/src/fftw3/rdft/scalar/r2cb/hc2cb_16.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Aug 26 06:34:17 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 174 FP additions, 100 FP multiplications, |
32 | | * (or, 104 additions, 30 multiplications, 70 fused multiply/add), |
33 | | * 63 stack variables, 3 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
41 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
42 | | { |
43 | | INT m; |
44 | | for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { |
45 | | E TA, T1O, T21, T1h, T2P, T2S, T3b, T3p, T3q, T3D, T1k, T1P, Tf, T3y, T2A; |
46 | | E T36, TL, T22, T3s, T3t, T3z, T2F, T2U, T2K, T2V, Tu, T3E, TX, T1n, T1T; |
47 | | E T24, T1W, T25, T18, T1m; |
48 | | { |
49 | | E T3, Tw, T1g, T2Q, T6, T1d, Tz, T2R, Ta, TB, TE, T2y, Td, TG, TJ; |
50 | | E T2x; |
51 | | { |
52 | | E T1, T2, T1e, T1f; |
53 | | T1 = Rp[0]; |
54 | | T2 = Rm[WS(rs, 7)]; |
55 | | T3 = T1 + T2; |
56 | | Tw = T1 - T2; |
57 | | T1e = Ip[0]; |
58 | | T1f = Im[WS(rs, 7)]; |
59 | | T1g = T1e + T1f; |
60 | | T2Q = T1e - T1f; |
61 | | } |
62 | | { |
63 | | E T4, T5, Tx, Ty; |
64 | | T4 = Rp[WS(rs, 4)]; |
65 | | T5 = Rm[WS(rs, 3)]; |
66 | | T6 = T4 + T5; |
67 | | T1d = T4 - T5; |
68 | | Tx = Ip[WS(rs, 4)]; |
69 | | Ty = Im[WS(rs, 3)]; |
70 | | Tz = Tx + Ty; |
71 | | T2R = Tx - Ty; |
72 | | } |
73 | | { |
74 | | E T8, T9, TC, TD; |
75 | | T8 = Rp[WS(rs, 2)]; |
76 | | T9 = Rm[WS(rs, 5)]; |
77 | | Ta = T8 + T9; |
78 | | TB = T8 - T9; |
79 | | TC = Ip[WS(rs, 2)]; |
80 | | TD = Im[WS(rs, 5)]; |
81 | | TE = TC + TD; |
82 | | T2y = TC - TD; |
83 | | } |
84 | | { |
85 | | E Tb, Tc, TH, TI; |
86 | | Tb = Rm[WS(rs, 1)]; |
87 | | Tc = Rp[WS(rs, 6)]; |
88 | | Td = Tb + Tc; |
89 | | TG = Tb - Tc; |
90 | | TH = Ip[WS(rs, 6)]; |
91 | | TI = Im[WS(rs, 1)]; |
92 | | TJ = TH + TI; |
93 | | T2x = TH - TI; |
94 | | } |
95 | | TA = Tw - Tz; |
96 | | T1O = Tw + Tz; |
97 | | T21 = T1g - T1d; |
98 | | T1h = T1d + T1g; |
99 | | T2P = Ta - Td; |
100 | | T2S = T2Q - T2R; |
101 | | T3b = T2S - T2P; |
102 | | { |
103 | | E T1i, T1j, T7, Te; |
104 | | T3p = T2Q + T2R; |
105 | | T3q = T2y + T2x; |
106 | | T3D = T3p - T3q; |
107 | | T1i = TB + TE; |
108 | | T1j = TG + TJ; |
109 | | T1k = T1i - T1j; |
110 | | T1P = T1i + T1j; |
111 | | T7 = T3 + T6; |
112 | | Te = Ta + Td; |
113 | | Tf = T7 + Te; |
114 | | T3y = T7 - Te; |
115 | | { |
116 | | E T2w, T2z, TF, TK; |
117 | | T2w = T3 - T6; |
118 | | T2z = T2x - T2y; |
119 | | T2A = T2w + T2z; |
120 | | T36 = T2w - T2z; |
121 | | TF = TB - TE; |
122 | | TK = TG - TJ; |
123 | | TL = TF + TK; |
124 | | T22 = TF - TK; |
125 | | } |
126 | | } |
127 | | } |
128 | | { |
129 | | E Ti, T13, T11, T2C, Tl, TY, T16, T2D, Tp, TS, TQ, T2H, Ts, TN, TV; |
130 | | E T2I, T2B, T2E; |
131 | | { |
132 | | E Tg, Th, TZ, T10; |
133 | | Tg = Rp[WS(rs, 1)]; |
134 | | Th = Rm[WS(rs, 6)]; |
135 | | Ti = Tg + Th; |
136 | | T13 = Tg - Th; |
137 | | TZ = Ip[WS(rs, 1)]; |
138 | | T10 = Im[WS(rs, 6)]; |
139 | | T11 = TZ + T10; |
140 | | T2C = TZ - T10; |
141 | | } |
142 | | { |
143 | | E Tj, Tk, T14, T15; |
144 | | Tj = Rp[WS(rs, 5)]; |
145 | | Tk = Rm[WS(rs, 2)]; |
146 | | Tl = Tj + Tk; |
147 | | TY = Tj - Tk; |
148 | | T14 = Ip[WS(rs, 5)]; |
149 | | T15 = Im[WS(rs, 2)]; |
150 | | T16 = T14 + T15; |
151 | | T2D = T14 - T15; |
152 | | } |
153 | | { |
154 | | E Tn, To, TO, TP; |
155 | | Tn = Rm[0]; |
156 | | To = Rp[WS(rs, 7)]; |
157 | | Tp = Tn + To; |
158 | | TS = Tn - To; |
159 | | TO = Ip[WS(rs, 7)]; |
160 | | TP = Im[0]; |
161 | | TQ = TO + TP; |
162 | | T2H = TO - TP; |
163 | | } |
164 | | { |
165 | | E Tq, Tr, TT, TU; |
166 | | Tq = Rp[WS(rs, 3)]; |
167 | | Tr = Rm[WS(rs, 4)]; |
168 | | Ts = Tq + Tr; |
169 | | TN = Tq - Tr; |
170 | | TT = Ip[WS(rs, 3)]; |
171 | | TU = Im[WS(rs, 4)]; |
172 | | TV = TT + TU; |
173 | | T2I = TT - TU; |
174 | | } |
175 | | T3s = T2C + T2D; |
176 | | T3t = T2H + T2I; |
177 | | T3z = T3t - T3s; |
178 | | T2B = Ti - Tl; |
179 | | T2E = T2C - T2D; |
180 | | T2F = T2B - T2E; |
181 | | T2U = T2B + T2E; |
182 | | { |
183 | | E T2G, T2J, Tm, Tt; |
184 | | T2G = Tp - Ts; |
185 | | T2J = T2H - T2I; |
186 | | T2K = T2G + T2J; |
187 | | T2V = T2J - T2G; |
188 | | Tm = Ti + Tl; |
189 | | Tt = Tp + Ts; |
190 | | Tu = Tm + Tt; |
191 | | T3E = Tm - Tt; |
192 | | } |
193 | | { |
194 | | E TR, TW, T1R, T1S; |
195 | | TR = TN - TQ; |
196 | | TW = TS - TV; |
197 | | TX = FNMS(KP414213562, TW, TR); |
198 | | T1n = FMA(KP414213562, TR, TW); |
199 | | T1R = T11 - TY; |
200 | | T1S = T13 + T16; |
201 | | T1T = FNMS(KP414213562, T1S, T1R); |
202 | | T24 = FMA(KP414213562, T1R, T1S); |
203 | | } |
204 | | { |
205 | | E T1U, T1V, T12, T17; |
206 | | T1U = TN + TQ; |
207 | | T1V = TS + TV; |
208 | | T1W = FNMS(KP414213562, T1V, T1U); |
209 | | T25 = FMA(KP414213562, T1U, T1V); |
210 | | T12 = TY + T11; |
211 | | T17 = T13 - T16; |
212 | | T18 = FMA(KP414213562, T17, T12); |
213 | | T1m = FNMS(KP414213562, T12, T17); |
214 | | } |
215 | | } |
216 | | Rp[0] = Tf + Tu; |
217 | | { |
218 | | E T3r, T3u, T3v, T3l, T3n, T3o, T3w, T3m; |
219 | | T3r = T3p + T3q; |
220 | | T3u = T3s + T3t; |
221 | | T3v = T3r - T3u; |
222 | | T3m = Tf - Tu; |
223 | | T3l = W[14]; |
224 | | T3n = T3l * T3m; |
225 | | T3o = W[15]; |
226 | | T3w = T3o * T3m; |
227 | | Rm[0] = T3r + T3u; |
228 | | Rm[WS(rs, 4)] = FMA(T3l, T3v, T3w); |
229 | | Rp[WS(rs, 4)] = FNMS(T3o, T3v, T3n); |
230 | | } |
231 | | { |
232 | | E T3A, T3F, T3B, T3G, T3x, T3C; |
233 | | T3A = T3y - T3z; |
234 | | T3F = T3D - T3E; |
235 | | T3x = W[22]; |
236 | | T3B = T3x * T3A; |
237 | | T3G = T3x * T3F; |
238 | | T3C = W[23]; |
239 | | Rp[WS(rs, 6)] = FNMS(T3C, T3F, T3B); |
240 | | Rm[WS(rs, 6)] = FMA(T3C, T3A, T3G); |
241 | | } |
242 | | { |
243 | | E T3I, T3L, T3J, T3M, T3H, T3K; |
244 | | T3I = T3y + T3z; |
245 | | T3L = T3E + T3D; |
246 | | T3H = W[6]; |
247 | | T3J = T3H * T3I; |
248 | | T3M = T3H * T3L; |
249 | | T3K = W[7]; |
250 | | Rp[WS(rs, 2)] = FNMS(T3K, T3L, T3J); |
251 | | Rm[WS(rs, 2)] = FMA(T3K, T3I, T3M); |
252 | | } |
253 | | { |
254 | | E T38, T3g, T3d, T3j, T37, T3c; |
255 | | T37 = T2V - T2U; |
256 | | T38 = FNMS(KP707106781, T37, T36); |
257 | | T3g = FMA(KP707106781, T37, T36); |
258 | | T3c = T2F - T2K; |
259 | | T3d = FNMS(KP707106781, T3c, T3b); |
260 | | T3j = FMA(KP707106781, T3c, T3b); |
261 | | { |
262 | | E T39, T3e, T35, T3a; |
263 | | T35 = W[26]; |
264 | | T39 = T35 * T38; |
265 | | T3e = T35 * T3d; |
266 | | T3a = W[27]; |
267 | | Rp[WS(rs, 7)] = FNMS(T3a, T3d, T39); |
268 | | Rm[WS(rs, 7)] = FMA(T3a, T38, T3e); |
269 | | } |
270 | | { |
271 | | E T3h, T3k, T3f, T3i; |
272 | | T3f = W[10]; |
273 | | T3h = T3f * T3g; |
274 | | T3k = T3f * T3j; |
275 | | T3i = W[11]; |
276 | | Rp[WS(rs, 3)] = FNMS(T3i, T3j, T3h); |
277 | | Rm[WS(rs, 3)] = FMA(T3i, T3g, T3k); |
278 | | } |
279 | | } |
280 | | { |
281 | | E T2M, T30, T2X, T33, T2L, T2T, T2W; |
282 | | T2L = T2F + T2K; |
283 | | T2M = FNMS(KP707106781, T2L, T2A); |
284 | | T30 = FMA(KP707106781, T2L, T2A); |
285 | | T2T = T2P + T2S; |
286 | | T2W = T2U + T2V; |
287 | | T2X = FNMS(KP707106781, T2W, T2T); |
288 | | T33 = FMA(KP707106781, T2W, T2T); |
289 | | { |
290 | | E T2v, T2N, T2O, T2Y; |
291 | | T2v = W[18]; |
292 | | T2N = T2v * T2M; |
293 | | T2O = W[19]; |
294 | | T2Y = T2O * T2M; |
295 | | Rp[WS(rs, 5)] = FNMS(T2O, T2X, T2N); |
296 | | Rm[WS(rs, 5)] = FMA(T2v, T2X, T2Y); |
297 | | } |
298 | | { |
299 | | E T2Z, T31, T32, T34; |
300 | | T2Z = W[2]; |
301 | | T31 = T2Z * T30; |
302 | | T32 = W[3]; |
303 | | T34 = T32 * T30; |
304 | | Rp[WS(rs, 1)] = FNMS(T32, T33, T31); |
305 | | Rm[WS(rs, 1)] = FMA(T2Z, T33, T34); |
306 | | } |
307 | | } |
308 | | { |
309 | | E T1Y, T2a, T27, T2d; |
310 | | { |
311 | | E T1Q, T1X, T23, T26; |
312 | | T1Q = FNMS(KP707106781, T1P, T1O); |
313 | | T1X = T1T + T1W; |
314 | | T1Y = FMA(KP923879532, T1X, T1Q); |
315 | | T2a = FNMS(KP923879532, T1X, T1Q); |
316 | | T23 = FMA(KP707106781, T22, T21); |
317 | | T26 = T24 - T25; |
318 | | T27 = FNMS(KP923879532, T26, T23); |
319 | | T2d = FMA(KP923879532, T26, T23); |
320 | | } |
321 | | { |
322 | | E T1N, T1Z, T20, T28; |
323 | | T1N = W[20]; |
324 | | T1Z = T1N * T1Y; |
325 | | T20 = W[21]; |
326 | | T28 = T20 * T1Y; |
327 | | Ip[WS(rs, 5)] = FNMS(T20, T27, T1Z); |
328 | | Im[WS(rs, 5)] = FMA(T1N, T27, T28); |
329 | | } |
330 | | { |
331 | | E T29, T2b, T2c, T2e; |
332 | | T29 = W[4]; |
333 | | T2b = T29 * T2a; |
334 | | T2c = W[5]; |
335 | | T2e = T2c * T2a; |
336 | | Ip[WS(rs, 1)] = FNMS(T2c, T2d, T2b); |
337 | | Im[WS(rs, 1)] = FMA(T29, T2d, T2e); |
338 | | } |
339 | | } |
340 | | { |
341 | | E T1a, T1s, T1p, T1v; |
342 | | { |
343 | | E TM, T19, T1l, T1o; |
344 | | TM = FNMS(KP707106781, TL, TA); |
345 | | T19 = TX - T18; |
346 | | T1a = FNMS(KP923879532, T19, TM); |
347 | | T1s = FMA(KP923879532, T19, TM); |
348 | | T1l = FNMS(KP707106781, T1k, T1h); |
349 | | T1o = T1m - T1n; |
350 | | T1p = FNMS(KP923879532, T1o, T1l); |
351 | | T1v = FMA(KP923879532, T1o, T1l); |
352 | | } |
353 | | { |
354 | | E Tv, T1b, T1c, T1q; |
355 | | Tv = W[24]; |
356 | | T1b = Tv * T1a; |
357 | | T1c = W[25]; |
358 | | T1q = T1c * T1a; |
359 | | Ip[WS(rs, 6)] = FNMS(T1c, T1p, T1b); |
360 | | Im[WS(rs, 6)] = FMA(Tv, T1p, T1q); |
361 | | } |
362 | | { |
363 | | E T1r, T1t, T1u, T1w; |
364 | | T1r = W[8]; |
365 | | T1t = T1r * T1s; |
366 | | T1u = W[9]; |
367 | | T1w = T1u * T1s; |
368 | | Ip[WS(rs, 2)] = FNMS(T1u, T1v, T1t); |
369 | | Im[WS(rs, 2)] = FMA(T1r, T1v, T1w); |
370 | | } |
371 | | } |
372 | | { |
373 | | E T2i, T2q, T2n, T2t; |
374 | | { |
375 | | E T2g, T2h, T2l, T2m; |
376 | | T2g = FMA(KP707106781, T1P, T1O); |
377 | | T2h = T24 + T25; |
378 | | T2i = FNMS(KP923879532, T2h, T2g); |
379 | | T2q = FMA(KP923879532, T2h, T2g); |
380 | | T2l = FNMS(KP707106781, T22, T21); |
381 | | T2m = T1W - T1T; |
382 | | T2n = FMA(KP923879532, T2m, T2l); |
383 | | T2t = FNMS(KP923879532, T2m, T2l); |
384 | | } |
385 | | { |
386 | | E T2j, T2o, T2f, T2k; |
387 | | T2f = W[12]; |
388 | | T2j = T2f * T2i; |
389 | | T2o = T2f * T2n; |
390 | | T2k = W[13]; |
391 | | Ip[WS(rs, 3)] = FNMS(T2k, T2n, T2j); |
392 | | Im[WS(rs, 3)] = FMA(T2k, T2i, T2o); |
393 | | } |
394 | | { |
395 | | E T2r, T2u, T2p, T2s; |
396 | | T2p = W[28]; |
397 | | T2r = T2p * T2q; |
398 | | T2u = T2p * T2t; |
399 | | T2s = W[29]; |
400 | | Ip[WS(rs, 7)] = FNMS(T2s, T2t, T2r); |
401 | | Im[WS(rs, 7)] = FMA(T2s, T2q, T2u); |
402 | | } |
403 | | } |
404 | | { |
405 | | E T1A, T1I, T1F, T1L; |
406 | | { |
407 | | E T1y, T1z, T1D, T1E; |
408 | | T1y = FMA(KP707106781, TL, TA); |
409 | | T1z = T1m + T1n; |
410 | | T1A = FNMS(KP923879532, T1z, T1y); |
411 | | T1I = FMA(KP923879532, T1z, T1y); |
412 | | T1D = FMA(KP707106781, T1k, T1h); |
413 | | T1E = T18 + TX; |
414 | | T1F = FNMS(KP923879532, T1E, T1D); |
415 | | T1L = FMA(KP923879532, T1E, T1D); |
416 | | } |
417 | | { |
418 | | E T1B, T1G, T1x, T1C; |
419 | | T1x = W[16]; |
420 | | T1B = T1x * T1A; |
421 | | T1G = T1x * T1F; |
422 | | T1C = W[17]; |
423 | | Ip[WS(rs, 4)] = FNMS(T1C, T1F, T1B); |
424 | | Im[WS(rs, 4)] = FMA(T1C, T1A, T1G); |
425 | | } |
426 | | { |
427 | | E T1J, T1M, T1H, T1K; |
428 | | T1H = W[0]; |
429 | | T1J = T1H * T1I; |
430 | | T1M = T1H * T1L; |
431 | | T1K = W[1]; |
432 | | Ip[0] = FNMS(T1K, T1L, T1J); |
433 | | Im[0] = FMA(T1K, T1I, T1M); |
434 | | } |
435 | | } |
436 | | } |
437 | | } |
438 | | } |
439 | | |
440 | | static const tw_instr twinstr[] = { |
441 | | { TW_FULL, 1, 16 }, |
442 | | { TW_NEXT, 1, 0 } |
443 | | }; |
444 | | |
445 | | static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, { 104, 30, 70, 0 } }; |
446 | | |
447 | | void X(codelet_hc2cb_16) (planner *p) { |
448 | | X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT); |
449 | | } |
450 | | #else |
451 | | |
452 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -dif -name hc2cb_16 -include rdft/scalar/hc2cb.h */ |
453 | | |
454 | | /* |
455 | | * This function contains 174 FP additions, 84 FP multiplications, |
456 | | * (or, 136 additions, 46 multiplications, 38 fused multiply/add), |
457 | | * 50 stack variables, 3 constants, and 64 memory accesses |
458 | | */ |
459 | | #include "rdft/scalar/hc2cb.h" |
460 | | |
461 | | static void hc2cb_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
462 | 0 | { |
463 | 0 | DK(KP382683432, +0.382683432365089771728459984030398866761344562); |
464 | 0 | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
465 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
466 | 0 | { |
467 | 0 | INT m; |
468 | 0 | for (m = mb, W = W + ((mb - 1) * 30); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 30, MAKE_VOLATILE_STRIDE(64, rs)) { |
469 | 0 | E T7, T2K, T2W, Tw, T17, T1S, T2k, T1w, Te, TD, T1x, T10, T2n, T2L, T1Z; |
470 | 0 | E T2X, Tm, T1z, TN, T19, T2e, T2p, T2P, T2Z, Tt, T1A, TW, T1a, T27, T2q; |
471 | 0 | E T2S, T30; |
472 | 0 | { |
473 | 0 | E T3, T1Q, T13, T2j, T6, T2i, T16, T1R; |
474 | 0 | { |
475 | 0 | E T1, T2, T11, T12; |
476 | 0 | T1 = Rp[0]; |
477 | 0 | T2 = Rm[WS(rs, 7)]; |
478 | 0 | T3 = T1 + T2; |
479 | 0 | T1Q = T1 - T2; |
480 | 0 | T11 = Ip[0]; |
481 | 0 | T12 = Im[WS(rs, 7)]; |
482 | 0 | T13 = T11 - T12; |
483 | 0 | T2j = T11 + T12; |
484 | 0 | } |
485 | 0 | { |
486 | 0 | E T4, T5, T14, T15; |
487 | 0 | T4 = Rp[WS(rs, 4)]; |
488 | 0 | T5 = Rm[WS(rs, 3)]; |
489 | 0 | T6 = T4 + T5; |
490 | 0 | T2i = T4 - T5; |
491 | 0 | T14 = Ip[WS(rs, 4)]; |
492 | 0 | T15 = Im[WS(rs, 3)]; |
493 | 0 | T16 = T14 - T15; |
494 | 0 | T1R = T14 + T15; |
495 | 0 | } |
496 | 0 | T7 = T3 + T6; |
497 | 0 | T2K = T1Q + T1R; |
498 | 0 | T2W = T2j - T2i; |
499 | 0 | Tw = T3 - T6; |
500 | 0 | T17 = T13 - T16; |
501 | 0 | T1S = T1Q - T1R; |
502 | 0 | T2k = T2i + T2j; |
503 | 0 | T1w = T13 + T16; |
504 | 0 | } |
505 | 0 | { |
506 | 0 | E Ta, T1T, TC, T1U, Td, T1W, Tz, T1X; |
507 | 0 | { |
508 | 0 | E T8, T9, TA, TB; |
509 | 0 | T8 = Rp[WS(rs, 2)]; |
510 | 0 | T9 = Rm[WS(rs, 5)]; |
511 | 0 | Ta = T8 + T9; |
512 | 0 | T1T = T8 - T9; |
513 | 0 | TA = Ip[WS(rs, 2)]; |
514 | 0 | TB = Im[WS(rs, 5)]; |
515 | 0 | TC = TA - TB; |
516 | 0 | T1U = TA + TB; |
517 | 0 | } |
518 | 0 | { |
519 | 0 | E Tb, Tc, Tx, Ty; |
520 | 0 | Tb = Rm[WS(rs, 1)]; |
521 | 0 | Tc = Rp[WS(rs, 6)]; |
522 | 0 | Td = Tb + Tc; |
523 | 0 | T1W = Tb - Tc; |
524 | 0 | Tx = Ip[WS(rs, 6)]; |
525 | 0 | Ty = Im[WS(rs, 1)]; |
526 | 0 | Tz = Tx - Ty; |
527 | 0 | T1X = Tx + Ty; |
528 | 0 | } |
529 | 0 | Te = Ta + Td; |
530 | 0 | TD = Tz - TC; |
531 | 0 | T1x = TC + Tz; |
532 | 0 | T10 = Ta - Td; |
533 | 0 | { |
534 | 0 | E T2l, T2m, T1V, T1Y; |
535 | 0 | T2l = T1T + T1U; |
536 | 0 | T2m = T1W + T1X; |
537 | 0 | T2n = KP707106781 * (T2l - T2m); |
538 | 0 | T2L = KP707106781 * (T2l + T2m); |
539 | 0 | T1V = T1T - T1U; |
540 | 0 | T1Y = T1W - T1X; |
541 | 0 | T1Z = KP707106781 * (T1V + T1Y); |
542 | 0 | T2X = KP707106781 * (T1V - T1Y); |
543 | 0 | } |
544 | 0 | } |
545 | 0 | { |
546 | 0 | E Ti, T2b, TI, T29, Tl, T28, TL, T2c, TF, TM; |
547 | 0 | { |
548 | 0 | E Tg, Th, TG, TH; |
549 | 0 | Tg = Rp[WS(rs, 1)]; |
550 | 0 | Th = Rm[WS(rs, 6)]; |
551 | 0 | Ti = Tg + Th; |
552 | 0 | T2b = Tg - Th; |
553 | 0 | TG = Ip[WS(rs, 1)]; |
554 | 0 | TH = Im[WS(rs, 6)]; |
555 | 0 | TI = TG - TH; |
556 | 0 | T29 = TG + TH; |
557 | 0 | } |
558 | 0 | { |
559 | 0 | E Tj, Tk, TJ, TK; |
560 | 0 | Tj = Rp[WS(rs, 5)]; |
561 | 0 | Tk = Rm[WS(rs, 2)]; |
562 | 0 | Tl = Tj + Tk; |
563 | 0 | T28 = Tj - Tk; |
564 | 0 | TJ = Ip[WS(rs, 5)]; |
565 | 0 | TK = Im[WS(rs, 2)]; |
566 | 0 | TL = TJ - TK; |
567 | 0 | T2c = TJ + TK; |
568 | 0 | } |
569 | 0 | Tm = Ti + Tl; |
570 | 0 | T1z = TI + TL; |
571 | 0 | TF = Ti - Tl; |
572 | 0 | TM = TI - TL; |
573 | 0 | TN = TF - TM; |
574 | 0 | T19 = TF + TM; |
575 | 0 | { |
576 | 0 | E T2a, T2d, T2N, T2O; |
577 | 0 | T2a = T28 + T29; |
578 | 0 | T2d = T2b - T2c; |
579 | 0 | T2e = FMA(KP923879532, T2a, KP382683432 * T2d); |
580 | 0 | T2p = FNMS(KP382683432, T2a, KP923879532 * T2d); |
581 | 0 | T2N = T2b + T2c; |
582 | 0 | T2O = T29 - T28; |
583 | 0 | T2P = FNMS(KP923879532, T2O, KP382683432 * T2N); |
584 | 0 | T2Z = FMA(KP382683432, T2O, KP923879532 * T2N); |
585 | 0 | } |
586 | 0 | } |
587 | 0 | { |
588 | 0 | E Tp, T24, TR, T22, Ts, T21, TU, T25, TO, TV; |
589 | 0 | { |
590 | 0 | E Tn, To, TP, TQ; |
591 | 0 | Tn = Rm[0]; |
592 | 0 | To = Rp[WS(rs, 7)]; |
593 | 0 | Tp = Tn + To; |
594 | 0 | T24 = Tn - To; |
595 | 0 | TP = Ip[WS(rs, 7)]; |
596 | 0 | TQ = Im[0]; |
597 | 0 | TR = TP - TQ; |
598 | 0 | T22 = TP + TQ; |
599 | 0 | } |
600 | 0 | { |
601 | 0 | E Tq, Tr, TS, TT; |
602 | 0 | Tq = Rp[WS(rs, 3)]; |
603 | 0 | Tr = Rm[WS(rs, 4)]; |
604 | 0 | Ts = Tq + Tr; |
605 | 0 | T21 = Tq - Tr; |
606 | 0 | TS = Ip[WS(rs, 3)]; |
607 | 0 | TT = Im[WS(rs, 4)]; |
608 | 0 | TU = TS - TT; |
609 | 0 | T25 = TS + TT; |
610 | 0 | } |
611 | 0 | Tt = Tp + Ts; |
612 | 0 | T1A = TR + TU; |
613 | 0 | TO = Tp - Ts; |
614 | 0 | TV = TR - TU; |
615 | 0 | TW = TO + TV; |
616 | 0 | T1a = TV - TO; |
617 | 0 | { |
618 | 0 | E T23, T26, T2Q, T2R; |
619 | 0 | T23 = T21 - T22; |
620 | 0 | T26 = T24 - T25; |
621 | 0 | T27 = FNMS(KP382683432, T26, KP923879532 * T23); |
622 | 0 | T2q = FMA(KP382683432, T23, KP923879532 * T26); |
623 | 0 | T2Q = T24 + T25; |
624 | 0 | T2R = T21 + T22; |
625 | 0 | T2S = FNMS(KP923879532, T2R, KP382683432 * T2Q); |
626 | 0 | T30 = FMA(KP382683432, T2R, KP923879532 * T2Q); |
627 | 0 | } |
628 | 0 | } |
629 | 0 | { |
630 | 0 | E Tf, Tu, T1u, T1y, T1B, T1C, T1t, T1v; |
631 | 0 | Tf = T7 + Te; |
632 | 0 | Tu = Tm + Tt; |
633 | 0 | T1u = Tf - Tu; |
634 | 0 | T1y = T1w + T1x; |
635 | 0 | T1B = T1z + T1A; |
636 | 0 | T1C = T1y - T1B; |
637 | 0 | Rp[0] = Tf + Tu; |
638 | 0 | Rm[0] = T1y + T1B; |
639 | 0 | T1t = W[14]; |
640 | 0 | T1v = W[15]; |
641 | 0 | Rp[WS(rs, 4)] = FNMS(T1v, T1C, T1t * T1u); |
642 | 0 | Rm[WS(rs, 4)] = FMA(T1v, T1u, T1t * T1C); |
643 | 0 | } |
644 | 0 | { |
645 | 0 | E T2U, T34, T32, T36; |
646 | 0 | { |
647 | 0 | E T2M, T2T, T2Y, T31; |
648 | 0 | T2M = T2K - T2L; |
649 | 0 | T2T = T2P + T2S; |
650 | 0 | T2U = T2M - T2T; |
651 | 0 | T34 = T2M + T2T; |
652 | 0 | T2Y = T2W + T2X; |
653 | 0 | T31 = T2Z - T30; |
654 | 0 | T32 = T2Y - T31; |
655 | 0 | T36 = T2Y + T31; |
656 | 0 | } |
657 | 0 | { |
658 | 0 | E T2J, T2V, T33, T35; |
659 | 0 | T2J = W[20]; |
660 | 0 | T2V = W[21]; |
661 | 0 | Ip[WS(rs, 5)] = FNMS(T2V, T32, T2J * T2U); |
662 | 0 | Im[WS(rs, 5)] = FMA(T2V, T2U, T2J * T32); |
663 | 0 | T33 = W[4]; |
664 | 0 | T35 = W[5]; |
665 | 0 | Ip[WS(rs, 1)] = FNMS(T35, T36, T33 * T34); |
666 | 0 | Im[WS(rs, 1)] = FMA(T35, T34, T33 * T36); |
667 | 0 | } |
668 | 0 | } |
669 | 0 | { |
670 | 0 | E T3a, T3g, T3e, T3i; |
671 | 0 | { |
672 | 0 | E T38, T39, T3c, T3d; |
673 | 0 | T38 = T2K + T2L; |
674 | 0 | T39 = T2Z + T30; |
675 | 0 | T3a = T38 - T39; |
676 | 0 | T3g = T38 + T39; |
677 | 0 | T3c = T2W - T2X; |
678 | 0 | T3d = T2P - T2S; |
679 | 0 | T3e = T3c + T3d; |
680 | 0 | T3i = T3c - T3d; |
681 | 0 | } |
682 | 0 | { |
683 | 0 | E T37, T3b, T3f, T3h; |
684 | 0 | T37 = W[12]; |
685 | 0 | T3b = W[13]; |
686 | 0 | Ip[WS(rs, 3)] = FNMS(T3b, T3e, T37 * T3a); |
687 | 0 | Im[WS(rs, 3)] = FMA(T37, T3e, T3b * T3a); |
688 | 0 | T3f = W[28]; |
689 | 0 | T3h = W[29]; |
690 | 0 | Ip[WS(rs, 7)] = FNMS(T3h, T3i, T3f * T3g); |
691 | 0 | Im[WS(rs, 7)] = FMA(T3f, T3i, T3h * T3g); |
692 | 0 | } |
693 | 0 | } |
694 | 0 | { |
695 | 0 | E TY, T1e, T1c, T1g; |
696 | 0 | { |
697 | 0 | E TE, TX, T18, T1b; |
698 | 0 | TE = Tw + TD; |
699 | 0 | TX = KP707106781 * (TN + TW); |
700 | 0 | TY = TE - TX; |
701 | 0 | T1e = TE + TX; |
702 | 0 | T18 = T10 + T17; |
703 | 0 | T1b = KP707106781 * (T19 + T1a); |
704 | 0 | T1c = T18 - T1b; |
705 | 0 | T1g = T18 + T1b; |
706 | 0 | } |
707 | 0 | { |
708 | 0 | E Tv, TZ, T1d, T1f; |
709 | 0 | Tv = W[18]; |
710 | 0 | TZ = W[19]; |
711 | 0 | Rp[WS(rs, 5)] = FNMS(TZ, T1c, Tv * TY); |
712 | 0 | Rm[WS(rs, 5)] = FMA(TZ, TY, Tv * T1c); |
713 | 0 | T1d = W[2]; |
714 | 0 | T1f = W[3]; |
715 | 0 | Rp[WS(rs, 1)] = FNMS(T1f, T1g, T1d * T1e); |
716 | 0 | Rm[WS(rs, 1)] = FMA(T1f, T1e, T1d * T1g); |
717 | 0 | } |
718 | 0 | } |
719 | 0 | { |
720 | 0 | E T1k, T1q, T1o, T1s; |
721 | 0 | { |
722 | 0 | E T1i, T1j, T1m, T1n; |
723 | 0 | T1i = Tw - TD; |
724 | 0 | T1j = KP707106781 * (T1a - T19); |
725 | 0 | T1k = T1i - T1j; |
726 | 0 | T1q = T1i + T1j; |
727 | 0 | T1m = T17 - T10; |
728 | 0 | T1n = KP707106781 * (TN - TW); |
729 | 0 | T1o = T1m - T1n; |
730 | 0 | T1s = T1m + T1n; |
731 | 0 | } |
732 | 0 | { |
733 | 0 | E T1h, T1l, T1p, T1r; |
734 | 0 | T1h = W[26]; |
735 | 0 | T1l = W[27]; |
736 | 0 | Rp[WS(rs, 7)] = FNMS(T1l, T1o, T1h * T1k); |
737 | 0 | Rm[WS(rs, 7)] = FMA(T1h, T1o, T1l * T1k); |
738 | 0 | T1p = W[10]; |
739 | 0 | T1r = W[11]; |
740 | 0 | Rp[WS(rs, 3)] = FNMS(T1r, T1s, T1p * T1q); |
741 | 0 | Rm[WS(rs, 3)] = FMA(T1p, T1s, T1r * T1q); |
742 | 0 | } |
743 | 0 | } |
744 | 0 | { |
745 | 0 | E T2g, T2u, T2s, T2w; |
746 | 0 | { |
747 | 0 | E T20, T2f, T2o, T2r; |
748 | 0 | T20 = T1S - T1Z; |
749 | 0 | T2f = T27 - T2e; |
750 | 0 | T2g = T20 - T2f; |
751 | 0 | T2u = T20 + T2f; |
752 | 0 | T2o = T2k - T2n; |
753 | 0 | T2r = T2p - T2q; |
754 | 0 | T2s = T2o - T2r; |
755 | 0 | T2w = T2o + T2r; |
756 | 0 | } |
757 | 0 | { |
758 | 0 | E T1P, T2h, T2t, T2v; |
759 | 0 | T1P = W[24]; |
760 | 0 | T2h = W[25]; |
761 | 0 | Ip[WS(rs, 6)] = FNMS(T2h, T2s, T1P * T2g); |
762 | 0 | Im[WS(rs, 6)] = FMA(T2h, T2g, T1P * T2s); |
763 | 0 | T2t = W[8]; |
764 | 0 | T2v = W[9]; |
765 | 0 | Ip[WS(rs, 2)] = FNMS(T2v, T2w, T2t * T2u); |
766 | 0 | Im[WS(rs, 2)] = FMA(T2v, T2u, T2t * T2w); |
767 | 0 | } |
768 | 0 | } |
769 | 0 | { |
770 | 0 | E T2A, T2G, T2E, T2I; |
771 | 0 | { |
772 | 0 | E T2y, T2z, T2C, T2D; |
773 | 0 | T2y = T1S + T1Z; |
774 | 0 | T2z = T2p + T2q; |
775 | 0 | T2A = T2y - T2z; |
776 | 0 | T2G = T2y + T2z; |
777 | 0 | T2C = T2k + T2n; |
778 | 0 | T2D = T2e + T27; |
779 | 0 | T2E = T2C - T2D; |
780 | 0 | T2I = T2C + T2D; |
781 | 0 | } |
782 | 0 | { |
783 | 0 | E T2x, T2B, T2F, T2H; |
784 | 0 | T2x = W[16]; |
785 | 0 | T2B = W[17]; |
786 | 0 | Ip[WS(rs, 4)] = FNMS(T2B, T2E, T2x * T2A); |
787 | 0 | Im[WS(rs, 4)] = FMA(T2x, T2E, T2B * T2A); |
788 | 0 | T2F = W[0]; |
789 | 0 | T2H = W[1]; |
790 | 0 | Ip[0] = FNMS(T2H, T2I, T2F * T2G); |
791 | 0 | Im[0] = FMA(T2F, T2I, T2H * T2G); |
792 | 0 | } |
793 | 0 | } |
794 | 0 | { |
795 | 0 | E T1G, T1M, T1K, T1O; |
796 | 0 | { |
797 | 0 | E T1E, T1F, T1I, T1J; |
798 | 0 | T1E = T7 - Te; |
799 | 0 | T1F = T1A - T1z; |
800 | 0 | T1G = T1E - T1F; |
801 | 0 | T1M = T1E + T1F; |
802 | 0 | T1I = T1w - T1x; |
803 | 0 | T1J = Tm - Tt; |
804 | 0 | T1K = T1I - T1J; |
805 | 0 | T1O = T1J + T1I; |
806 | 0 | } |
807 | 0 | { |
808 | 0 | E T1D, T1H, T1L, T1N; |
809 | 0 | T1D = W[22]; |
810 | 0 | T1H = W[23]; |
811 | 0 | Rp[WS(rs, 6)] = FNMS(T1H, T1K, T1D * T1G); |
812 | 0 | Rm[WS(rs, 6)] = FMA(T1D, T1K, T1H * T1G); |
813 | 0 | T1L = W[6]; |
814 | 0 | T1N = W[7]; |
815 | 0 | Rp[WS(rs, 2)] = FNMS(T1N, T1O, T1L * T1M); |
816 | 0 | Rm[WS(rs, 2)] = FMA(T1L, T1O, T1N * T1M); |
817 | 0 | } |
818 | 0 | } |
819 | 0 | } |
820 | 0 | } |
821 | 0 | } |
822 | | |
823 | | static const tw_instr twinstr[] = { |
824 | | { TW_FULL, 1, 16 }, |
825 | | { TW_NEXT, 1, 0 } |
826 | | }; |
827 | | |
828 | | static const hc2c_desc desc = { 16, "hc2cb_16", twinstr, &GENUS, { 136, 46, 38, 0 } }; |
829 | | |
830 | 1 | void X(codelet_hc2cb_16) (planner *p) { |
831 | 1 | X(khc2c_register) (p, hc2cb_16, &desc, HC2C_VIA_RDFT); |
832 | 1 | } |
833 | | #endif |