Coverage Report

Created: 2025-08-26 06:35

/src/fftw3/rdft/scalar/r2cb/hc2cb_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Aug 26 06:34:17 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 174 FP additions, 100 FP multiplications,
32
 * (or, 104 additions, 30 multiplications, 70 fused multiply/add),
33
 * 63 stack variables, 3 constants, and 64 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
41
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
42
     {
43
    INT m;
44
    for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
45
         E TA, T1O, T21, T1h, T2P, T2S, T3b, T3p, T3q, T3D, T1k, T1P, Tf, T3y, T2A;
46
         E T36, TL, T22, T3s, T3t, T3z, T2F, T2U, T2K, T2V, Tu, T3E, TX, T1n, T1T;
47
         E T24, T1W, T25, T18, T1m;
48
         {
49
        E T3, Tw, T1g, T2Q, T6, T1d, Tz, T2R, Ta, TB, TE, T2y, Td, TG, TJ;
50
        E T2x;
51
        {
52
       E T1, T2, T1e, T1f;
53
       T1 = Rp[0];
54
       T2 = Rm[WS(rs, 7)];
55
       T3 = T1 + T2;
56
       Tw = T1 - T2;
57
       T1e = Ip[0];
58
       T1f = Im[WS(rs, 7)];
59
       T1g = T1e + T1f;
60
       T2Q = T1e - T1f;
61
        }
62
        {
63
       E T4, T5, Tx, Ty;
64
       T4 = Rp[WS(rs, 4)];
65
       T5 = Rm[WS(rs, 3)];
66
       T6 = T4 + T5;
67
       T1d = T4 - T5;
68
       Tx = Ip[WS(rs, 4)];
69
       Ty = Im[WS(rs, 3)];
70
       Tz = Tx + Ty;
71
       T2R = Tx - Ty;
72
        }
73
        {
74
       E T8, T9, TC, TD;
75
       T8 = Rp[WS(rs, 2)];
76
       T9 = Rm[WS(rs, 5)];
77
       Ta = T8 + T9;
78
       TB = T8 - T9;
79
       TC = Ip[WS(rs, 2)];
80
       TD = Im[WS(rs, 5)];
81
       TE = TC + TD;
82
       T2y = TC - TD;
83
        }
84
        {
85
       E Tb, Tc, TH, TI;
86
       Tb = Rm[WS(rs, 1)];
87
       Tc = Rp[WS(rs, 6)];
88
       Td = Tb + Tc;
89
       TG = Tb - Tc;
90
       TH = Ip[WS(rs, 6)];
91
       TI = Im[WS(rs, 1)];
92
       TJ = TH + TI;
93
       T2x = TH - TI;
94
        }
95
        TA = Tw - Tz;
96
        T1O = Tw + Tz;
97
        T21 = T1g - T1d;
98
        T1h = T1d + T1g;
99
        T2P = Ta - Td;
100
        T2S = T2Q - T2R;
101
        T3b = T2S - T2P;
102
        {
103
       E T1i, T1j, T7, Te;
104
       T3p = T2Q + T2R;
105
       T3q = T2y + T2x;
106
       T3D = T3p - T3q;
107
       T1i = TB + TE;
108
       T1j = TG + TJ;
109
       T1k = T1i - T1j;
110
       T1P = T1i + T1j;
111
       T7 = T3 + T6;
112
       Te = Ta + Td;
113
       Tf = T7 + Te;
114
       T3y = T7 - Te;
115
       {
116
            E T2w, T2z, TF, TK;
117
            T2w = T3 - T6;
118
            T2z = T2x - T2y;
119
            T2A = T2w + T2z;
120
            T36 = T2w - T2z;
121
            TF = TB - TE;
122
            TK = TG - TJ;
123
            TL = TF + TK;
124
            T22 = TF - TK;
125
       }
126
        }
127
         }
128
         {
129
        E Ti, T13, T11, T2C, Tl, TY, T16, T2D, Tp, TS, TQ, T2H, Ts, TN, TV;
130
        E T2I, T2B, T2E;
131
        {
132
       E Tg, Th, TZ, T10;
133
       Tg = Rp[WS(rs, 1)];
134
       Th = Rm[WS(rs, 6)];
135
       Ti = Tg + Th;
136
       T13 = Tg - Th;
137
       TZ = Ip[WS(rs, 1)];
138
       T10 = Im[WS(rs, 6)];
139
       T11 = TZ + T10;
140
       T2C = TZ - T10;
141
        }
142
        {
143
       E Tj, Tk, T14, T15;
144
       Tj = Rp[WS(rs, 5)];
145
       Tk = Rm[WS(rs, 2)];
146
       Tl = Tj + Tk;
147
       TY = Tj - Tk;
148
       T14 = Ip[WS(rs, 5)];
149
       T15 = Im[WS(rs, 2)];
150
       T16 = T14 + T15;
151
       T2D = T14 - T15;
152
        }
153
        {
154
       E Tn, To, TO, TP;
155
       Tn = Rm[0];
156
       To = Rp[WS(rs, 7)];
157
       Tp = Tn + To;
158
       TS = Tn - To;
159
       TO = Ip[WS(rs, 7)];
160
       TP = Im[0];
161
       TQ = TO + TP;
162
       T2H = TO - TP;
163
        }
164
        {
165
       E Tq, Tr, TT, TU;
166
       Tq = Rp[WS(rs, 3)];
167
       Tr = Rm[WS(rs, 4)];
168
       Ts = Tq + Tr;
169
       TN = Tq - Tr;
170
       TT = Ip[WS(rs, 3)];
171
       TU = Im[WS(rs, 4)];
172
       TV = TT + TU;
173
       T2I = TT - TU;
174
        }
175
        T3s = T2C + T2D;
176
        T3t = T2H + T2I;
177
        T3z = T3t - T3s;
178
        T2B = Ti - Tl;
179
        T2E = T2C - T2D;
180
        T2F = T2B - T2E;
181
        T2U = T2B + T2E;
182
        {
183
       E T2G, T2J, Tm, Tt;
184
       T2G = Tp - Ts;
185
       T2J = T2H - T2I;
186
       T2K = T2G + T2J;
187
       T2V = T2J - T2G;
188
       Tm = Ti + Tl;
189
       Tt = Tp + Ts;
190
       Tu = Tm + Tt;
191
       T3E = Tm - Tt;
192
        }
193
        {
194
       E TR, TW, T1R, T1S;
195
       TR = TN - TQ;
196
       TW = TS - TV;
197
       TX = FNMS(KP414213562, TW, TR);
198
       T1n = FMA(KP414213562, TR, TW);
199
       T1R = T11 - TY;
200
       T1S = T13 + T16;
201
       T1T = FNMS(KP414213562, T1S, T1R);
202
       T24 = FMA(KP414213562, T1R, T1S);
203
        }
204
        {
205
       E T1U, T1V, T12, T17;
206
       T1U = TN + TQ;
207
       T1V = TS + TV;
208
       T1W = FNMS(KP414213562, T1V, T1U);
209
       T25 = FMA(KP414213562, T1U, T1V);
210
       T12 = TY + T11;
211
       T17 = T13 - T16;
212
       T18 = FMA(KP414213562, T17, T12);
213
       T1m = FNMS(KP414213562, T12, T17);
214
        }
215
         }
216
         Rp[0] = Tf + Tu;
217
         {
218
        E T3r, T3u, T3v, T3l, T3n, T3o, T3w, T3m;
219
        T3r = T3p + T3q;
220
        T3u = T3s + T3t;
221
        T3v = T3r - T3u;
222
        T3m = Tf - Tu;
223
        T3l = W[14];
224
        T3n = T3l * T3m;
225
        T3o = W[15];
226
        T3w = T3o * T3m;
227
        Rm[0] = T3r + T3u;
228
        Rm[WS(rs, 4)] = FMA(T3l, T3v, T3w);
229
        Rp[WS(rs, 4)] = FNMS(T3o, T3v, T3n);
230
         }
231
         {
232
        E T3A, T3F, T3B, T3G, T3x, T3C;
233
        T3A = T3y - T3z;
234
        T3F = T3D - T3E;
235
        T3x = W[22];
236
        T3B = T3x * T3A;
237
        T3G = T3x * T3F;
238
        T3C = W[23];
239
        Rp[WS(rs, 6)] = FNMS(T3C, T3F, T3B);
240
        Rm[WS(rs, 6)] = FMA(T3C, T3A, T3G);
241
         }
242
         {
243
        E T3I, T3L, T3J, T3M, T3H, T3K;
244
        T3I = T3y + T3z;
245
        T3L = T3E + T3D;
246
        T3H = W[6];
247
        T3J = T3H * T3I;
248
        T3M = T3H * T3L;
249
        T3K = W[7];
250
        Rp[WS(rs, 2)] = FNMS(T3K, T3L, T3J);
251
        Rm[WS(rs, 2)] = FMA(T3K, T3I, T3M);
252
         }
253
         {
254
        E T38, T3g, T3d, T3j, T37, T3c;
255
        T37 = T2V - T2U;
256
        T38 = FNMS(KP707106781, T37, T36);
257
        T3g = FMA(KP707106781, T37, T36);
258
        T3c = T2F - T2K;
259
        T3d = FNMS(KP707106781, T3c, T3b);
260
        T3j = FMA(KP707106781, T3c, T3b);
261
        {
262
       E T39, T3e, T35, T3a;
263
       T35 = W[26];
264
       T39 = T35 * T38;
265
       T3e = T35 * T3d;
266
       T3a = W[27];
267
       Rp[WS(rs, 7)] = FNMS(T3a, T3d, T39);
268
       Rm[WS(rs, 7)] = FMA(T3a, T38, T3e);
269
        }
270
        {
271
       E T3h, T3k, T3f, T3i;
272
       T3f = W[10];
273
       T3h = T3f * T3g;
274
       T3k = T3f * T3j;
275
       T3i = W[11];
276
       Rp[WS(rs, 3)] = FNMS(T3i, T3j, T3h);
277
       Rm[WS(rs, 3)] = FMA(T3i, T3g, T3k);
278
        }
279
         }
280
         {
281
        E T2M, T30, T2X, T33, T2L, T2T, T2W;
282
        T2L = T2F + T2K;
283
        T2M = FNMS(KP707106781, T2L, T2A);
284
        T30 = FMA(KP707106781, T2L, T2A);
285
        T2T = T2P + T2S;
286
        T2W = T2U + T2V;
287
        T2X = FNMS(KP707106781, T2W, T2T);
288
        T33 = FMA(KP707106781, T2W, T2T);
289
        {
290
       E T2v, T2N, T2O, T2Y;
291
       T2v = W[18];
292
       T2N = T2v * T2M;
293
       T2O = W[19];
294
       T2Y = T2O * T2M;
295
       Rp[WS(rs, 5)] = FNMS(T2O, T2X, T2N);
296
       Rm[WS(rs, 5)] = FMA(T2v, T2X, T2Y);
297
        }
298
        {
299
       E T2Z, T31, T32, T34;
300
       T2Z = W[2];
301
       T31 = T2Z * T30;
302
       T32 = W[3];
303
       T34 = T32 * T30;
304
       Rp[WS(rs, 1)] = FNMS(T32, T33, T31);
305
       Rm[WS(rs, 1)] = FMA(T2Z, T33, T34);
306
        }
307
         }
308
         {
309
        E T1Y, T2a, T27, T2d;
310
        {
311
       E T1Q, T1X, T23, T26;
312
       T1Q = FNMS(KP707106781, T1P, T1O);
313
       T1X = T1T + T1W;
314
       T1Y = FMA(KP923879532, T1X, T1Q);
315
       T2a = FNMS(KP923879532, T1X, T1Q);
316
       T23 = FMA(KP707106781, T22, T21);
317
       T26 = T24 - T25;
318
       T27 = FNMS(KP923879532, T26, T23);
319
       T2d = FMA(KP923879532, T26, T23);
320
        }
321
        {
322
       E T1N, T1Z, T20, T28;
323
       T1N = W[20];
324
       T1Z = T1N * T1Y;
325
       T20 = W[21];
326
       T28 = T20 * T1Y;
327
       Ip[WS(rs, 5)] = FNMS(T20, T27, T1Z);
328
       Im[WS(rs, 5)] = FMA(T1N, T27, T28);
329
        }
330
        {
331
       E T29, T2b, T2c, T2e;
332
       T29 = W[4];
333
       T2b = T29 * T2a;
334
       T2c = W[5];
335
       T2e = T2c * T2a;
336
       Ip[WS(rs, 1)] = FNMS(T2c, T2d, T2b);
337
       Im[WS(rs, 1)] = FMA(T29, T2d, T2e);
338
        }
339
         }
340
         {
341
        E T1a, T1s, T1p, T1v;
342
        {
343
       E TM, T19, T1l, T1o;
344
       TM = FNMS(KP707106781, TL, TA);
345
       T19 = TX - T18;
346
       T1a = FNMS(KP923879532, T19, TM);
347
       T1s = FMA(KP923879532, T19, TM);
348
       T1l = FNMS(KP707106781, T1k, T1h);
349
       T1o = T1m - T1n;
350
       T1p = FNMS(KP923879532, T1o, T1l);
351
       T1v = FMA(KP923879532, T1o, T1l);
352
        }
353
        {
354
       E Tv, T1b, T1c, T1q;
355
       Tv = W[24];
356
       T1b = Tv * T1a;
357
       T1c = W[25];
358
       T1q = T1c * T1a;
359
       Ip[WS(rs, 6)] = FNMS(T1c, T1p, T1b);
360
       Im[WS(rs, 6)] = FMA(Tv, T1p, T1q);
361
        }
362
        {
363
       E T1r, T1t, T1u, T1w;
364
       T1r = W[8];
365
       T1t = T1r * T1s;
366
       T1u = W[9];
367
       T1w = T1u * T1s;
368
       Ip[WS(rs, 2)] = FNMS(T1u, T1v, T1t);
369
       Im[WS(rs, 2)] = FMA(T1r, T1v, T1w);
370
        }
371
         }
372
         {
373
        E T2i, T2q, T2n, T2t;
374
        {
375
       E T2g, T2h, T2l, T2m;
376
       T2g = FMA(KP707106781, T1P, T1O);
377
       T2h = T24 + T25;
378
       T2i = FNMS(KP923879532, T2h, T2g);
379
       T2q = FMA(KP923879532, T2h, T2g);
380
       T2l = FNMS(KP707106781, T22, T21);
381
       T2m = T1W - T1T;
382
       T2n = FMA(KP923879532, T2m, T2l);
383
       T2t = FNMS(KP923879532, T2m, T2l);
384
        }
385
        {
386
       E T2j, T2o, T2f, T2k;
387
       T2f = W[12];
388
       T2j = T2f * T2i;
389
       T2o = T2f * T2n;
390
       T2k = W[13];
391
       Ip[WS(rs, 3)] = FNMS(T2k, T2n, T2j);
392
       Im[WS(rs, 3)] = FMA(T2k, T2i, T2o);
393
        }
394
        {
395
       E T2r, T2u, T2p, T2s;
396
       T2p = W[28];
397
       T2r = T2p * T2q;
398
       T2u = T2p * T2t;
399
       T2s = W[29];
400
       Ip[WS(rs, 7)] = FNMS(T2s, T2t, T2r);
401
       Im[WS(rs, 7)] = FMA(T2s, T2q, T2u);
402
        }
403
         }
404
         {
405
        E T1A, T1I, T1F, T1L;
406
        {
407
       E T1y, T1z, T1D, T1E;
408
       T1y = FMA(KP707106781, TL, TA);
409
       T1z = T1m + T1n;
410
       T1A = FNMS(KP923879532, T1z, T1y);
411
       T1I = FMA(KP923879532, T1z, T1y);
412
       T1D = FMA(KP707106781, T1k, T1h);
413
       T1E = T18 + TX;
414
       T1F = FNMS(KP923879532, T1E, T1D);
415
       T1L = FMA(KP923879532, T1E, T1D);
416
        }
417
        {
418
       E T1B, T1G, T1x, T1C;
419
       T1x = W[16];
420
       T1B = T1x * T1A;
421
       T1G = T1x * T1F;
422
       T1C = W[17];
423
       Ip[WS(rs, 4)] = FNMS(T1C, T1F, T1B);
424
       Im[WS(rs, 4)] = FMA(T1C, T1A, T1G);
425
        }
426
        {
427
       E T1J, T1M, T1H, T1K;
428
       T1H = W[0];
429
       T1J = T1H * T1I;
430
       T1M = T1H * T1L;
431
       T1K = W[1];
432
       Ip[0] = FNMS(T1K, T1L, T1J);
433
       Im[0] = FMA(T1K, T1I, T1M);
434
        }
435
         }
436
    }
437
     }
438
}
439
440
static const tw_instr twinstr[] = {
441
     { TW_FULL, 1, 16 },
442
     { TW_NEXT, 1, 0 }
443
};
444
445
static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, { 104, 30, 70, 0 } };
446
447
void X(codelet_hc2cb_16) (planner *p) {
448
     X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT);
449
}
450
#else
451
452
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include rdft/scalar/hc2cb.h */
453
454
/*
455
 * This function contains 174 FP additions, 84 FP multiplications,
456
 * (or, 136 additions, 46 multiplications, 38 fused multiply/add),
457
 * 50 stack variables, 3 constants, and 64 memory accesses
458
 */
459
#include "rdft/scalar/hc2cb.h"
460
461
static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
462
0
{
463
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
464
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
465
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
466
0
     {
467
0
    INT m;
468
0
    for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) {
469
0
         E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z;
470
0
         E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q;
471
0
         E T2S, T30;
472
0
         {
473
0
        E T3, T1Q, T13, T2j, T6, T2i, T16, T1R;
474
0
        {
475
0
       E T1, T2, T11, T12;
476
0
       T1 = Rp[0];
477
0
       T2 = Rm[WS(rs, 7)];
478
0
       T3 = T1 + T2;
479
0
       T1Q = T1 - T2;
480
0
       T11 = Ip[0];
481
0
       T12 = Im[WS(rs, 7)];
482
0
       T13 = T11 - T12;
483
0
       T2j = T11 + T12;
484
0
        }
485
0
        {
486
0
       E T4, T5, T14, T15;
487
0
       T4 = Rp[WS(rs, 4)];
488
0
       T5 = Rm[WS(rs, 3)];
489
0
       T6 = T4 + T5;
490
0
       T2i = T4 - T5;
491
0
       T14 = Ip[WS(rs, 4)];
492
0
       T15 = Im[WS(rs, 3)];
493
0
       T16 = T14 - T15;
494
0
       T1R = T14 + T15;
495
0
        }
496
0
        T7 = T3 + T6;
497
0
        T2K = T1Q + T1R;
498
0
        T2W = T2j - T2i;
499
0
        Tw = T3 - T6;
500
0
        T17 = T13 - T16;
501
0
        T1S = T1Q - T1R;
502
0
        T2k = T2i + T2j;
503
0
        T1w = T13 + T16;
504
0
         }
505
0
         {
506
0
        E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X;
507
0
        {
508
0
       E T8, T9, TA, TB;
509
0
       T8 = Rp[WS(rs, 2)];
510
0
       T9 = Rm[WS(rs, 5)];
511
0
       Ta = T8 + T9;
512
0
       T1T = T8 - T9;
513
0
       TA = Ip[WS(rs, 2)];
514
0
       TB = Im[WS(rs, 5)];
515
0
       TC = TA - TB;
516
0
       T1U = TA + TB;
517
0
        }
518
0
        {
519
0
       E Tb, Tc, Tx, Ty;
520
0
       Tb = Rm[WS(rs, 1)];
521
0
       Tc = Rp[WS(rs, 6)];
522
0
       Td = Tb + Tc;
523
0
       T1W = Tb - Tc;
524
0
       Tx = Ip[WS(rs, 6)];
525
0
       Ty = Im[WS(rs, 1)];
526
0
       Tz = Tx - Ty;
527
0
       T1X = Tx + Ty;
528
0
        }
529
0
        Te = Ta + Td;
530
0
        TD = Tz - TC;
531
0
        T1x = TC + Tz;
532
0
        T10 = Ta - Td;
533
0
        {
534
0
       E T2l, T2m, T1V, T1Y;
535
0
       T2l = T1T + T1U;
536
0
       T2m = T1W + T1X;
537
0
       T2n = KP707106781 * (T2l - T2m);
538
0
       T2L = KP707106781 * (T2l + T2m);
539
0
       T1V = T1T - T1U;
540
0
       T1Y = T1W - T1X;
541
0
       T1Z = KP707106781 * (T1V + T1Y);
542
0
       T2X = KP707106781 * (T1V - T1Y);
543
0
        }
544
0
         }
545
0
         {
546
0
        E Ti, T2b, TI, T29, Tl, T28, TL, T2c, TF, TM;
547
0
        {
548
0
       E Tg, Th, TG, TH;
549
0
       Tg = Rp[WS(rs, 1)];
550
0
       Th = Rm[WS(rs, 6)];
551
0
       Ti = Tg + Th;
552
0
       T2b = Tg - Th;
553
0
       TG = Ip[WS(rs, 1)];
554
0
       TH = Im[WS(rs, 6)];
555
0
       TI = TG - TH;
556
0
       T29 = TG + TH;
557
0
        }
558
0
        {
559
0
       E Tj, Tk, TJ, TK;
560
0
       Tj = Rp[WS(rs, 5)];
561
0
       Tk = Rm[WS(rs, 2)];
562
0
       Tl = Tj + Tk;
563
0
       T28 = Tj - Tk;
564
0
       TJ = Ip[WS(rs, 5)];
565
0
       TK = Im[WS(rs, 2)];
566
0
       TL = TJ - TK;
567
0
       T2c = TJ + TK;
568
0
        }
569
0
        Tm = Ti + Tl;
570
0
        T1z = TI + TL;
571
0
        TF = Ti - Tl;
572
0
        TM = TI - TL;
573
0
        TN = TF - TM;
574
0
        T19 = TF + TM;
575
0
        {
576
0
       E T2a, T2d, T2N, T2O;
577
0
       T2a = T28 + T29;
578
0
       T2d = T2b - T2c;
579
0
       T2e = FMA(KP923879532, T2a, KP382683432 * T2d);
580
0
       T2p = FNMS(KP382683432, T2a, KP923879532 * T2d);
581
0
       T2N = T2b + T2c;
582
0
       T2O = T29 - T28;
583
0
       T2P = FNMS(KP923879532, T2O, KP382683432 * T2N);
584
0
       T2Z = FMA(KP382683432, T2O, KP923879532 * T2N);
585
0
        }
586
0
         }
587
0
         {
588
0
        E Tp, T24, TR, T22, Ts, T21, TU, T25, TO, TV;
589
0
        {
590
0
       E Tn, To, TP, TQ;
591
0
       Tn = Rm[0];
592
0
       To = Rp[WS(rs, 7)];
593
0
       Tp = Tn + To;
594
0
       T24 = Tn - To;
595
0
       TP = Ip[WS(rs, 7)];
596
0
       TQ = Im[0];
597
0
       TR = TP - TQ;
598
0
       T22 = TP + TQ;
599
0
        }
600
0
        {
601
0
       E Tq, Tr, TS, TT;
602
0
       Tq = Rp[WS(rs, 3)];
603
0
       Tr = Rm[WS(rs, 4)];
604
0
       Ts = Tq + Tr;
605
0
       T21 = Tq - Tr;
606
0
       TS = Ip[WS(rs, 3)];
607
0
       TT = Im[WS(rs, 4)];
608
0
       TU = TS - TT;
609
0
       T25 = TS + TT;
610
0
        }
611
0
        Tt = Tp + Ts;
612
0
        T1A = TR + TU;
613
0
        TO = Tp - Ts;
614
0
        TV = TR - TU;
615
0
        TW = TO + TV;
616
0
        T1a = TV - TO;
617
0
        {
618
0
       E T23, T26, T2Q, T2R;
619
0
       T23 = T21 - T22;
620
0
       T26 = T24 - T25;
621
0
       T27 = FNMS(KP382683432, T26, KP923879532 * T23);
622
0
       T2q = FMA(KP382683432, T23, KP923879532 * T26);
623
0
       T2Q = T24 + T25;
624
0
       T2R = T21 + T22;
625
0
       T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q);
626
0
       T30 = FMA(KP382683432, T2R, KP923879532 * T2Q);
627
0
        }
628
0
         }
629
0
         {
630
0
        E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v;
631
0
        Tf = T7 + Te;
632
0
        Tu = Tm + Tt;
633
0
        T1u = Tf - Tu;
634
0
        T1y = T1w + T1x;
635
0
        T1B = T1z + T1A;
636
0
        T1C = T1y - T1B;
637
0
        Rp[0] = Tf + Tu;
638
0
        Rm[0] = T1y + T1B;
639
0
        T1t = W[14];
640
0
        T1v = W[15];
641
0
        Rp[WS(rs, 4)] = FNMS(T1v, T1C, T1t * T1u);
642
0
        Rm[WS(rs, 4)] = FMA(T1v, T1u, T1t * T1C);
643
0
         }
644
0
         {
645
0
        E T2U, T34, T32, T36;
646
0
        {
647
0
       E T2M, T2T, T2Y, T31;
648
0
       T2M = T2K - T2L;
649
0
       T2T = T2P + T2S;
650
0
       T2U = T2M - T2T;
651
0
       T34 = T2M + T2T;
652
0
       T2Y = T2W + T2X;
653
0
       T31 = T2Z - T30;
654
0
       T32 = T2Y - T31;
655
0
       T36 = T2Y + T31;
656
0
        }
657
0
        {
658
0
       E T2J, T2V, T33, T35;
659
0
       T2J = W[20];
660
0
       T2V = W[21];
661
0
       Ip[WS(rs, 5)] = FNMS(T2V, T32, T2J * T2U);
662
0
       Im[WS(rs, 5)] = FMA(T2V, T2U, T2J * T32);
663
0
       T33 = W[4];
664
0
       T35 = W[5];
665
0
       Ip[WS(rs, 1)] = FNMS(T35, T36, T33 * T34);
666
0
       Im[WS(rs, 1)] = FMA(T35, T34, T33 * T36);
667
0
        }
668
0
         }
669
0
         {
670
0
        E T3a, T3g, T3e, T3i;
671
0
        {
672
0
       E T38, T39, T3c, T3d;
673
0
       T38 = T2K + T2L;
674
0
       T39 = T2Z + T30;
675
0
       T3a = T38 - T39;
676
0
       T3g = T38 + T39;
677
0
       T3c = T2W - T2X;
678
0
       T3d = T2P - T2S;
679
0
       T3e = T3c + T3d;
680
0
       T3i = T3c - T3d;
681
0
        }
682
0
        {
683
0
       E T37, T3b, T3f, T3h;
684
0
       T37 = W[12];
685
0
       T3b = W[13];
686
0
       Ip[WS(rs, 3)] = FNMS(T3b, T3e, T37 * T3a);
687
0
       Im[WS(rs, 3)] = FMA(T37, T3e, T3b * T3a);
688
0
       T3f = W[28];
689
0
       T3h = W[29];
690
0
       Ip[WS(rs, 7)] = FNMS(T3h, T3i, T3f * T3g);
691
0
       Im[WS(rs, 7)] = FMA(T3f, T3i, T3h * T3g);
692
0
        }
693
0
         }
694
0
         {
695
0
        E TY, T1e, T1c, T1g;
696
0
        {
697
0
       E TE, TX, T18, T1b;
698
0
       TE = Tw + TD;
699
0
       TX = KP707106781 * (TN + TW);
700
0
       TY = TE - TX;
701
0
       T1e = TE + TX;
702
0
       T18 = T10 + T17;
703
0
       T1b = KP707106781 * (T19 + T1a);
704
0
       T1c = T18 - T1b;
705
0
       T1g = T18 + T1b;
706
0
        }
707
0
        {
708
0
       E Tv, TZ, T1d, T1f;
709
0
       Tv = W[18];
710
0
       TZ = W[19];
711
0
       Rp[WS(rs, 5)] = FNMS(TZ, T1c, Tv * TY);
712
0
       Rm[WS(rs, 5)] = FMA(TZ, TY, Tv * T1c);
713
0
       T1d = W[2];
714
0
       T1f = W[3];
715
0
       Rp[WS(rs, 1)] = FNMS(T1f, T1g, T1d * T1e);
716
0
       Rm[WS(rs, 1)] = FMA(T1f, T1e, T1d * T1g);
717
0
        }
718
0
         }
719
0
         {
720
0
        E T1k, T1q, T1o, T1s;
721
0
        {
722
0
       E T1i, T1j, T1m, T1n;
723
0
       T1i = Tw - TD;
724
0
       T1j = KP707106781 * (T1a - T19);
725
0
       T1k = T1i - T1j;
726
0
       T1q = T1i + T1j;
727
0
       T1m = T17 - T10;
728
0
       T1n = KP707106781 * (TN - TW);
729
0
       T1o = T1m - T1n;
730
0
       T1s = T1m + T1n;
731
0
        }
732
0
        {
733
0
       E T1h, T1l, T1p, T1r;
734
0
       T1h = W[26];
735
0
       T1l = W[27];
736
0
       Rp[WS(rs, 7)] = FNMS(T1l, T1o, T1h * T1k);
737
0
       Rm[WS(rs, 7)] = FMA(T1h, T1o, T1l * T1k);
738
0
       T1p = W[10];
739
0
       T1r = W[11];
740
0
       Rp[WS(rs, 3)] = FNMS(T1r, T1s, T1p * T1q);
741
0
       Rm[WS(rs, 3)] = FMA(T1p, T1s, T1r * T1q);
742
0
        }
743
0
         }
744
0
         {
745
0
        E T2g, T2u, T2s, T2w;
746
0
        {
747
0
       E T20, T2f, T2o, T2r;
748
0
       T20 = T1S - T1Z;
749
0
       T2f = T27 - T2e;
750
0
       T2g = T20 - T2f;
751
0
       T2u = T20 + T2f;
752
0
       T2o = T2k - T2n;
753
0
       T2r = T2p - T2q;
754
0
       T2s = T2o - T2r;
755
0
       T2w = T2o + T2r;
756
0
        }
757
0
        {
758
0
       E T1P, T2h, T2t, T2v;
759
0
       T1P = W[24];
760
0
       T2h = W[25];
761
0
       Ip[WS(rs, 6)] = FNMS(T2h, T2s, T1P * T2g);
762
0
       Im[WS(rs, 6)] = FMA(T2h, T2g, T1P * T2s);
763
0
       T2t = W[8];
764
0
       T2v = W[9];
765
0
       Ip[WS(rs, 2)] = FNMS(T2v, T2w, T2t * T2u);
766
0
       Im[WS(rs, 2)] = FMA(T2v, T2u, T2t * T2w);
767
0
        }
768
0
         }
769
0
         {
770
0
        E T2A, T2G, T2E, T2I;
771
0
        {
772
0
       E T2y, T2z, T2C, T2D;
773
0
       T2y = T1S + T1Z;
774
0
       T2z = T2p + T2q;
775
0
       T2A = T2y - T2z;
776
0
       T2G = T2y + T2z;
777
0
       T2C = T2k + T2n;
778
0
       T2D = T2e + T27;
779
0
       T2E = T2C - T2D;
780
0
       T2I = T2C + T2D;
781
0
        }
782
0
        {
783
0
       E T2x, T2B, T2F, T2H;
784
0
       T2x = W[16];
785
0
       T2B = W[17];
786
0
       Ip[WS(rs, 4)] = FNMS(T2B, T2E, T2x * T2A);
787
0
       Im[WS(rs, 4)] = FMA(T2x, T2E, T2B * T2A);
788
0
       T2F = W[0];
789
0
       T2H = W[1];
790
0
       Ip[0] = FNMS(T2H, T2I, T2F * T2G);
791
0
       Im[0] = FMA(T2F, T2I, T2H * T2G);
792
0
        }
793
0
         }
794
0
         {
795
0
        E T1G, T1M, T1K, T1O;
796
0
        {
797
0
       E T1E, T1F, T1I, T1J;
798
0
       T1E = T7 - Te;
799
0
       T1F = T1A - T1z;
800
0
       T1G = T1E - T1F;
801
0
       T1M = T1E + T1F;
802
0
       T1I = T1w - T1x;
803
0
       T1J = Tm - Tt;
804
0
       T1K = T1I - T1J;
805
0
       T1O = T1J + T1I;
806
0
        }
807
0
        {
808
0
       E T1D, T1H, T1L, T1N;
809
0
       T1D = W[22];
810
0
       T1H = W[23];
811
0
       Rp[WS(rs, 6)] = FNMS(T1H, T1K, T1D * T1G);
812
0
       Rm[WS(rs, 6)] = FMA(T1D, T1K, T1H * T1G);
813
0
       T1L = W[6];
814
0
       T1N = W[7];
815
0
       Rp[WS(rs, 2)] = FNMS(T1N, T1O, T1L * T1M);
816
0
       Rm[WS(rs, 2)] = FMA(T1L, T1O, T1N * T1M);
817
0
        }
818
0
         }
819
0
    }
820
0
     }
821
0
}
822
823
static const tw_instr twinstr[] = {
824
     { TW_FULL, 1, 16 },
825
     { TW_NEXT, 1, 0 }
826
};
827
828
static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, { 136, 46, 38, 0 } };
829
830
1
void X(codelet_hc2cb_16) (planner *p) {
831
1
     X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT);
832
1
}
833
#endif