Coverage Report

Created: 2025-08-26 06:35

/src/fftw3/rdft/direct-r2c.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
/* direct RDFT solver, using r2c codelets */
23
24
#include "rdft/rdft.h"
25
26
typedef struct {
27
     solver super;
28
     const kr2c_desc *desc;
29
     kr2c k;
30
     int bufferedp;
31
} S;
32
33
typedef struct {
34
     plan_rdft super;
35
36
     stride rs, csr, csi;
37
     stride brs, bcsr, bcsi;
38
     INT n, vl, rs0, ivs, ovs, ioffset, bioffset;
39
     kr2c k;
40
     const S *slv;
41
} P;
42
43
/*************************************************************
44
  Nonbuffered code
45
 *************************************************************/
46
static void apply_r2hc(const plan *ego_, R *I, R *O)
47
0
{
48
0
     const P *ego = (const P *) ego_;
49
0
     ASSERT_ALIGNED_DOUBLE;
50
0
     ego->k(I, I + ego->rs0, O, O + ego->ioffset, 
51
0
      ego->rs, ego->csr, ego->csi,
52
0
      ego->vl, ego->ivs, ego->ovs);
53
0
}
54
55
static void apply_hc2r(const plan *ego_, R *I, R *O)
56
0
{
57
0
     const P *ego = (const P *) ego_;
58
0
     ASSERT_ALIGNED_DOUBLE;
59
0
     ego->k(O, O + ego->rs0, I, I + ego->ioffset, 
60
0
      ego->rs, ego->csr, ego->csi,
61
0
      ego->vl, ego->ivs, ego->ovs);
62
0
}
63
64
/*************************************************************
65
  Buffered code
66
 *************************************************************/
67
/* should not be 2^k to avoid associativity conflicts */
68
static INT compute_batchsize(INT radix)
69
0
{
70
     /* round up to multiple of 4 */
71
0
     radix += 3;
72
0
     radix &= -4;
73
74
0
     return (radix + 2);
75
0
}
76
77
static void dobatch_r2hc(const P *ego, R *I, R *O, R *buf, INT batchsz)
78
0
{
79
0
     X(cpy2d_ci)(I, buf,
80
0
     ego->n, ego->rs0, WS(ego->bcsr /* hack */, 1),
81
0
     batchsz, ego->ivs, 1, 1);
82
83
0
     if (IABS(WS(ego->csr, 1)) < IABS(ego->ovs)) {
84
    /* transform directly to output */
85
0
    ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), 
86
0
     O, O + ego->ioffset, 
87
0
     ego->brs, ego->csr, ego->csi,
88
0
     batchsz, 1, ego->ovs);
89
0
     } else {
90
    /* transform to buffer and copy back */
91
0
    ego->k(buf, buf + WS(ego->bcsr /* hack */, 1), 
92
0
     buf, buf + ego->bioffset, 
93
0
     ego->brs, ego->bcsr, ego->bcsi,
94
0
     batchsz, 1, 1);
95
0
    X(cpy2d_co)(buf, O,
96
0
          ego->n, WS(ego->bcsr, 1), WS(ego->csr, 1),  
97
0
          batchsz, 1, ego->ovs, 1);
98
0
     }
99
0
}
100
101
static void dobatch_hc2r(const P *ego, R *I, R *O, R *buf, INT batchsz)
102
0
{
103
0
     if (IABS(WS(ego->csr, 1)) < IABS(ego->ivs)) {
104
    /* transform directly from input */
105
0
    ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
106
0
     I, I + ego->ioffset, 
107
0
     ego->brs, ego->csr, ego->csi,
108
0
     batchsz, ego->ivs, 1);
109
0
     } else {
110
    /* copy into buffer and transform in place */
111
0
    X(cpy2d_ci)(I, buf,
112
0
          ego->n, WS(ego->csr, 1), WS(ego->bcsr, 1),
113
0
          batchsz, ego->ivs, 1, 1);
114
0
    ego->k(buf, buf + WS(ego->bcsr /* hack */, 1),
115
0
     buf, buf + ego->bioffset, 
116
0
     ego->brs, ego->bcsr, ego->bcsi,
117
0
     batchsz, 1, 1);
118
0
     }
119
0
     X(cpy2d_co)(buf, O,
120
0
     ego->n, WS(ego->bcsr /* hack */, 1), ego->rs0,
121
0
     batchsz, 1, ego->ovs, 1);
122
0
}
123
124
static void iterate(const P *ego, R *I, R *O,
125
        void (*dobatch)(const P *ego, R *I, R *O, 
126
            R *buf, INT batchsz))
127
0
{
128
0
     R *buf;
129
0
     INT vl = ego->vl;
130
0
     INT n = ego->n;
131
0
     INT i;
132
0
     INT batchsz = compute_batchsize(n);
133
0
     size_t bufsz = n * batchsz * sizeof(R);
134
135
0
     BUF_ALLOC(R *, buf, bufsz);
136
137
0
     for (i = 0; i < vl - batchsz; i += batchsz) {
138
0
    dobatch(ego, I, O, buf, batchsz);
139
0
    I += batchsz * ego->ivs;
140
0
    O += batchsz * ego->ovs;
141
0
     }
142
0
     dobatch(ego, I, O, buf, vl - i);
143
144
0
     BUF_FREE(buf, bufsz);
145
0
}
146
147
static void apply_buf_r2hc(const plan *ego_, R *I, R *O)
148
0
{
149
0
     iterate((const P *) ego_, I, O, dobatch_r2hc);
150
0
}
151
152
static void apply_buf_hc2r(const plan *ego_, R *I, R *O)
153
0
{
154
0
     iterate((const P *) ego_, I, O, dobatch_hc2r);
155
0
}
156
157
static void destroy(plan *ego_)
158
0
{
159
0
     P *ego = (P *) ego_;
160
0
     X(stride_destroy)(ego->rs);
161
0
     X(stride_destroy)(ego->csr);
162
0
     X(stride_destroy)(ego->csi);
163
0
     X(stride_destroy)(ego->brs);
164
0
     X(stride_destroy)(ego->bcsr);
165
0
     X(stride_destroy)(ego->bcsi);
166
0
}
167
168
static void print(const plan *ego_, printer *p)
169
0
{
170
0
     const P *ego = (const P *) ego_;
171
0
     const S *s = ego->slv;
172
173
0
     if (ego->slv->bufferedp)
174
0
    p->print(p, "(rdft-%s-directbuf/%D-r2c-%D%v \"%s\")", 
175
0
       X(rdft_kind_str)(s->desc->genus->kind), 
176
0
       /* hack */ WS(ego->bcsr, 1), ego->n, 
177
0
       ego->vl, s->desc->nam);
178
179
0
     else 
180
0
    p->print(p, "(rdft-%s-direct-r2c-%D%v \"%s\")", 
181
0
       X(rdft_kind_str)(s->desc->genus->kind), ego->n, 
182
0
       ego->vl, s->desc->nam);
183
0
}
184
185
static INT ioffset(rdft_kind kind, INT sz, INT s)
186
0
{
187
0
     return(s * ((kind == R2HC || kind == HC2R) ? sz : (sz - 1)));
188
0
}
189
190
static int applicable(const solver *ego_, const problem *p_)
191
23.7k
{
192
23.7k
     const S *ego = (const S *) ego_;
193
23.7k
     const kr2c_desc *desc = ego->desc;
194
23.7k
     const problem_rdft *p = (const problem_rdft *) p_;
195
23.7k
     INT vl, ivs, ovs;
196
197
23.7k
     return (
198
23.7k
    1
199
23.7k
    && p->sz->rnk == 1
200
23.7k
    && p->vecsz->rnk <= 1
201
23.7k
    && p->sz->dims[0].n == desc->n
202
23.7k
    && p->kind[0] == desc->genus->kind
203
204
    /* check strides etc */
205
23.7k
    && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
206
207
23.7k
    && (0
208
        /* can operate out-of-place */
209
0
        || p->I != p->O
210
211
        /* computing one transform */
212
0
        || vl == 1
213
214
        /* can operate in-place as long as strides are the same */
215
0
        || X(tensor_inplace_strides2)(p->sz, p->vecsz)
216
0
         )
217
23.7k
    );
218
23.7k
}
219
220
static int applicable_buf(const solver *ego_, const problem *p_)
221
23.7k
{
222
23.7k
     const S *ego = (const S *) ego_;
223
23.7k
     const kr2c_desc *desc = ego->desc;
224
23.7k
     const problem_rdft *p = (const problem_rdft *) p_;
225
23.7k
     INT vl, ivs, ovs, batchsz;
226
227
23.7k
     return (
228
23.7k
    1
229
23.7k
    && p->sz->rnk == 1
230
23.7k
    && p->vecsz->rnk <= 1
231
23.7k
    && p->sz->dims[0].n == desc->n
232
23.7k
    && p->kind[0] == desc->genus->kind
233
234
    /* check strides etc */
235
23.7k
    && X(tensor_tornk1)(p->vecsz, &vl, &ivs, &ovs)
236
237
23.7k
    && (batchsz = compute_batchsize(desc->n), 1)
238
239
23.7k
    && (0
240
        /* can operate out-of-place */
241
0
        || p->I != p->O
242
243
        /* can operate in-place as long as strides are the same */
244
0
        || X(tensor_inplace_strides2)(p->sz, p->vecsz)
245
246
        /* can do it if the problem fits in the buffer, no matter
247
     what the strides are */
248
0
        || vl <= batchsz
249
0
         )
250
23.7k
    );
251
23.7k
}
252
253
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
254
47.5k
{
255
47.5k
     const S *ego = (const S *) ego_;
256
47.5k
     P *pln;
257
47.5k
     const problem_rdft *p;
258
47.5k
     iodim *d;
259
47.5k
     INT rs, cs, b, n;
260
261
47.5k
     static const plan_adt padt = {
262
47.5k
    X(rdft_solve), X(null_awake), print, destroy
263
47.5k
     };
264
265
47.5k
     UNUSED(plnr);
266
267
47.5k
     if (ego->bufferedp) {
268
23.7k
    if (!applicable_buf(ego_, p_))
269
23.7k
         return (plan *)0;
270
23.7k
     } else {
271
23.7k
    if (!applicable(ego_, p_))
272
23.7k
         return (plan *)0;
273
23.7k
     }
274
275
0
     p = (const problem_rdft *) p_;
276
277
0
     if (R2HC_KINDP(p->kind[0])) {
278
0
    rs = p->sz->dims[0].is; cs = p->sz->dims[0].os;
279
0
    pln = MKPLAN_RDFT(P, &padt, 
280
0
          ego->bufferedp ? apply_buf_r2hc : apply_r2hc);
281
0
     } else {
282
0
    rs = p->sz->dims[0].os; cs = p->sz->dims[0].is;
283
0
    pln = MKPLAN_RDFT(P, &padt, 
284
0
          ego->bufferedp ? apply_buf_hc2r : apply_hc2r);
285
0
     }
286
287
0
     d = p->sz->dims;
288
0
     n = d[0].n;
289
290
0
     pln->k = ego->k;
291
0
     pln->n = n;
292
293
0
     pln->rs0 = rs;
294
0
     pln->rs = X(mkstride)(n, 2 * rs);
295
0
     pln->csr = X(mkstride)(n, cs);
296
0
     pln->csi = X(mkstride)(n, -cs);
297
0
     pln->ioffset = ioffset(p->kind[0], n, cs);
298
299
0
     b = compute_batchsize(n);
300
0
     pln->brs = X(mkstride)(n, 2 * b);
301
0
     pln->bcsr = X(mkstride)(n, b);
302
0
     pln->bcsi = X(mkstride)(n, -b);
303
0
     pln->bioffset = ioffset(p->kind[0], n, b);
304
305
0
     X(tensor_tornk1)(p->vecsz, &pln->vl, &pln->ivs, &pln->ovs);
306
307
0
     pln->slv = ego;
308
0
     X(ops_zero)(&pln->super.super.ops);
309
310
0
     X(ops_madd2)(pln->vl / ego->desc->genus->vl,
311
0
      &ego->desc->ops,
312
0
      &pln->super.super.ops);
313
314
0
     if (ego->bufferedp) 
315
0
    pln->super.super.ops.other += 2 * n * pln->vl;
316
317
0
     pln->super.super.could_prune_now_p = !ego->bufferedp;
318
319
0
     return &(pln->super.super);
320
47.5k
}
321
322
/* constructor */
323
static solver *mksolver(kr2c k, const kr2c_desc *desc, int bufferedp)
324
144
{
325
144
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
326
144
     S *slv = MKSOLVER(S, &sadt);
327
144
     slv->k = k;
328
144
     slv->desc = desc;
329
144
     slv->bufferedp = bufferedp;
330
144
     return &(slv->super);
331
144
}
332
333
solver *X(mksolver_rdft_r2c_direct)(kr2c k, const kr2c_desc *desc)
334
72
{
335
72
     return mksolver(k, desc, 0);
336
72
}
337
338
solver *X(mksolver_rdft_r2c_directbuf)(kr2c k, const kr2c_desc *desc)
339
72
{
340
72
     return mksolver(k, desc, 1);
341
72
}