Coverage Report

Created: 2025-08-26 06:35

/src/fftw3/rdft/indirect.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
22
23
/* solvers/plans for vectors of small RDFT's that cannot be done
24
   in-place directly.  Use a rank-0 plan to rearrange the data
25
   before or after the transform.  Can also change an out-of-place
26
   plan into a copy + in-place (where the in-place transform
27
   is e.g. unit stride). */
28
29
/* FIXME: merge with rank-geq2.c(?), since this is just a special case
30
   of a rank split where the first/second transform has rank 0. */
31
32
#include "rdft/rdft.h"
33
34
typedef problem *(*mkcld_t) (const problem_rdft *p);
35
36
typedef struct {
37
     rdftapply apply;
38
     problem *(*mkcld)(const problem_rdft *p);
39
     const char *nam;
40
} ndrct_adt;
41
42
typedef struct {
43
     solver super;
44
     const ndrct_adt *adt;
45
} S;
46
47
typedef struct {
48
     plan_rdft super;
49
     plan *cldcpy, *cld;
50
     const S *slv;
51
} P;
52
53
/*-----------------------------------------------------------------------*/
54
/* first rearrange, then transform */
55
static void apply_before(const plan *ego_, R *I, R *O)
56
{
57
     const P *ego = (const P *) ego_;
58
59
     {
60
          plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
61
          cldcpy->apply(ego->cldcpy, I, O);
62
     }
63
     {
64
          plan_rdft *cld = (plan_rdft *) ego->cld;
65
          cld->apply(ego->cld, O, O);
66
     }
67
}
68
69
static problem *mkcld_before(const problem_rdft *p)
70
{
71
     return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_OS),
72
        X(tensor_copy_inplace)(p->vecsz, INPLACE_OS),
73
        p->O, p->O, p->kind);
74
}
75
76
static const ndrct_adt adt_before =
77
{
78
     apply_before, mkcld_before, "rdft-indirect-before"
79
};
80
81
/*-----------------------------------------------------------------------*/
82
/* first transform, then rearrange */
83
84
static void apply_after(const plan *ego_, R *I, R *O)
85
{
86
     const P *ego = (const P *) ego_;
87
88
     {
89
          plan_rdft *cld = (plan_rdft *) ego->cld;
90
          cld->apply(ego->cld, I, I);
91
     }
92
     {
93
          plan_rdft *cldcpy = (plan_rdft *) ego->cldcpy;
94
          cldcpy->apply(ego->cldcpy, I, O);
95
     }
96
}
97
98
static problem *mkcld_after(const problem_rdft *p)
99
{
100
     return X(mkproblem_rdft_d)(X(tensor_copy_inplace)(p->sz, INPLACE_IS),
101
        X(tensor_copy_inplace)(p->vecsz, INPLACE_IS),
102
        p->I, p->I, p->kind);
103
}
104
105
static const ndrct_adt adt_after =
106
{
107
     apply_after, mkcld_after, "rdft-indirect-after"
108
};
109
110
/*-----------------------------------------------------------------------*/
111
static void destroy(plan *ego_)
112
{
113
     P *ego = (P *) ego_;
114
     X(plan_destroy_internal)(ego->cld);
115
     X(plan_destroy_internal)(ego->cldcpy);
116
}
117
118
static void awake(plan *ego_, enum wakefulness wakefulness)
119
{
120
     P *ego = (P *) ego_;
121
     X(plan_awake)(ego->cldcpy, wakefulness);
122
     X(plan_awake)(ego->cld, wakefulness);
123
}
124
125
static void print(const plan *ego_, printer *p)
126
{
127
     const P *ego = (const P *) ego_;
128
     const S *s = ego->slv;
129
     p->print(p, "(%s%(%p%)%(%p%))", s->adt->nam, ego->cld, ego->cldcpy);
130
}
131
132
static int applicable0(const solver *ego_, const problem *p_,
133
           const planner *plnr)
134
{
135
     const S *ego = (const S *) ego_;
136
     const problem_rdft *p = (const problem_rdft *) p_;
137
     return (1
138
       && FINITE_RNK(p->vecsz->rnk)
139
140
       /* problem must be a nontrivial transform, not just a copy */
141
       && p->sz->rnk > 0
142
143
       && (0
144
145
     /* problem must be in-place & require some
146
        rearrangement of the data */
147
     || (p->I == p->O
148
         && !(X(tensor_inplace_strides2)(p->sz, p->vecsz)))
149
150
     /* or problem must be out of place, transforming
151
        from stride 1/2 to bigger stride, for apply_after */
152
     || (p->I != p->O && ego->adt->apply == apply_after
153
         && !NO_DESTROY_INPUTP(plnr)
154
         && X(tensor_min_istride)(p->sz) <= 2
155
         && X(tensor_min_ostride)(p->sz) > 2)
156
        
157
     /* or problem must be out of place, transforming
158
        to stride 1/2 from bigger stride, for apply_before */
159
     || (p->I != p->O && ego->adt->apply == apply_before
160
         && X(tensor_min_ostride)(p->sz) <= 2
161
         && X(tensor_min_istride)(p->sz) > 2)
162
        
163
      )
164
    );
165
}
166
167
static int applicable(const solver *ego_, const problem *p_,
168
          const planner *plnr)
169
{
170
     if (!applicable0(ego_, p_, plnr)) return 0;
171
    
172
     if (NO_INDIRECT_OP_P(plnr)) {
173
    const problem_rdft *p = (const problem_rdft *)p_;
174
    if (p->I != p->O) return 0;
175
     }
176
177
     return 1;
178
}
179
180
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
181
{
182
     const problem_rdft *p = (const problem_rdft *) p_;
183
     const S *ego = (const S *) ego_;
184
     P *pln;
185
     plan *cld = 0, *cldcpy = 0;
186
187
     static const plan_adt padt = {
188
    X(rdft_solve), awake, print, destroy
189
     };
190
191
     if (!applicable(ego_, p_, plnr))
192
          return (plan *) 0;
193
194
     cldcpy = X(mkplan_d)(plnr,
195
        X(mkproblem_rdft_0_d)(
196
             X(tensor_append)(p->vecsz, p->sz),
197
             p->I, p->O));
198
     if (!cldcpy) goto nada;
199
200
     cld = X(mkplan_f_d)(plnr, ego->adt->mkcld(p), NO_BUFFERING, 0, 0);
201
     if (!cld) goto nada;
202
203
     pln = MKPLAN_RDFT(P, &padt, ego->adt->apply);
204
     pln->cld = cld;
205
     pln->cldcpy = cldcpy;
206
     pln->slv = ego;
207
     X(ops_add)(&cld->ops, &cldcpy->ops, &pln->super.super.ops);
208
209
     return &(pln->super.super);
210
211
 nada:
212
     X(plan_destroy_internal)(cld);
213
     X(plan_destroy_internal)(cldcpy);
214
     return (plan *)0;
215
}
216
217
static solver *mksolver(const ndrct_adt *adt)
218
{
219
     static const solver_adt sadt = { PROBLEM_RDFT, mkplan, 0 };
220
     S *slv = MKSOLVER(S, &sadt);
221
     slv->adt = adt;
222
     return &(slv->super);
223
}
224
225
void X(rdft_indirect_register)(planner *p)
226
1
{
227
1
     unsigned i;
228
1
     static const ndrct_adt *const adts[] = {
229
1
    &adt_before, &adt_after
230
1
     };
231
232
3
     for (i = 0; i < sizeof(adts) / sizeof(adts[0]); ++i)
233
2
          REGISTER_SOLVER(p, mksolver(adts[i]));
234
1
}