |
213 | | { |
214 | | E T2N, T2O, T2K, T2L; |
215 | | T2N = rio[WS(vs, 3) + WS(rs, 2)]; |
216 | | T2O = rio[WS(vs, 3) + WS(rs, 3)]; |
217 | | T2P = T2N + T2O; |
218 | | T3d = T2N - T2O; |
219 | | T2K = rio[WS(vs, 3) + WS(rs, 1)]; |
220 | | T2L = rio[WS(vs, 3) + WS(rs, 4)]; |
221 | | T2M = T2K + T2L; |
222 | | T3c = T2K - T2L; |
223 | | } |
224 | | T2T = T2M - T2P; |
225 | | T3u = FNMS(KP618033988, T3c, T3d); |
226 | | T3e = FMA(KP618033988, T3d, T3c); |
227 | | T2Q = T2M + T2P; |
228 | | T2S = FNMS(KP250000000, T2Q, T2J); |
229 | | } |
230 | | { |
231 | | E T30, T37, T2X, T36; |
232 | | T35 = iio[WS(vs, 3)]; |
233 | | { |
234 | | E T2Y, T2Z, T2V, T2W; |
235 | | T2Y = iio[WS(vs, 3) + WS(rs, 2)]; |
236 | | T2Z = iio[WS(vs, 3) + WS(rs, 3)]; |
237 | | T30 = T2Y - T2Z; |
238 | | T37 = T2Y + T2Z; |
239 | | T2V = iio[WS(vs, 3) + WS(rs, 1)]; |
240 | | T2W = iio[WS(vs, 3) + WS(rs, 4)]; |
241 | | T2X = T2V - T2W; |
242 | | T36 = T2V + T2W; |
243 | | } |
244 | | T31 = FMA(KP618033988, T30, T2X); |
245 | | T3p = FNMS(KP618033988, T2X, T30); |
246 | | T3a = T36 - T37; |
247 | | T38 = T36 + T37; |
248 | | T39 = FNMS(KP250000000, T38, T35); |
249 | | } |
250 | | rio[0] = T1 + T8; |
251 | | iio[0] = Tn + Tq; |
252 | | rio[WS(rs, 1)] = TV + T12; |
253 | | iio[WS(rs, 1)] = T1h + T1k; |
254 | | rio[WS(rs, 2)] = T1P + T1W; |
255 | | iio[WS(rs, 2)] = T2b + T2e; |
256 | | iio[WS(rs, 4)] = T3Z + T42; |
257 | | rio[WS(rs, 4)] = T3D + T3K; |
258 | | rio[WS(rs, 3)] = T2J + T2Q; |
259 | | iio[WS(rs, 3)] = T35 + T38; |
260 | | { |
261 | | E Tk, TA, Tx, TD, Tc, Tt; |
262 | | Tc = FMA(KP559016994, Tb, Ta); |
263 | | Tk = FMA(KP951056516, Tj, Tc); |
264 | | TA = FNMS(KP951056516, Tj, Tc); |
265 | | Tt = FMA(KP559016994, Ts, Tr); |
266 | | Tx = FNMS(KP951056516, Tw, Tt); |
267 | | TD = FMA(KP951056516, Tw, Tt); |
268 | | { |
269 | | E Tl, Ty, T9, Tm; |
270 | | T9 = W[0]; |
271 | | Tl = T9 * Tk; |
272 | | Ty = T9 * Tx; |
273 | | Tm = W[1]; |
274 | | rio[WS(vs, 1)] = FMA(Tm, Tx, Tl); |
275 | | iio[WS(vs, 1)] = FNMS(Tm, Tk, Ty); |
276 | | } |
277 | | { |
278 | | E TB, TE, Tz, TC; |
279 | | Tz = W[6]; |
280 | | TB = Tz * TA; |
281 | | TE = Tz * TD; |
282 | | TC = W[7]; |
283 | | rio[WS(vs, 4)] = FMA(TC, TD, TB); |
284 | | iio[WS(vs, 4)] = FNMS(TC, TA, TE); |
285 | | } |
286 | | } |
287 | | { |
288 | | E TI, TQ, TN, TT, TG, TL; |
289 | | TG = FNMS(KP559016994, Tb, Ta); |
290 | | TI = FNMS(KP951056516, TH, TG); |
291 | | TQ = FMA(KP951056516, TH, TG); |
292 | | TL = FNMS(KP559016994, Ts, Tr); |
293 | | TN = FMA(KP951056516, TM, TL); |
294 | | TT = FNMS(KP951056516, TM, TL); |
295 | | { |
296 | | E TJ, TO, TF, TK; |
297 | | TF = W[2]; |
298 | | TJ = TF * TI; |
299 | | TO = TF * TN; |
300 | | TK = W[3]; |
301 | | rio[WS(vs, 2)] = FMA(TK, TN, TJ); |
302 | | iio[WS(vs, 2)] = FNMS(TK, TI, TO); |
303 | | } |
304 | | { |
305 | | E TR, TU, TP, TS; |
306 | | TP = W[4]; |
307 | | TR = TP * TQ; |
308 | | TU = TP * TT; |
309 | | TS = W[5]; |
310 | | rio[WS(vs, 3)] = FMA(TS, TT, TR); |
311 | | iio[WS(vs, 3)] = FNMS(TS, TQ, TU); |
312 | | } |
313 | | } |
314 | | { |
315 | | E T2w, T2E, T2B, T2H, T2u, T2z; |
316 | | T2u = FNMS(KP559016994, T1Z, T1Y); |
317 | | T2w = FNMS(KP951056516, T2v, T2u); |
318 | | T2E = FMA(KP951056516, T2v, T2u); |
319 | | T2z = FNMS(KP559016994, T2g, T2f); |
320 | | T2B = FMA(KP951056516, T2A, T2z); |
321 | | T2H = FNMS(KP951056516, T2A, T2z); |
322 | | { |
323 | | E T2x, T2C, T2t, T2y; |
324 | | T2t = W[2]; |
325 | | T2x = T2t * T2w; |
326 | | T2C = T2t * T2B; |
327 | | T2y = W[3]; |
328 | | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T2y, T2B, T2x); |
329 | | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2y, T2w, T2C); |
330 | | } |
331 | | { |
332 | | E T2F, T2I, T2D, T2G; |
333 | | T2D = W[4]; |
334 | | T2F = T2D * T2E; |
335 | | T2I = T2D * T2H; |
336 | | T2G = W[5]; |
337 | | rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2G, T2H, T2F); |
338 | | iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2G, T2E, T2I); |
339 | | } |
340 | | } |
341 | | { |
342 | | E T4k, T4s, T4p, T4v, T4i, T4n; |
343 | | T4i = FNMS(KP559016994, T3N, T3M); |
344 | | T4k = FNMS(KP951056516, T4j, T4i); |
345 | | T4s = FMA(KP951056516, T4j, T4i); |
346 | | T4n = FNMS(KP559016994, T44, T43); |
347 | | T4p = FMA(KP951056516, T4o, T4n); |
348 | | T4v = FNMS(KP951056516, T4o, T4n); |
349 | | { |
350 | | E T4l, T4q, T4h, T4m; |
351 | | T4h = W[2]; |
352 | | T4l = T4h * T4k; |
353 | | T4q = T4h * T4p; |
354 | | T4m = W[3]; |
355 | | rio[WS(vs, 2) + WS(rs, 4)] = FMA(T4m, T4p, T4l); |
356 | | iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T4m, T4k, T4q); |
357 | | } |
358 | | { |
359 | | E T4t, T4w, T4r, T4u; |
360 | | T4r = W[4]; |
361 | | T4t = T4r * T4s; |
362 | | T4w = T4r * T4v; |
363 | | T4u = W[5]; |
364 | | rio[WS(vs, 3) + WS(rs, 4)] = FMA(T4u, T4v, T4t); |
365 | | iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T4u, T4s, T4w); |
366 | | } |
367 | | } |
368 | | { |
369 | | E T28, T2o, T2l, T2r, T20, T2h; |
370 | | T20 = FMA(KP559016994, T1Z, T1Y); |
371 | | T28 = FMA(KP951056516, T27, T20); |
372 | | T2o = FNMS(KP951056516, T27, T20); |
373 | | T2h = FMA(KP559016994, T2g, T2f); |
374 | | T2l = FNMS(KP951056516, T2k, T2h); |
375 | | T2r = FMA(KP951056516, T2k, T2h); |
376 | | { |
377 | | E T29, T2m, T1X, T2a; |
378 | | T1X = W[0]; |
379 | | T29 = T1X * T28; |
380 | | T2m = T1X * T2l; |
381 | | T2a = W[1]; |
382 | | rio[WS(vs, 1) + WS(rs, 2)] = FMA(T2a, T2l, T29); |
383 | | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T2a, T28, T2m); |
384 | | } |
385 | | { |
386 | | E T2p, T2s, T2n, T2q; |
387 | | T2n = W[6]; |
388 | | T2p = T2n * T2o; |
389 | | T2s = T2n * T2r; |
390 | | T2q = W[7]; |
391 | | rio[WS(vs, 4) + WS(rs, 2)] = FMA(T2q, T2r, T2p); |
392 | | iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T2q, T2o, T2s); |
393 | | } |
394 | | } |
395 | | { |
396 | | E T32, T3i, T3f, T3l, T2U, T3b; |
397 | | T2U = FMA(KP559016994, T2T, T2S); |
398 | | T32 = FMA(KP951056516, T31, T2U); |
399 | | T3i = FNMS(KP951056516, T31, T2U); |
400 | | T3b = FMA(KP559016994, T3a, T39); |
401 | | T3f = FNMS(KP951056516, T3e, T3b); |
402 | | T3l = FMA(KP951056516, T3e, T3b); |
403 | | { |
404 | | E T33, T3g, T2R, T34; |
405 | | T2R = W[0]; |
406 | | T33 = T2R * T32; |
407 | | T3g = T2R * T3f; |
408 | | T34 = W[1]; |
409 | | rio[WS(vs, 1) + WS(rs, 3)] = FMA(T34, T3f, T33); |
410 | | iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T34, T32, T3g); |
411 | | } |
412 | | { |
413 | | E T3j, T3m, T3h, T3k; |
414 | | T3h = W[6]; |
415 | | T3j = T3h * T3i; |
416 | | T3m = T3h * T3l; |
417 | | T3k = W[7]; |
418 | | rio[WS(vs, 4) + WS(rs, 3)] = FMA(T3k, T3l, T3j); |
419 | | iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T3k, T3i, T3m); |
420 | | } |
421 | | } |
422 | | { |
423 | | E T3q, T3y, T3v, T3B, T3o, T3t; |
424 | | T3o = FNMS(KP559016994, T2T, T2S); |
425 | | T3q = FNMS(KP951056516, T3p, T3o); |
426 | | T3y = FMA(KP951056516, T3p, T3o); |
427 | | T3t = FNMS(KP559016994, T3a, T39); |
428 | | T3v = FMA(KP951056516, T3u, T3t); |
429 | | T3B = FNMS(KP951056516, T3u, T3t); |
430 | | { |
431 | | E T3r, T3w, T3n, T3s; |
432 | | T3n = W[2]; |
433 | | T3r = T3n * T3q; |
434 | | T3w = T3n * T3v; |
435 | | T3s = W[3]; |
436 | | rio[WS(vs, 2) + WS(rs, 3)] = FMA(T3s, T3v, T3r); |
437 | | iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T3s, T3q, T3w); |
438 | | } |
439 | | { |
440 | | E T3z, T3C, T3x, T3A; |
441 | | T3x = W[4]; |
442 | | T3z = T3x * T3y; |
443 | | T3C = T3x * T3B; |
444 | | T3A = W[5]; |
445 | | rio[WS(vs, 3) + WS(rs, 3)] = FMA(T3A, T3B, T3z); |
446 | | iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T3A, T3y, T3C); |
447 | | } |
448 | | } |
449 | | { |
450 | | E T3W, T4c, T49, T4f, T3O, T45; |
451 | | T3O = FMA(KP559016994, T3N, T3M); |
452 | | T3W = FMA(KP951056516, T3V, T3O); |
453 | | T4c = FNMS(KP951056516, T3V, T3O); |
454 | | T45 = FMA(KP559016994, T44, T43); |
455 | | T49 = FNMS(KP951056516, T48, T45); |
456 | | T4f = FMA(KP951056516, T48, T45); |
457 | | { |
458 | | E T3X, T4a, T3L, T3Y; |
459 | | T3L = W[0]; |
460 | | T3X = T3L * T3W; |
461 | | T4a = T3L * T49; |
462 | | T3Y = W[1]; |
463 | | rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3Y, T49, T3X); |
464 | | iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3Y, T3W, T4a); |
465 | | } |
466 | | { |
467 | | E T4d, T4g, T4b, T4e; |
468 | | T4b = W[6]; |
469 | | T4d = T4b * T4c; |
470 | | T4g = T4b * T4f; |
471 | | T4e = W[7]; |
472 | | rio[WS(vs, 4) + WS(rs, 4)] = FMA(T4e, T4f, T4d); |
473 | | iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T4e, T4c, T4g); |
474 | | } |
475 | | } |
476 | | { |
477 | | E T1C, T1K, T1H, T1N, T1A, T1F; |
478 | | T1A = FNMS(KP559016994, T15, T14); |
479 | | T1C = FNMS(KP951056516, T1B, T1A); |
480 | | T1K = FMA(KP951056516, T1B, T1A); |
481 | | T1F = FNMS(KP559016994, T1m, T1l); |
482 | | T1H = FMA(KP951056516, T1G, T1F); |
483 | | T1N = FNMS(KP951056516, T1G, T1F); |
484 | | { |
485 | | E T1D, T1I, T1z, T1E; |
486 | | T1z = W[2]; |
487 | | T1D = T1z * T1C; |
488 | | T1I = T1z * T1H; |
489 | | T1E = W[3]; |
490 | | rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1E, T1H, T1D); |
491 | | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1E, T1C, T1I); |
492 | | } |
493 | | { |
494 | | E T1L, T1O, T1J, T1M; |
495 | | T1J = W[4]; |
496 | | T1L = T1J * T1K; |
497 | | T1O = T1J * T1N; |
498 | | T1M = W[5]; |
499 | | rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1M, T1N, T1L); |
500 | | iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1M, T1K, T1O); |
501 | | } |
502 | | } |
503 | | { |
504 | | E T1e, T1u, T1r, T1x, T16, T1n; |
505 | | T16 = FMA(KP559016994, T15, T14); |
506 | | T1e = FMA(KP951056516, T1d, T16); |
507 | | T1u = FNMS(KP951056516, T1d, T16); |
508 | | T1n = FMA(KP559016994, T1m, T1l); |
509 | | T1r = FNMS(KP951056516, T1q, T1n); |
510 | | T1x = FMA(KP951056516, T1q, T1n); |
511 | | { |
512 | | E T1f, T1s, T13, T1g; |
513 | | T13 = W[0]; |
514 | | T1f = T13 * T1e; |
515 | | T1s = T13 * T1r; |
516 | | T1g = W[1]; |
517 | | rio[WS(vs, 1) + WS(rs, 1)] = FMA(T1g, T1r, T1f); |
518 | | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T1g, T1e, T1s); |
519 | | } |
520 | | { |
521 | | E T1v, T1y, T1t, T1w; |
522 | | T1t = W[6]; |
523 | | T1v = T1t * T1u; |
524 | | T1y = T1t * T1x; |
525 | | T1w = W[7]; |
526 | | rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1w, T1x, T1v); |
527 | | iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1w, T1u, T1y); |
528 | | } |
529 | | } |
530 | | } |
531 | | } |
532 | | } |
533 | | |
534 | | static const tw_instr twinstr[] = { |
535 | | { TW_FULL, 0, 5 }, |
536 | | { TW_NEXT, 1, 0 } |
537 | | }; |
538 | | |
539 | | static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, { 70, 40, 130, 0 }, 0, 0, 0 }; |
540 | | |
541 | | void X(codelet_q1_5) (planner *p) { |
542 | | X(kdft_difsq_register) (p, q1_5, &desc); |
543 | | } |
544 | | #else |
545 | | |
546 | | /* Generated by: ../../../genfft/gen_twidsq.native -compact -variables 4 -pipeline-latency 4 -reload-twiddle -dif -n 5 -name q1_5 -include dft/scalar/q.h */ |
547 | | |
548 | | /* |
549 | | * This function contains 200 FP additions, 140 FP multiplications, |
550 | | * (or, 130 additions, 70 multiplications, 70 fused multiply/add), |
551 | | * 75 stack variables, 4 constants, and 100 memory accesses |
552 | | */ |
553 | | #include "dft/scalar/q.h" |
554 | | |
555 | | static void q1_5(R *rio, R *iio, const R *W, stride rs, stride vs, INT mb, INT me, INT ms) |
556 | 11 | { |
557 | 11 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
558 | 11 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
559 | 11 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
560 | 11 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
561 | 11 | { |
562 | 11 | INT m; |
563 | 110 | for (m = mb, W = W + (mb * 8); m < me; m = m + 1, rio = rio + ms, iio = iio + ms, W = W + 8, MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(0, vs)) { |
564 | 99 | E T1, Ta, TG, Tv, T8, Tb, Tp, Tj, TD, To, Tq, Tr, TN, TW, T1s; |
565 | 99 | E T1h, TU, TX, T1b, T15, T1p, T1a, T1c, T1d, T1z, T1I, T2e, T23, T1G, T1J; |
566 | 99 | E T1X, T1R, T2b, T1W, T1Y, T1Z, T3v, T3p, T3J, T3u, T3w, T3x, T37, T3g, T3M; |
567 | 99 | E T3B, T3e, T3h, T2l, T2u, T30, T2P, T2s, T2v, T2J, T2D, T2X, T2I, T2K, T2L; |
568 | 99 | { |
569 | 99 | E T7, Tu, T4, Tt; |
570 | 99 | T1 = rio[0]; |
571 | 99 | { |
572 | 99 | E T5, T6, T2, T3; |
573 | 99 | T5 = rio[WS(rs, 2)]; |
574 | 99 | T6 = rio[WS(rs, 3)]; |
575 | 99 | T7 = T5 + T6; |
576 | 99 | Tu = T5 - T6; |
577 | 99 | T2 = rio[WS(rs, 1)]; |
578 | 99 | T3 = rio[WS(rs, 4)]; |
579 | 99 | T4 = T2 + T3; |
580 | 99 | Tt = T2 - T3; |
581 | 99 | } |
582 | 99 | Ta = KP559016994 * (T4 - T7); |
583 | 99 | TG = FNMS(KP587785252, Tt, KP951056516 * Tu); |
584 | 99 | Tv = FMA(KP951056516, Tt, KP587785252 * Tu); |
585 | 99 | T8 = T4 + T7; |
586 | 99 | Tb = FNMS(KP250000000, T8, T1); |
587 | 99 | } |
588 | 99 | { |
589 | 99 | E Ti, Tn, Tf, Tm; |
590 | 99 | Tp = iio[0]; |
591 | 99 | { |
592 | 99 | E Tg, Th, Td, Te; |
593 | 99 | Tg = iio[WS(rs, 2)]; |
594 | 99 | Th = iio[WS(rs, 3)]; |
595 | 99 | Ti = Tg - Th; |
596 | 99 | Tn = Tg + Th; |
597 | 99 | Td = iio[WS(rs, 1)]; |
598 | 99 | Te = iio[WS(rs, 4)]; |
599 | 99 | Tf = Td - Te; |
600 | 99 | Tm = Td + Te; |
601 | 99 | } |
602 | 99 | Tj = FMA(KP951056516, Tf, KP587785252 * Ti); |
603 | 99 | TD = FNMS(KP587785252, Tf, KP951056516 * Ti); |
604 | 99 | To = KP559016994 * (Tm - Tn); |
605 | 99 | Tq = Tm + Tn; |
606 | 99 | Tr = FNMS(KP250000000, Tq, Tp); |
607 | 99 | } |
608 | 99 | { |
609 | 99 | E TT, T1g, TQ, T1f; |
610 | 99 | TN = rio[WS(vs, 1)]; |
611 | 99 | { |
612 | 99 | E TR, TS, TO, TP; |
613 | 99 | TR = rio[WS(vs, 1) + WS(rs, 2)]; |
614 | 99 | TS = rio[WS(vs, 1) + WS(rs, 3)]; |
615 | 99 | TT = TR + TS; |
616 | 99 | T1g = TR - TS; |
617 | 99 | TO = rio[WS(vs, 1) + WS(rs, 1)]; |
618 | 99 | TP = rio[WS(vs, 1) + WS(rs, 4)]; |
619 | 99 | TQ = TO + TP; |
620 | 99 | T1f = TO - TP; |
621 | 99 | } |
622 | 99 | TW = KP559016994 * (TQ - TT); |
623 | 99 | T1s = FNMS(KP587785252, T1f, KP951056516 * T1g); |
624 | 99 | T1h = FMA(KP951056516, T1f, KP587785252 * T1g); |
625 | 99 | TU = TQ + TT; |
626 | 99 | TX = FNMS(KP250000000, TU, TN); |
627 | 99 | } |
628 | 99 | { |
629 | 99 | E T14, T19, T11, T18; |
630 | 99 | T1b = iio[WS(vs, 1)]; |
631 | 99 | { |
632 | 99 | E T12, T13, TZ, T10; |
633 | 99 | T12 = iio[WS(vs, 1) + WS(rs, 2)]; |
634 | 99 | T13 = iio[WS(vs, 1) + WS(rs, 3)]; |
635 | 99 | T14 = T12 - T13; |
636 | 99 | T19 = T12 + T13; |
637 | 99 | TZ = iio[WS(vs, 1) + WS(rs, 1)]; |
638 | 99 | T10 = iio[WS(vs, 1) + WS(rs, 4)]; |
639 | 99 | T11 = TZ - T10; |
640 | 99 | T18 = TZ + T10; |
641 | 99 | } |
642 | 99 | T15 = FMA(KP951056516, T11, KP587785252 * T14); |
643 | 99 | T1p = FNMS(KP587785252, T11, KP951056516 * T14); |
644 | 99 | T1a = KP559016994 * (T18 - T19); |
645 | 99 | T1c = T18 + T19; |
646 | 99 | T1d = FNMS(KP250000000, T1c, T1b); |
647 | 99 | } |
648 | 99 | { |
649 | 99 | E T1F, T22, T1C, T21; |
650 | 99 | T1z = rio[WS(vs, 2)]; |
651 | 99 | { |
652 | 99 | E T1D, T1E, T1A, T1B; |
653 | 99 | T1D = rio[WS(vs, 2) + WS(rs, 2)]; |
654 | 99 | T1E = rio[WS(vs, 2) + WS(rs, 3)]; |
655 | 99 | T1F = T1D + T1E; |
656 | 99 | T22 = T1D - T1E; |
657 | 99 | T1A = rio[WS(vs, 2) + WS(rs, 1)]; |
658 | 99 | T1B = rio[WS(vs, 2) + WS(rs, 4)]; |
659 | 99 | T1C = T1A + T1B; |
660 | 99 | T21 = T1A - T1B; |
661 | 99 | } |
662 | 99 | T1I = KP559016994 * (T1C - T1F); |
663 | 99 | T2e = FNMS(KP587785252, T21, KP951056516 * T22); |
664 | 99 | T23 = FMA(KP951056516, T21, KP587785252 * T22); |
665 | 99 | T1G = T1C + T1F; |
666 | 99 | T1J = FNMS(KP250000000, T1G, T1z); |
667 | 99 | } |
668 | 99 | { |
669 | 99 | E T1Q, T1V, T1N, T1U; |
670 | 99 | T1X = iio[WS(vs, 2)]; |
671 | 99 | { |
672 | 99 | E T1O, T1P, T1L, T1M; |
673 | 99 | T1O = iio[WS(vs, 2) + WS(rs, 2)]; |
674 | 99 | T1P = iio[WS(vs, 2) + WS(rs, 3)]; |
675 | 99 | T1Q = T1O - T1P; |
676 | 99 | T1V = T1O + T1P; |
677 | 99 | T1L = iio[WS(vs, 2) + WS(rs, 1)]; |
678 | 99 | T1M = iio[WS(vs, 2) + WS(rs, 4)]; |
679 | 99 | T1N = T1L - T1M; |
680 | 99 | T1U = T1L + T1M; |
681 | 99 | } |
682 | 99 | T1R = FMA(KP951056516, T1N, KP587785252 * T1Q); |
683 | 99 | T2b = FNMS(KP587785252, T1N, KP951056516 * T1Q); |
684 | 99 | T1W = KP559016994 * (T1U - T1V); |
685 | 99 | T1Y = T1U + T1V; |
686 | 99 | T1Z = FNMS(KP250000000, T1Y, T1X); |
687 | 99 | } |
688 | 99 | { |
689 | 99 | E T3o, T3t, T3l, T3s; |
690 | 99 | T3v = iio[WS(vs, 4)]; |
691 | 99 | { |
692 | 99 | E T3m, T3n, T3j, T3k; |
693 | 99 | T3m = iio[WS(vs, 4) + WS(rs, 2)]; |
694 | 99 | T3n = iio[WS(vs, 4) + WS(rs, 3)]; |
695 | 99 | T3o = T3m - T3n; |
696 | 99 | T3t = T3m + T3n; |
697 | 99 | T3j = iio[WS(vs, 4) + WS(rs, 1)]; |
698 | 99 | T3k = iio[WS(vs, 4) + WS(rs, 4)]; |
699 | 99 | T3l = T3j - T3k; |
700 | 99 | T3s = T3j + T3k; |
701 | 99 | } |
702 | 99 | T3p = FMA(KP951056516, T3l, KP587785252 * T3o); |
703 | 99 | T3J = FNMS(KP587785252, T3l, KP951056516 * T3o); |
704 | 99 | T3u = KP559016994 * (T3s - T3t); |
705 | 99 | T3w = T3s + T3t; |
706 | 99 | T3x = FNMS(KP250000000, T3w, T3v); |
707 | 99 | } |
708 | 99 | { |
709 | 99 | E T3d, T3A, T3a, T3z; |
710 | 99 | T37 = rio[WS(vs, 4)]; |
711 | 99 | { |
712 | 99 | E T3b, T3c, T38, T39; |
713 | 99 | T3b = rio[WS(vs, 4) + WS(rs, 2)]; |
714 | 99 | T3c = rio[WS(vs, 4) + WS(rs, 3)]; |
715 | 99 | T3d = T3b + T3c; |
716 | 99 | T3A = T3b - T3c; |
717 | 99 | T38 = rio[WS(vs, 4) + WS(rs, 1)]; |
718 | 99 | T39 = rio[WS(vs, 4) + WS(rs, 4)]; |
719 | 99 | T3a = T38 + T39; |
720 | 99 | T3z = T38 - T39; |
721 | 99 | } |
722 | 99 | T3g = KP559016994 * (T3a - T3d); |
723 | 99 | T3M = FNMS(KP587785252, T3z, KP951056516 * T3A); |
724 | 99 | T3B = FMA(KP951056516, T3z, KP587785252 * T3A); |
725 | 99 | T3e = T3a + T3d; |
726 | 99 | T3h = FNMS(KP250000000, T3e, T37); |
727 | 99 | } |
728 | 99 | { |
729 | 99 | E T2r, T2O, T2o, T2N; |
730 | 99 | T2l = rio[WS(vs, 3)]; |
731 | 99 | { |
732 | 99 | E T2p, T2q, T2m, T2n; |
733 | 99 | T2p = rio[WS(vs, 3) + WS(rs, 2)]; |
734 | 99 | T2q = rio[WS(vs, 3) + WS(rs, 3)]; |
735 | 99 | T2r = T2p + T2q; |
736 | 99 | T2O = T2p - T2q; |
737 | 99 | T2m = rio[WS(vs, 3) + WS(rs, 1)]; |
738 | 99 | T2n = rio[WS(vs, 3) + WS(rs, 4)]; |
739 | 99 | T2o = T2m + T2n; |
740 | 99 | T2N = T2m - T2n; |
741 | 99 | } |
742 | 99 | T2u = KP559016994 * (T2o - T2r); |
743 | 99 | T30 = FNMS(KP587785252, T2N, KP951056516 * T2O); |
744 | 99 | T2P = FMA(KP951056516, T2N, KP587785252 * T2O); |
745 | 99 | T2s = T2o + T2r; |
746 | 99 | T2v = FNMS(KP250000000, T2s, T2l); |
747 | 99 | } |
748 | 99 | { |
749 | 99 | E T2C, T2H, T2z, T2G; |
750 | 99 | T2J = iio[WS(vs, 3)]; |
751 | 99 | { |
752 | 99 | E T2A, T2B, T2x, T2y; |
753 | 99 | T2A = iio[WS(vs, 3) + WS(rs, 2)]; |
754 | 99 | T2B = iio[WS(vs, 3) + WS(rs, 3)]; |
755 | 99 | T2C = T2A - T2B; |
756 | 99 | T2H = T2A + T2B; |
757 | 99 | T2x = iio[WS(vs, 3) + WS(rs, 1)]; |
758 | 99 | T2y = iio[WS(vs, 3) + WS(rs, 4)]; |
759 | 99 | T2z = T2x - T2y; |
760 | 99 | T2G = T2x + T2y; |
761 | 99 | } |
762 | 99 | T2D = FMA(KP951056516, T2z, KP587785252 * T2C); |
763 | 99 | T2X = FNMS(KP587785252, T2z, KP951056516 * T2C); |
764 | 99 | T2I = KP559016994 * (T2G - T2H); |
765 | 99 | T2K = T2G + T2H; |
766 | 99 | T2L = FNMS(KP250000000, T2K, T2J); |
767 | 99 | } |
768 | 99 | rio[0] = T1 + T8; |
769 | 99 | iio[0] = Tp + Tq; |
770 | 99 | rio[WS(rs, 1)] = TN + TU; |
771 | 99 | iio[WS(rs, 1)] = T1b + T1c; |
772 | 99 | rio[WS(rs, 2)] = T1z + T1G; |
773 | 99 | iio[WS(rs, 2)] = T1X + T1Y; |
774 | 99 | iio[WS(rs, 4)] = T3v + T3w; |
775 | 99 | rio[WS(rs, 4)] = T37 + T3e; |
776 | 99 | rio[WS(rs, 3)] = T2l + T2s; |
777 | 99 | iio[WS(rs, 3)] = T2J + T2K; |
778 | 99 | { |
779 | 99 | E Tk, Ty, Tw, TA, Tc, Ts; |
780 | 99 | Tc = Ta + Tb; |
781 | 99 | Tk = Tc + Tj; |
782 | 99 | Ty = Tc - Tj; |
783 | 99 | Ts = To + Tr; |
784 | 99 | Tw = Ts - Tv; |
785 | 99 | TA = Tv + Ts; |
786 | 99 | { |
787 | 99 | E T9, Tl, Tx, Tz; |
788 | 99 | T9 = W[0]; |
789 | 99 | Tl = W[1]; |
790 | 99 | rio[WS(vs, 1)] = FMA(T9, Tk, Tl * Tw); |
791 | 99 | iio[WS(vs, 1)] = FNMS(Tl, Tk, T9 * Tw); |
792 | 99 | Tx = W[6]; |
793 | 99 | Tz = W[7]; |
794 | 99 | rio[WS(vs, 4)] = FMA(Tx, Ty, Tz * TA); |
795 | 99 | iio[WS(vs, 4)] = FNMS(Tz, Ty, Tx * TA); |
796 | 99 | } |
797 | 99 | } |
798 | 99 | { |
799 | 99 | E TE, TK, TI, TM, TC, TH; |
800 | 99 | TC = Tb - Ta; |
801 | 99 | TE = TC - TD; |
802 | 99 | TK = TC + TD; |
803 | 99 | TH = Tr - To; |
804 | 99 | TI = TG + TH; |
805 | 99 | TM = TH - TG; |
806 | 99 | { |
807 | 99 | E TB, TF, TJ, TL; |
808 | 99 | TB = W[2]; |
809 | 99 | TF = W[3]; |
810 | 99 | rio[WS(vs, 2)] = FMA(TB, TE, TF * TI); |
811 | 99 | iio[WS(vs, 2)] = FNMS(TF, TE, TB * TI); |
812 | 99 | TJ = W[4]; |
813 | 99 | TL = W[5]; |
814 | 99 | rio[WS(vs, 3)] = FMA(TJ, TK, TL * TM); |
815 | 99 | iio[WS(vs, 3)] = FNMS(TL, TK, TJ * TM); |
816 | 99 | } |
817 | 99 | } |
818 | 99 | { |
819 | 99 | E T2c, T2i, T2g, T2k, T2a, T2f; |
820 | 99 | T2a = T1J - T1I; |
821 | 99 | T2c = T2a - T2b; |
822 | 99 | T2i = T2a + T2b; |
823 | 99 | T2f = T1Z - T1W; |
824 | 99 | T2g = T2e + T2f; |
825 | 99 | T2k = T2f - T2e; |
826 | 99 | { |
827 | 99 | E T29, T2d, T2h, T2j; |
828 | 99 | T29 = W[2]; |
829 | 99 | T2d = W[3]; |
830 | 99 | rio[WS(vs, 2) + WS(rs, 2)] = FMA(T29, T2c, T2d * T2g); |
831 | 99 | iio[WS(vs, 2) + WS(rs, 2)] = FNMS(T2d, T2c, T29 * T2g); |
832 | 99 | T2h = W[4]; |
833 | 99 | T2j = W[5]; |
834 | 99 | rio[WS(vs, 3) + WS(rs, 2)] = FMA(T2h, T2i, T2j * T2k); |
835 | 99 | iio[WS(vs, 3) + WS(rs, 2)] = FNMS(T2j, T2i, T2h * T2k); |
836 | 99 | } |
837 | 99 | } |
838 | 99 | { |
839 | 99 | E T3K, T3Q, T3O, T3S, T3I, T3N; |
840 | 99 | T3I = T3h - T3g; |
841 | 99 | T3K = T3I - T3J; |
842 | 99 | T3Q = T3I + T3J; |
843 | 99 | T3N = T3x - T3u; |
844 | 99 | T3O = T3M + T3N; |
845 | 99 | T3S = T3N - T3M; |
846 | 99 | { |
847 | 99 | E T3H, T3L, T3P, T3R; |
848 | 99 | T3H = W[2]; |
849 | 99 | T3L = W[3]; |
850 | 99 | rio[WS(vs, 2) + WS(rs, 4)] = FMA(T3H, T3K, T3L * T3O); |
851 | 99 | iio[WS(vs, 2) + WS(rs, 4)] = FNMS(T3L, T3K, T3H * T3O); |
852 | 99 | T3P = W[4]; |
853 | 99 | T3R = W[5]; |
854 | 99 | rio[WS(vs, 3) + WS(rs, 4)] = FMA(T3P, T3Q, T3R * T3S); |
855 | 99 | iio[WS(vs, 3) + WS(rs, 4)] = FNMS(T3R, T3Q, T3P * T3S); |
856 | 99 | } |
857 | 99 | } |
858 | 99 | { |
859 | 99 | E T1S, T26, T24, T28, T1K, T20; |
860 | 99 | T1K = T1I + T1J; |
861 | 99 | T1S = T1K + T1R; |
862 | 99 | T26 = T1K - T1R; |
863 | 99 | T20 = T1W + T1Z; |
864 | 99 | T24 = T20 - T23; |
865 | 99 | T28 = T23 + T20; |
866 | 99 | { |
867 | 99 | E T1H, T1T, T25, T27; |
868 | 99 | T1H = W[0]; |
869 | 99 | T1T = W[1]; |
870 | 99 | rio[WS(vs, 1) + WS(rs, 2)] = FMA(T1H, T1S, T1T * T24); |
871 | 99 | iio[WS(vs, 1) + WS(rs, 2)] = FNMS(T1T, T1S, T1H * T24); |
872 | 99 | T25 = W[6]; |
873 | 99 | T27 = W[7]; |
874 | 99 | rio[WS(vs, 4) + WS(rs, 2)] = FMA(T25, T26, T27 * T28); |
875 | 99 | iio[WS(vs, 4) + WS(rs, 2)] = FNMS(T27, T26, T25 * T28); |
876 | 99 | } |
877 | 99 | } |
878 | 99 | { |
879 | 99 | E T2E, T2S, T2Q, T2U, T2w, T2M; |
880 | 99 | T2w = T2u + T2v; |
881 | 99 | T2E = T2w + T2D; |
882 | 99 | T2S = T2w - T2D; |
883 | 99 | T2M = T2I + T2L; |
884 | 99 | T2Q = T2M - T2P; |
885 | 99 | T2U = T2P + T2M; |
886 | 99 | { |
887 | 99 | E T2t, T2F, T2R, T2T; |
888 | 99 | T2t = W[0]; |
889 | 99 | T2F = W[1]; |
890 | 99 | rio[WS(vs, 1) + WS(rs, 3)] = FMA(T2t, T2E, T2F * T2Q); |
891 | 99 | iio[WS(vs, 1) + WS(rs, 3)] = FNMS(T2F, T2E, T2t * T2Q); |
892 | 99 | T2R = W[6]; |
893 | 99 | T2T = W[7]; |
894 | 99 | rio[WS(vs, 4) + WS(rs, 3)] = FMA(T2R, T2S, T2T * T2U); |
895 | 99 | iio[WS(vs, 4) + WS(rs, 3)] = FNMS(T2T, T2S, T2R * T2U); |
896 | 99 | } |
897 | 99 | } |
898 | 99 | { |
899 | 99 | E T2Y, T34, T32, T36, T2W, T31; |
900 | 99 | T2W = T2v - T2u; |
901 | 99 | T2Y = T2W - T2X; |
902 | 99 | T34 = T2W + T2X; |
903 | 99 | T31 = T2L - T2I; |
904 | 99 | T32 = T30 + T31; |
905 | 99 | T36 = T31 - T30; |
906 | 99 | { |
907 | 99 | E T2V, T2Z, T33, T35; |
908 | 99 | T2V = W[2]; |
909 | 99 | T2Z = W[3]; |
910 | 99 | rio[WS(vs, 2) + WS(rs, 3)] = FMA(T2V, T2Y, T2Z * T32); |
911 | 99 | iio[WS(vs, 2) + WS(rs, 3)] = FNMS(T2Z, T2Y, T2V * T32); |
912 | 99 | T33 = W[4]; |
913 | 99 | T35 = W[5]; |
914 | 99 | rio[WS(vs, 3) + WS(rs, 3)] = FMA(T33, T34, T35 * T36); |
915 | 99 | iio[WS(vs, 3) + WS(rs, 3)] = FNMS(T35, T34, T33 * T36); |
916 | 99 | } |
917 | 99 | } |
918 | 99 | { |
919 | 99 | E T3q, T3E, T3C, T3G, T3i, T3y; |
920 | 99 | T3i = T3g + T3h; |
921 | 99 | T3q = T3i + T3p; |
922 | 99 | T3E = T3i - T3p; |
923 | 99 | T3y = T3u + T3x; |
924 | 99 | T3C = T3y - T3B; |
925 | 99 | T3G = T3B + T3y; |
926 | 99 | { |
927 | 99 | E T3f, T3r, T3D, T3F; |
928 | 99 | T3f = W[0]; |
929 | 99 | T3r = W[1]; |
930 | 99 | rio[WS(vs, 1) + WS(rs, 4)] = FMA(T3f, T3q, T3r * T3C); |
931 | 99 | iio[WS(vs, 1) + WS(rs, 4)] = FNMS(T3r, T3q, T3f * T3C); |
932 | 99 | T3D = W[6]; |
933 | 99 | T3F = W[7]; |
934 | 99 | rio[WS(vs, 4) + WS(rs, 4)] = FMA(T3D, T3E, T3F * T3G); |
935 | 99 | iio[WS(vs, 4) + WS(rs, 4)] = FNMS(T3F, T3E, T3D * T3G); |
936 | 99 | } |
937 | 99 | } |
938 | 99 | { |
939 | 99 | E T1q, T1w, T1u, T1y, T1o, T1t; |
940 | 99 | T1o = TX - TW; |
941 | 99 | T1q = T1o - T1p; |
942 | 99 | T1w = T1o + T1p; |
943 | 99 | T1t = T1d - T1a; |
944 | 99 | T1u = T1s + T1t; |
945 | 99 | T1y = T1t - T1s; |
946 | 99 | { |
947 | 99 | E T1n, T1r, T1v, T1x; |
948 | 99 | T1n = W[2]; |
949 | 99 | T1r = W[3]; |
950 | 99 | rio[WS(vs, 2) + WS(rs, 1)] = FMA(T1n, T1q, T1r * T1u); |
951 | 99 | iio[WS(vs, 2) + WS(rs, 1)] = FNMS(T1r, T1q, T1n * T1u); |
952 | 99 | T1v = W[4]; |
953 | 99 | T1x = W[5]; |
954 | 99 | rio[WS(vs, 3) + WS(rs, 1)] = FMA(T1v, T1w, T1x * T1y); |
955 | 99 | iio[WS(vs, 3) + WS(rs, 1)] = FNMS(T1x, T1w, T1v * T1y); |
956 | 99 | } |
957 | 99 | } |
958 | 99 | { |
959 | 99 | E T16, T1k, T1i, T1m, TY, T1e; |
960 | 99 | TY = TW + TX; |
961 | 99 | T16 = TY + T15; |
962 | 99 | T1k = TY - T15; |
963 | 99 | T1e = T1a + T1d; |
964 | 99 | T1i = T1e - T1h; |
965 | 99 | T1m = T1h + T1e; |
966 | 99 | { |
967 | 99 | E TV, T17, T1j, T1l; |
968 | 99 | TV = W[0]; |
969 | 99 | T17 = W[1]; |
970 | 99 | rio[WS(vs, 1) + WS(rs, 1)] = FMA(TV, T16, T17 * T1i); |
971 | 99 | iio[WS(vs, 1) + WS(rs, 1)] = FNMS(T17, T16, TV * T1i); |
972 | 99 | T1j = W[6]; |
973 | 99 | T1l = W[7]; |
974 | 99 | rio[WS(vs, 4) + WS(rs, 1)] = FMA(T1j, T1k, T1l * T1m); |
975 | 99 | iio[WS(vs, 4) + WS(rs, 1)] = FNMS(T1l, T1k, T1j * T1m); |
976 | 99 | } |
977 | 99 | } |
978 | 99 | } |
979 | 11 | } |
980 | 11 | } |
981 | | |
982 | | static const tw_instr twinstr[] = { |
983 | | { TW_FULL, 0, 5 }, |
984 | | { TW_NEXT, 1, 0 } |
985 | | }; |
986 | | |
987 | | static const ct_desc desc = { 5, "q1_5", twinstr, &GENUS, { 130, 70, 70, 0 }, 0, 0, 0 }; |
988 | | |
989 | 1 | void X(codelet_q1_5) (planner *p) { |
990 | 1 | X(kdft_difsq_register) (p, q1_5, &desc); |
991 | 1 | } |
992 | | #endif |