Coverage Report

Created: 2025-08-26 06:35

/src/fftw3/rdft/scalar/r2cb/hc2cb_20.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Aug 26 06:34:20 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */
29
30
/*
31
 * This function contains 246 FP additions, 148 FP multiplications,
32
 * (or, 136 additions, 38 multiplications, 110 fused multiply/add),
33
 * 91 stack variables, 4 constants, and 80 memory accesses
34
 */
35
#include "rdft/scalar/hc2cb.h"
36
37
static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
46
         E T7, T4e, T4z, TE, T1t, T2W, T3z, T2l, T13, T3G, T3H, T1i, T2g, T4H, T4G;
47
         E T2d, T1B, T4u, T4r, T1A, T2s, T3l, T2t, T3s, T2m, T2n, T2o, T1u, T1v, T1w;
48
         E TC, T29, T3C, T3E, T4l, T4n, TL, TN, T3b, T3d, T4C, T4E;
49
         {
50
        E T3, T2U, T1p, T3x, T6, T3y, T1s, T2V;
51
        {
52
       E T1, T2, T1n, T1o;
53
       T1 = Rp[0];
54
       T2 = Rm[WS(rs, 9)];
55
       T3 = T1 + T2;
56
       T2U = T1 - T2;
57
       T1n = Ip[0];
58
       T1o = Im[WS(rs, 9)];
59
       T1p = T1n - T1o;
60
       T3x = T1n + T1o;
61
        }
62
        {
63
       E T4, T5, T1q, T1r;
64
       T4 = Rp[WS(rs, 5)];
65
       T5 = Rm[WS(rs, 4)];
66
       T6 = T4 + T5;
67
       T3y = T4 - T5;
68
       T1q = Ip[WS(rs, 5)];
69
       T1r = Im[WS(rs, 4)];
70
       T1s = T1q - T1r;
71
       T2V = T1q + T1r;
72
        }
73
        T7 = T3 + T6;
74
        T4e = T2U - T2V;
75
        T4z = T3y + T3x;
76
        TE = T3 - T6;
77
        T1t = T1p - T1s;
78
        T2W = T2U + T2V;
79
        T3z = T3x - T3y;
80
        T2l = T1p + T1s;
81
         }
82
         {
83
        E Te, T4f, T4p, TF, T1a, T2Z, T3o, T2b, TA, T4j, T4t, TJ, T12, T39, T3k;
84
        E T2f, Tl, T4g, T4q, TG, T1h, T32, T3r, T2c, Tt, T4i, T4s, TI, TV, T36;
85
        E T3h, T2e;
86
        {
87
       E Ta, T2X, T16, T3m, Td, T3n, T19, T2Y;
88
       {
89
            E T8, T9, T14, T15;
90
            T8 = Rp[WS(rs, 4)];
91
            T9 = Rm[WS(rs, 5)];
92
            Ta = T8 + T9;
93
            T2X = T8 - T9;
94
            T14 = Ip[WS(rs, 4)];
95
            T15 = Im[WS(rs, 5)];
96
            T16 = T14 - T15;
97
            T3m = T14 + T15;
98
       }
99
       {
100
            E Tb, Tc, T17, T18;
101
            Tb = Rp[WS(rs, 9)];
102
            Tc = Rm[0];
103
            Td = Tb + Tc;
104
            T3n = Tb - Tc;
105
            T17 = Ip[WS(rs, 9)];
106
            T18 = Im[0];
107
            T19 = T17 - T18;
108
            T2Y = T17 + T18;
109
       }
110
       Te = Ta + Td;
111
       T4f = T2X - T2Y;
112
       T4p = T3n + T3m;
113
       TF = Ta - Td;
114
       T1a = T16 - T19;
115
       T2Z = T2X + T2Y;
116
       T3o = T3m - T3n;
117
       T2b = T16 + T19;
118
        }
119
        {
120
       E Tw, T37, TY, T3j, Tz, T3i, T11, T38;
121
       {
122
            E Tu, Tv, TW, TX;
123
            Tu = Rm[WS(rs, 7)];
124
            Tv = Rp[WS(rs, 2)];
125
            Tw = Tu + Tv;
126
            T37 = Tu - Tv;
127
            TW = Ip[WS(rs, 2)];
128
            TX = Im[WS(rs, 7)];
129
            TY = TW - TX;
130
            T3j = TW + TX;
131
       }
132
       {
133
            E Tx, Ty, TZ, T10;
134
            Tx = Rm[WS(rs, 2)];
135
            Ty = Rp[WS(rs, 7)];
136
            Tz = Tx + Ty;
137
            T3i = Tx - Ty;
138
            TZ = Ip[WS(rs, 7)];
139
            T10 = Im[WS(rs, 2)];
140
            T11 = TZ - T10;
141
            T38 = TZ + T10;
142
       }
143
       TA = Tw + Tz;
144
       T4j = T37 + T38;
145
       T4t = T3i - T3j;
146
       TJ = Tw - Tz;
147
       T12 = TY - T11;
148
       T39 = T37 - T38;
149
       T3k = T3i + T3j;
150
       T2f = TY + T11;
151
        }
152
        {
153
       E Th, T30, T1d, T3q, Tk, T3p, T1g, T31;
154
       {
155
            E Tf, Tg, T1b, T1c;
156
            Tf = Rm[WS(rs, 3)];
157
            Tg = Rp[WS(rs, 6)];
158
            Th = Tf + Tg;
159
            T30 = Tf - Tg;
160
            T1b = Ip[WS(rs, 6)];
161
            T1c = Im[WS(rs, 3)];
162
            T1d = T1b - T1c;
163
            T3q = T1b + T1c;
164
       }
165
       {
166
            E Ti, Tj, T1e, T1f;
167
            Ti = Rp[WS(rs, 1)];
168
            Tj = Rm[WS(rs, 8)];
169
            Tk = Ti + Tj;
170
            T3p = Ti - Tj;
171
            T1e = Ip[WS(rs, 1)];
172
            T1f = Im[WS(rs, 8)];
173
            T1g = T1e - T1f;
174
            T31 = T1e + T1f;
175
       }
176
       Tl = Th + Tk;
177
       T4g = T30 - T31;
178
       T4q = T3p - T3q;
179
       TG = Th - Tk;
180
       T1h = T1d - T1g;
181
       T32 = T30 + T31;
182
       T3r = T3p + T3q;
183
       T2c = T1d + T1g;
184
        }
185
        {
186
       E Tp, T34, TR, T3f, Ts, T3g, TU, T35;
187
       {
188
            E Tn, To, TP, TQ;
189
            Tn = Rp[WS(rs, 8)];
190
            To = Rm[WS(rs, 1)];
191
            Tp = Tn + To;
192
            T34 = Tn - To;
193
            TP = Ip[WS(rs, 8)];
194
            TQ = Im[WS(rs, 1)];
195
            TR = TP - TQ;
196
            T3f = TP + TQ;
197
       }
198
       {
199
            E Tq, Tr, TS, TT;
200
            Tq = Rm[WS(rs, 6)];
201
            Tr = Rp[WS(rs, 3)];
202
            Ts = Tq + Tr;
203
            T3g = Tq - Tr;
204
            TS = Ip[WS(rs, 3)];
205
            TT = Im[WS(rs, 6)];
206
            TU = TS - TT;
207
            T35 = TS + TT;
208
       }
209
       Tt = Tp + Ts;
210
       T4i = T34 + T35;
211
       T4s = T3g + T3f;
212
       TI = Tp - Ts;
213
       TV = TR - TU;
214
       T36 = T34 - T35;
215
       T3h = T3f - T3g;
216
       T2e = TR + TU;
217
        }
218
        T13 = TV - T12;
219
        T3G = T36 - T39;
220
        T3H = T2Z - T32;
221
        T1i = T1a - T1h;
222
        T2g = T2e - T2f;
223
        T4H = T4i - T4j;
224
        T4G = T4f - T4g;
225
        T2d = T2b - T2c;
226
        T1B = TF - TG;
227
        T4u = T4s - T4t;
228
        T4r = T4p - T4q;
229
        T1A = TI - TJ;
230
        T2s = Te - Tl;
231
        T3l = T3h + T3k;
232
        T2t = Tt - TA;
233
        T3s = T3o + T3r;
234
        T2m = T2b + T2c;
235
        T2n = T2e + T2f;
236
        T2o = T2m + T2n;
237
        T1u = T1a + T1h;
238
        T1v = TV + T12;
239
        T1w = T1u + T1v;
240
        {
241
       E Tm, TB, TH, TK;
242
       Tm = Te + Tl;
243
       TB = Tt + TA;
244
       TC = Tm + TB;
245
       T29 = Tm - TB;
246
       {
247
            E T3A, T3B, T4h, T4k;
248
            T3A = T3o - T3r;
249
            T3B = T3h - T3k;
250
            T3C = T3A + T3B;
251
            T3E = T3A - T3B;
252
            T4h = T4f + T4g;
253
            T4k = T4i + T4j;
254
            T4l = T4h + T4k;
255
            T4n = T4h - T4k;
256
       }
257
       TH = TF + TG;
258
       TK = TI + TJ;
259
       TL = TH + TK;
260
       TN = TH - TK;
261
       {
262
            E T33, T3a, T4A, T4B;
263
            T33 = T2Z + T32;
264
            T3a = T36 + T39;
265
            T3b = T33 + T3a;
266
            T3d = T33 - T3a;
267
            T4A = T4p + T4q;
268
            T4B = T4s + T4t;
269
            T4C = T4A + T4B;
270
            T4E = T4A - T4B;
271
       }
272
        }
273
         }
274
         Rp[0] = T7 + TC;
275
         Rm[0] = T2l + T2o;
276
         {
277
        E T25, T21, T23, T24, T26, T22;
278
        T25 = T1t + T1w;
279
        T22 = TE + TL;
280
        T21 = W[18];
281
        T23 = T21 * T22;
282
        T24 = W[19];
283
        T26 = T24 * T22;
284
        Rp[WS(rs, 5)] = FNMS(T24, T25, T23);
285
        Rm[WS(rs, 5)] = FMA(T21, T25, T26);
286
         }
287
         {
288
        E T58, T5b, T59, T5c, T57, T5a;
289
        T58 = T4e + T4l;
290
        T5b = T4z + T4C;
291
        T57 = W[8];
292
        T59 = T57 * T58;
293
        T5c = T57 * T5b;
294
        T5a = W[9];
295
        Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59);
296
        Im[WS(rs, 2)] = FMA(T5a, T58, T5c);
297
         }
298
         {
299
        E T48, T4b, T49, T4c, T47, T4a;
300
        T48 = T2W + T3b;
301
        T4b = T3z + T3C;
302
        T47 = W[28];
303
        T49 = T47 * T48;
304
        T4c = T47 * T4b;
305
        T4a = W[29];
306
        Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49);
307
        Im[WS(rs, 7)] = FMA(T4a, T48, T4c);
308
         }
309
         {
310
        E T3u, T42, T3M, T3U, T3J, T45, T3P, T3Z;
311
        {
312
       E T3t, T3T, T3e, T3S, T3c;
313
       T3t = FNMS(KP618033988, T3s, T3l);
314
       T3T = FMA(KP618033988, T3l, T3s);
315
       T3c = FNMS(KP250000000, T3b, T2W);
316
       T3e = FNMS(KP559016994, T3d, T3c);
317
       T3S = FMA(KP559016994, T3d, T3c);
318
       T3u = FNMS(KP951056516, T3t, T3e);
319
       T42 = FMA(KP951056516, T3T, T3S);
320
       T3M = FMA(KP951056516, T3t, T3e);
321
       T3U = FNMS(KP951056516, T3T, T3S);
322
        }
323
        {
324
       E T3I, T3Y, T3F, T3X, T3D;
325
       T3I = FNMS(KP618033988, T3H, T3G);
326
       T3Y = FMA(KP618033988, T3G, T3H);
327
       T3D = FNMS(KP250000000, T3C, T3z);
328
       T3F = FNMS(KP559016994, T3E, T3D);
329
       T3X = FMA(KP559016994, T3E, T3D);
330
       T3J = FMA(KP951056516, T3I, T3F);
331
       T45 = FNMS(KP951056516, T3Y, T3X);
332
       T3P = FNMS(KP951056516, T3I, T3F);
333
       T3Z = FMA(KP951056516, T3Y, T3X);
334
        }
335
        {
336
       E T3v, T3K, T2T, T3w;
337
       T2T = W[4];
338
       T3v = T2T * T3u;
339
       T3K = T2T * T3J;
340
       T3w = W[5];
341
       Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v);
342
       Im[WS(rs, 1)] = FMA(T3w, T3u, T3K);
343
        }
344
        {
345
       E T43, T46, T41, T44;
346
       T41 = W[36];
347
       T43 = T41 * T42;
348
       T46 = T41 * T45;
349
       T44 = W[37];
350
       Ip[WS(rs, 9)] = FNMS(T44, T45, T43);
351
       Im[WS(rs, 9)] = FMA(T44, T42, T46);
352
        }
353
        {
354
       E T3N, T3Q, T3L, T3O;
355
       T3L = W[12];
356
       T3N = T3L * T3M;
357
       T3Q = T3L * T3P;
358
       T3O = W[13];
359
       Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N);
360
       Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q);
361
        }
362
        {
363
       E T3V, T40, T3R, T3W;
364
       T3R = W[20];
365
       T3V = T3R * T3U;
366
       T40 = T3R * T3Z;
367
       T3W = W[21];
368
       Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V);
369
       Im[WS(rs, 5)] = FMA(T3W, T3U, T40);
370
        }
371
         }
372
         {
373
        E T4w, T52, T4M, T4U, T4J, T55, T4P, T4Z;
374
        {
375
       E T4v, T4T, T4o, T4S, T4m;
376
       T4v = FMA(KP618033988, T4u, T4r);
377
       T4T = FNMS(KP618033988, T4r, T4u);
378
       T4m = FNMS(KP250000000, T4l, T4e);
379
       T4o = FMA(KP559016994, T4n, T4m);
380
       T4S = FNMS(KP559016994, T4n, T4m);
381
       T4w = FNMS(KP951056516, T4v, T4o);
382
       T52 = FMA(KP951056516, T4T, T4S);
383
       T4M = FMA(KP951056516, T4v, T4o);
384
       T4U = FNMS(KP951056516, T4T, T4S);
385
        }
386
        {
387
       E T4I, T4Y, T4F, T4X, T4D;
388
       T4I = FMA(KP618033988, T4H, T4G);
389
       T4Y = FNMS(KP618033988, T4G, T4H);
390
       T4D = FNMS(KP250000000, T4C, T4z);
391
       T4F = FMA(KP559016994, T4E, T4D);
392
       T4X = FNMS(KP559016994, T4E, T4D);
393
       T4J = FMA(KP951056516, T4I, T4F);
394
       T55 = FNMS(KP951056516, T4Y, T4X);
395
       T4P = FNMS(KP951056516, T4I, T4F);
396
       T4Z = FMA(KP951056516, T4Y, T4X);
397
        }
398
        {
399
       E T4x, T4K, T4d, T4y;
400
       T4d = W[0];
401
       T4x = T4d * T4w;
402
       T4K = T4d * T4J;
403
       T4y = W[1];
404
       Ip[0] = FNMS(T4y, T4J, T4x);
405
       Im[0] = FMA(T4y, T4w, T4K);
406
        }
407
        {
408
       E T53, T56, T51, T54;
409
       T51 = W[32];
410
       T53 = T51 * T52;
411
       T56 = T51 * T55;
412
       T54 = W[33];
413
       Ip[WS(rs, 8)] = FNMS(T54, T55, T53);
414
       Im[WS(rs, 8)] = FMA(T54, T52, T56);
415
        }
416
        {
417
       E T4N, T4Q, T4L, T4O;
418
       T4L = W[16];
419
       T4N = T4L * T4M;
420
       T4Q = T4L * T4P;
421
       T4O = W[17];
422
       Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N);
423
       Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q);
424
        }
425
        {
426
       E T4V, T50, T4R, T4W;
427
       T4R = W[24];
428
       T4V = T4R * T4U;
429
       T50 = T4R * T4Z;
430
       T4W = W[25];
431
       Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V);
432
       Im[WS(rs, 6)] = FMA(T4W, T4U, T50);
433
        }
434
         }
435
         {
436
        E T2u, T2K, T2r, T2J, T2i, T2O, T2y, T2G, T2p, T2q;
437
        T2u = FMA(KP618033988, T2t, T2s);
438
        T2K = FNMS(KP618033988, T2s, T2t);
439
        T2p = FNMS(KP250000000, T2o, T2l);
440
        T2q = T2m - T2n;
441
        T2r = FMA(KP559016994, T2q, T2p);
442
        T2J = FNMS(KP559016994, T2q, T2p);
443
        {
444
       E T2h, T2F, T2a, T2E, T28;
445
       T2h = FMA(KP618033988, T2g, T2d);
446
       T2F = FNMS(KP618033988, T2d, T2g);
447
       T28 = FNMS(KP250000000, TC, T7);
448
       T2a = FMA(KP559016994, T29, T28);
449
       T2E = FNMS(KP559016994, T29, T28);
450
       T2i = FMA(KP951056516, T2h, T2a);
451
       T2O = FMA(KP951056516, T2F, T2E);
452
       T2y = FNMS(KP951056516, T2h, T2a);
453
       T2G = FNMS(KP951056516, T2F, T2E);
454
        }
455
        {
456
       E T2v, T2k, T2w, T27, T2j;
457
       T2v = FNMS(KP951056516, T2u, T2r);
458
       T2k = W[7];
459
       T2w = T2k * T2i;
460
       T27 = W[6];
461
       T2j = T27 * T2i;
462
       Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j);
463
       Rm[WS(rs, 2)] = FMA(T27, T2v, T2w);
464
        }
465
        {
466
       E T2R, T2Q, T2S, T2N, T2P;
467
       T2R = FNMS(KP951056516, T2K, T2J);
468
       T2Q = W[23];
469
       T2S = T2Q * T2O;
470
       T2N = W[22];
471
       T2P = T2N * T2O;
472
       Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P);
473
       Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S);
474
        }
475
        {
476
       E T2B, T2A, T2C, T2x, T2z;
477
       T2B = FMA(KP951056516, T2u, T2r);
478
       T2A = W[31];
479
       T2C = T2A * T2y;
480
       T2x = W[30];
481
       T2z = T2x * T2y;
482
       Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z);
483
       Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C);
484
        }
485
        {
486
       E T2L, T2I, T2M, T2D, T2H;
487
       T2L = FMA(KP951056516, T2K, T2J);
488
       T2I = W[15];
489
       T2M = T2I * T2G;
490
       T2D = W[14];
491
       T2H = T2D * T2G;
492
       Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H);
493
       Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M);
494
        }
495
         }
496
         {
497
        E T1C, T1S, T1z, T1R, T1k, T1W, T1G, T1O, T1x, T1y;
498
        T1C = FNMS(KP618033988, T1B, T1A);
499
        T1S = FMA(KP618033988, T1A, T1B);
500
        T1x = FNMS(KP250000000, T1w, T1t);
501
        T1y = T1u - T1v;
502
        T1z = FNMS(KP559016994, T1y, T1x);
503
        T1R = FMA(KP559016994, T1y, T1x);
504
        {
505
       E T1j, T1N, TO, T1M, TM;
506
       T1j = FNMS(KP618033988, T1i, T13);
507
       T1N = FMA(KP618033988, T13, T1i);
508
       TM = FNMS(KP250000000, TL, TE);
509
       TO = FNMS(KP559016994, TN, TM);
510
       T1M = FMA(KP559016994, TN, TM);
511
       T1k = FMA(KP951056516, T1j, TO);
512
       T1W = FMA(KP951056516, T1N, T1M);
513
       T1G = FNMS(KP951056516, T1j, TO);
514
       T1O = FNMS(KP951056516, T1N, T1M);
515
        }
516
        {
517
       E T1D, T1m, T1E, TD, T1l;
518
       T1D = FNMS(KP951056516, T1C, T1z);
519
       T1m = W[3];
520
       T1E = T1m * T1k;
521
       TD = W[2];
522
       T1l = TD * T1k;
523
       Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l);
524
       Rm[WS(rs, 1)] = FMA(TD, T1D, T1E);
525
        }
526
        {
527
       E T1Z, T1Y, T20, T1V, T1X;
528
       T1Z = FNMS(KP951056516, T1S, T1R);
529
       T1Y = W[27];
530
       T20 = T1Y * T1W;
531
       T1V = W[26];
532
       T1X = T1V * T1W;
533
       Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X);
534
       Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20);
535
        }
536
        {
537
       E T1J, T1I, T1K, T1F, T1H;
538
       T1J = FMA(KP951056516, T1C, T1z);
539
       T1I = W[35];
540
       T1K = T1I * T1G;
541
       T1F = W[34];
542
       T1H = T1F * T1G;
543
       Rp[WS(rs, 9)] = FNMS(T1I, T1J, T1H);
544
       Rm[WS(rs, 9)] = FMA(T1F, T1J, T1K);
545
        }
546
        {
547
       E T1T, T1Q, T1U, T1L, T1P;
548
       T1T = FMA(KP951056516, T1S, T1R);
549
       T1Q = W[11];
550
       T1U = T1Q * T1O;
551
       T1L = W[10];
552
       T1P = T1L * T1O;
553
       Rp[WS(rs, 3)] = FNMS(T1Q, T1T, T1P);
554
       Rm[WS(rs, 3)] = FMA(T1L, T1T, T1U);
555
        }
556
         }
557
    }
558
     }
559
}
560
561
static const tw_instr twinstr[] = {
562
     { TW_FULL, 1, 20 },
563
     { TW_NEXT, 1, 0 }
564
};
565
566
static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 136, 38, 110, 0 } };
567
568
void X(codelet_hc2cb_20) (planner *p) {
569
     X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT);
570
}
571
#else
572
573
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */
574
575
/*
576
 * This function contains 246 FP additions, 124 FP multiplications,
577
 * (or, 184 additions, 62 multiplications, 62 fused multiply/add),
578
 * 97 stack variables, 4 constants, and 80 memory accesses
579
 */
580
#include "rdft/scalar/hc2cb.h"
581
582
static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
583
0
{
584
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
585
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
586
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
587
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
588
0
     {
589
0
    INT m;
590
0
    for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
591
0
         E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d;
592
0
         E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC;
593
0
         E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j;
594
0
         E TH, TK, TL;
595
0
         {
596
0
        E T3, T2R, T1r, T3e, T6, T3f, T1u, T2S;
597
0
        {
598
0
       E T1, T2, T1p, T1q;
599
0
       T1 = Rp[0];
600
0
       T2 = Rm[WS(rs, 9)];
601
0
       T3 = T1 + T2;
602
0
       T2R = T1 - T2;
603
0
       T1p = Ip[0];
604
0
       T1q = Im[WS(rs, 9)];
605
0
       T1r = T1p - T1q;
606
0
       T3e = T1p + T1q;
607
0
        }
608
0
        {
609
0
       E T4, T5, T1s, T1t;
610
0
       T4 = Rp[WS(rs, 5)];
611
0
       T5 = Rm[WS(rs, 4)];
612
0
       T6 = T4 + T5;
613
0
       T3f = T4 - T5;
614
0
       T1s = Ip[WS(rs, 5)];
615
0
       T1t = Im[WS(rs, 4)];
616
0
       T1u = T1s - T1t;
617
0
       T2S = T1s + T1t;
618
0
        }
619
0
        T7 = T3 + T6;
620
0
        T3T = T2R - T2S;
621
0
        T49 = T3f + T3e;
622
0
        TE = T3 - T6;
623
0
        T1v = T1r - T1u;
624
0
        T2T = T2R + T2S;
625
0
        T3g = T3e - T3f;
626
0
        T2d = T1r + T1u;
627
0
         }
628
0
         {
629
0
        E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36;
630
0
        E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L;
631
0
        E T33, T24;
632
0
        {
633
0
       E Ta, T2U, TR, T2C, Td, T2D, TU, T2V;
634
0
       {
635
0
            E T8, T9, TP, TQ;
636
0
            T8 = Rp[WS(rs, 4)];
637
0
            T9 = Rm[WS(rs, 5)];
638
0
            Ta = T8 + T9;
639
0
            T2U = T8 - T9;
640
0
            TP = Ip[WS(rs, 4)];
641
0
            TQ = Im[WS(rs, 5)];
642
0
            TR = TP - TQ;
643
0
            T2C = TP + TQ;
644
0
       }
645
0
       {
646
0
            E Tb, Tc, TS, TT;
647
0
            Tb = Rp[WS(rs, 9)];
648
0
            Tc = Rm[0];
649
0
            Td = Tb + Tc;
650
0
            T2D = Tb - Tc;
651
0
            TS = Ip[WS(rs, 9)];
652
0
            TT = Im[0];
653
0
            TU = TS - TT;
654
0
            T2V = TS + TT;
655
0
       }
656
0
       Te = Ta + Td;
657
0
       T3M = T2U - T2V;
658
0
       T3X = T2D + T2C;
659
0
       TF = Ta - Td;
660
0
       TV = TR - TU;
661
0
       T2E = T2C - T2D;
662
0
       T2W = T2U + T2V;
663
0
       T21 = TR + TU;
664
0
        }
665
0
        {
666
0
       E Tw, T34, T1d, T2N, Tz, T2M, T1g, T35;
667
0
       {
668
0
            E Tu, Tv, T1b, T1c;
669
0
            Tu = Rm[WS(rs, 7)];
670
0
            Tv = Rp[WS(rs, 2)];
671
0
            Tw = Tu + Tv;
672
0
            T34 = Tu - Tv;
673
0
            T1b = Ip[WS(rs, 2)];
674
0
            T1c = Im[WS(rs, 7)];
675
0
            T1d = T1b - T1c;
676
0
            T2N = T1b + T1c;
677
0
       }
678
0
       {
679
0
            E Tx, Ty, T1e, T1f;
680
0
            Tx = Rm[WS(rs, 2)];
681
0
            Ty = Rp[WS(rs, 7)];
682
0
            Tz = Tx + Ty;
683
0
            T2M = Tx - Ty;
684
0
            T1e = Ip[WS(rs, 7)];
685
0
            T1f = Im[WS(rs, 2)];
686
0
            T1g = T1e - T1f;
687
0
            T35 = T1e + T1f;
688
0
       }
689
0
       TA = Tw + Tz;
690
0
       T3Q = T34 + T35;
691
0
       T41 = T2M - T2N;
692
0
       TJ = Tw - Tz;
693
0
       T1h = T1d - T1g;
694
0
       T2O = T2M + T2N;
695
0
       T36 = T34 - T35;
696
0
       T25 = T1d + T1g;
697
0
        }
698
0
        {
699
0
       E Th, T2X, TY, T2G, Tk, T2F, T11, T2Y;
700
0
       {
701
0
            E Tf, Tg, TW, TX;
702
0
            Tf = Rm[WS(rs, 3)];
703
0
            Tg = Rp[WS(rs, 6)];
704
0
            Th = Tf + Tg;
705
0
            T2X = Tf - Tg;
706
0
            TW = Ip[WS(rs, 6)];
707
0
            TX = Im[WS(rs, 3)];
708
0
            TY = TW - TX;
709
0
            T2G = TW + TX;
710
0
       }
711
0
       {
712
0
            E Ti, Tj, TZ, T10;
713
0
            Ti = Rp[WS(rs, 1)];
714
0
            Tj = Rm[WS(rs, 8)];
715
0
            Tk = Ti + Tj;
716
0
            T2F = Ti - Tj;
717
0
            TZ = Ip[WS(rs, 1)];
718
0
            T10 = Im[WS(rs, 8)];
719
0
            T11 = TZ - T10;
720
0
            T2Y = TZ + T10;
721
0
       }
722
0
       Tl = Th + Tk;
723
0
       T3N = T2X - T2Y;
724
0
       T3Y = T2F - T2G;
725
0
       TG = Th - Tk;
726
0
       T12 = TY - T11;
727
0
       T2H = T2F + T2G;
728
0
       T2Z = T2X + T2Y;
729
0
       T22 = TY + T11;
730
0
        }
731
0
        {
732
0
       E Tp, T31, T16, T2J, Ts, T2K, T19, T32;
733
0
       {
734
0
            E Tn, To, T14, T15;
735
0
            Tn = Rp[WS(rs, 8)];
736
0
            To = Rm[WS(rs, 1)];
737
0
            Tp = Tn + To;
738
0
            T31 = Tn - To;
739
0
            T14 = Ip[WS(rs, 8)];
740
0
            T15 = Im[WS(rs, 1)];
741
0
            T16 = T14 - T15;
742
0
            T2J = T14 + T15;
743
0
       }
744
0
       {
745
0
            E Tq, Tr, T17, T18;
746
0
            Tq = Rm[WS(rs, 6)];
747
0
            Tr = Rp[WS(rs, 3)];
748
0
            Ts = Tq + Tr;
749
0
            T2K = Tq - Tr;
750
0
            T17 = Ip[WS(rs, 3)];
751
0
            T18 = Im[WS(rs, 6)];
752
0
            T19 = T17 - T18;
753
0
            T32 = T17 + T18;
754
0
       }
755
0
       Tt = Tp + Ts;
756
0
       T3P = T31 + T32;
757
0
       T40 = T2K + T2J;
758
0
       TI = Tp - Ts;
759
0
       T1a = T16 - T19;
760
0
       T2L = T2J - T2K;
761
0
       T33 = T31 - T32;
762
0
       T24 = T16 + T19;
763
0
        }
764
0
        T13 = TV - T12;
765
0
        T3n = T2W - T2Z;
766
0
        T3o = T33 - T36;
767
0
        T1i = T1a - T1h;
768
0
        T26 = T24 - T25;
769
0
        T4e = T3P - T3Q;
770
0
        T4d = T3M - T3N;
771
0
        T23 = T21 - T22;
772
0
        T1n = TI - TJ;
773
0
        T42 = T40 - T41;
774
0
        T3Z = T3X - T3Y;
775
0
        T1m = TF - TG;
776
0
        T2h = Te - Tl;
777
0
        T2I = T2E + T2H;
778
0
        T2i = Tt - TA;
779
0
        T2P = T2L + T2O;
780
0
        T30 = T2W + T2Z;
781
0
        T37 = T33 + T36;
782
0
        T38 = T30 + T37;
783
0
        Tm = Te + Tl;
784
0
        TB = Tt + TA;
785
0
        TC = Tm + TB;
786
0
        T46 = T3X + T3Y;
787
0
        T47 = T40 + T41;
788
0
        T4a = T46 + T47;
789
0
        T2a = T21 + T22;
790
0
        T2b = T24 + T25;
791
0
        T2e = T2a + T2b;
792
0
        T1w = TV + T12;
793
0
        T1x = T1a + T1h;
794
0
        T1y = T1w + T1x;
795
0
        T3O = T3M + T3N;
796
0
        T3R = T3P + T3Q;
797
0
        T3U = T3O + T3R;
798
0
        T3h = T2E - T2H;
799
0
        T3i = T2L - T2O;
800
0
        T3j = T3h + T3i;
801
0
        TH = TF + TG;
802
0
        TK = TI + TJ;
803
0
        TL = TH + TK;
804
0
         }
805
0
         Rp[0] = T7 + TC;
806
0
         Rm[0] = T2d + T2e;
807
0
         {
808
0
        E T1U, T1W, T1T, T1V;
809
0
        T1U = TE + TL;
810
0
        T1W = T1v + T1y;
811
0
        T1T = W[18];
812
0
        T1V = W[19];
813
0
        Rp[WS(rs, 5)] = FNMS(T1V, T1W, T1T * T1U);
814
0
        Rm[WS(rs, 5)] = FMA(T1V, T1U, T1T * T1W);
815
0
         }
816
0
         {
817
0
        E T4y, T4A, T4x, T4z;
818
0
        T4y = T3T + T3U;
819
0
        T4A = T49 + T4a;
820
0
        T4x = W[8];
821
0
        T4z = W[9];
822
0
        Ip[WS(rs, 2)] = FNMS(T4z, T4A, T4x * T4y);
823
0
        Im[WS(rs, 2)] = FMA(T4x, T4A, T4z * T4y);
824
0
         }
825
0
         {
826
0
        E T3I, T3K, T3H, T3J;
827
0
        T3I = T2T + T38;
828
0
        T3K = T3g + T3j;
829
0
        T3H = W[28];
830
0
        T3J = W[29];
831
0
        Ip[WS(rs, 7)] = FNMS(T3J, T3K, T3H * T3I);
832
0
        Im[WS(rs, 7)] = FMA(T3H, T3K, T3J * T3I);
833
0
         }
834
0
         {
835
0
        E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q;
836
0
        T27 = FMA(KP951056516, T23, KP587785252 * T26);
837
0
        T2j = FMA(KP951056516, T2h, KP587785252 * T2i);
838
0
        T2v = FNMS(KP951056516, T2i, KP587785252 * T2h);
839
0
        T2r = FNMS(KP951056516, T26, KP587785252 * T23);
840
0
        {
841
0
       E T2c, T2f, T1Y, T1Z;
842
0
       T2c = KP559016994 * (T2a - T2b);
843
0
       T2f = FNMS(KP250000000, T2e, T2d);
844
0
       T2g = T2c + T2f;
845
0
       T2u = T2f - T2c;
846
0
       T1Y = KP559016994 * (Tm - TB);
847
0
       T1Z = FNMS(KP250000000, TC, T7);
848
0
       T20 = T1Y + T1Z;
849
0
       T2q = T1Z - T1Y;
850
0
        }
851
0
        {
852
0
       E T28, T2k, T1X, T29;
853
0
       T28 = T20 + T27;
854
0
       T2k = T2g - T2j;
855
0
       T1X = W[6];
856
0
       T29 = W[7];
857
0
       Rp[WS(rs, 2)] = FNMS(T29, T2k, T1X * T28);
858
0
       Rm[WS(rs, 2)] = FMA(T29, T28, T1X * T2k);
859
0
        }
860
0
        {
861
0
       E T2y, T2A, T2x, T2z;
862
0
       T2y = T2q - T2r;
863
0
       T2A = T2v + T2u;
864
0
       T2x = W[22];
865
0
       T2z = W[23];
866
0
       Rp[WS(rs, 6)] = FNMS(T2z, T2A, T2x * T2y);
867
0
       Rm[WS(rs, 6)] = FMA(T2z, T2y, T2x * T2A);
868
0
        }
869
0
        {
870
0
       E T2m, T2o, T2l, T2n;
871
0
       T2m = T20 - T27;
872
0
       T2o = T2j + T2g;
873
0
       T2l = W[30];
874
0
       T2n = W[31];
875
0
       Rp[WS(rs, 8)] = FNMS(T2n, T2o, T2l * T2m);
876
0
       Rm[WS(rs, 8)] = FMA(T2n, T2m, T2l * T2o);
877
0
        }
878
0
        {
879
0
       E T2s, T2w, T2p, T2t;
880
0
       T2s = T2q + T2r;
881
0
       T2w = T2u - T2v;
882
0
       T2p = W[14];
883
0
       T2t = W[15];
884
0
       Rp[WS(rs, 4)] = FNMS(T2t, T2w, T2p * T2s);
885
0
       Rm[WS(rs, 4)] = FMA(T2t, T2s, T2p * T2w);
886
0
        }
887
0
         }
888
0
         {
889
0
        E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n;
890
0
        T43 = FMA(KP951056516, T3Z, KP587785252 * T42);
891
0
        T4f = FMA(KP951056516, T4d, KP587785252 * T4e);
892
0
        T4r = FNMS(KP951056516, T4e, KP587785252 * T4d);
893
0
        T4m = FNMS(KP951056516, T42, KP587785252 * T3Z);
894
0
        {
895
0
       E T48, T4b, T3S, T3V;
896
0
       T48 = KP559016994 * (T46 - T47);
897
0
       T4b = FNMS(KP250000000, T4a, T49);
898
0
       T4c = T48 + T4b;
899
0
       T4q = T4b - T48;
900
0
       T3S = KP559016994 * (T3O - T3R);
901
0
       T3V = FNMS(KP250000000, T3U, T3T);
902
0
       T3W = T3S + T3V;
903
0
       T4n = T3V - T3S;
904
0
        }
905
0
        {
906
0
       E T44, T4g, T3L, T45;
907
0
       T44 = T3W - T43;
908
0
       T4g = T4c + T4f;
909
0
       T3L = W[0];
910
0
       T45 = W[1];
911
0
       Ip[0] = FNMS(T45, T4g, T3L * T44);
912
0
       Im[0] = FMA(T3L, T4g, T45 * T44);
913
0
        }
914
0
        {
915
0
       E T4u, T4w, T4t, T4v;
916
0
       T4u = T4n - T4m;
917
0
       T4w = T4q + T4r;
918
0
       T4t = W[32];
919
0
       T4v = W[33];
920
0
       Ip[WS(rs, 8)] = FNMS(T4v, T4w, T4t * T4u);
921
0
       Im[WS(rs, 8)] = FMA(T4t, T4w, T4v * T4u);
922
0
        }
923
0
        {
924
0
       E T4i, T4k, T4h, T4j;
925
0
       T4i = T43 + T3W;
926
0
       T4k = T4c - T4f;
927
0
       T4h = W[16];
928
0
       T4j = W[17];
929
0
       Ip[WS(rs, 4)] = FNMS(T4j, T4k, T4h * T4i);
930
0
       Im[WS(rs, 4)] = FMA(T4h, T4k, T4j * T4i);
931
0
        }
932
0
        {
933
0
       E T4o, T4s, T4l, T4p;
934
0
       T4o = T4m + T4n;
935
0
       T4s = T4q - T4r;
936
0
       T4l = W[24];
937
0
       T4p = W[25];
938
0
       Ip[WS(rs, 6)] = FNMS(T4p, T4s, T4l * T4o);
939
0
       Im[WS(rs, 6)] = FMA(T4l, T4s, T4p * T4o);
940
0
        }
941
0
         }
942
0
         {
943
0
        E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I;
944
0
        T1j = FNMS(KP951056516, T1i, KP587785252 * T13);
945
0
        T1o = FNMS(KP951056516, T1n, KP587785252 * T1m);
946
0
        T1M = FMA(KP951056516, T1m, KP587785252 * T1n);
947
0
        T1J = FMA(KP951056516, T13, KP587785252 * T1i);
948
0
        {
949
0
       E T1z, T1A, TM, TN;
950
0
       T1z = FNMS(KP250000000, T1y, T1v);
951
0
       T1A = KP559016994 * (T1w - T1x);
952
0
       T1B = T1z - T1A;
953
0
       T1N = T1A + T1z;
954
0
       TM = FNMS(KP250000000, TL, TE);
955
0
       TN = KP559016994 * (TH - TK);
956
0
       TO = TM - TN;
957
0
       T1I = TN + TM;
958
0
        }
959
0
        {
960
0
       E T1k, T1C, TD, T1l;
961
0
       T1k = TO - T1j;
962
0
       T1C = T1o + T1B;
963
0
       TD = W[2];
964
0
       T1l = W[3];
965
0
       Rp[WS(rs, 1)] = FNMS(T1l, T1C, TD * T1k);
966
0
       Rm[WS(rs, 1)] = FMA(T1l, T1k, TD * T1C);
967
0
        }
968
0
        {
969
0
       E T1Q, T1S, T1P, T1R;
970
0
       T1Q = T1I + T1J;
971
0
       T1S = T1N - T1M;
972
0
       T1P = W[26];
973
0
       T1R = W[27];
974
0
       Rp[WS(rs, 7)] = FNMS(T1R, T1S, T1P * T1Q);
975
0
       Rm[WS(rs, 7)] = FMA(T1R, T1Q, T1P * T1S);
976
0
        }
977
0
        {
978
0
       E T1E, T1G, T1D, T1F;
979
0
       T1E = TO + T1j;
980
0
       T1G = T1B - T1o;
981
0
       T1D = W[34];
982
0
       T1F = W[35];
983
0
       Rp[WS(rs, 9)] = FNMS(T1F, T1G, T1D * T1E);
984
0
       Rm[WS(rs, 9)] = FMA(T1F, T1E, T1D * T1G);
985
0
        }
986
0
        {
987
0
       E T1K, T1O, T1H, T1L;
988
0
       T1K = T1I - T1J;
989
0
       T1O = T1M + T1N;
990
0
       T1H = W[10];
991
0
       T1L = W[11];
992
0
       Rp[WS(rs, 3)] = FNMS(T1L, T1O, T1H * T1K);
993
0
       Rm[WS(rs, 3)] = FMA(T1L, T1K, T1H * T1O);
994
0
        }
995
0
         }
996
0
         {
997
0
        E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w;
998
0
        T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I);
999
0
        T3p = FNMS(KP951056516, T3o, KP587785252 * T3n);
1000
0
        T3B = FMA(KP951056516, T3n, KP587785252 * T3o);
1001
0
        T3x = FMA(KP951056516, T2I, KP587785252 * T2P);
1002
0
        {
1003
0
       E T3k, T3l, T39, T3a;
1004
0
       T3k = FNMS(KP250000000, T3j, T3g);
1005
0
       T3l = KP559016994 * (T3h - T3i);
1006
0
       T3m = T3k - T3l;
1007
0
       T3A = T3l + T3k;
1008
0
       T39 = FNMS(KP250000000, T38, T2T);
1009
0
       T3a = KP559016994 * (T30 - T37);
1010
0
       T3b = T39 - T3a;
1011
0
       T3w = T3a + T39;
1012
0
        }
1013
0
        {
1014
0
       E T3c, T3q, T2B, T3d;
1015
0
       T3c = T2Q + T3b;
1016
0
       T3q = T3m - T3p;
1017
0
       T2B = W[4];
1018
0
       T3d = W[5];
1019
0
       Ip[WS(rs, 1)] = FNMS(T3d, T3q, T2B * T3c);
1020
0
       Im[WS(rs, 1)] = FMA(T2B, T3q, T3d * T3c);
1021
0
        }
1022
0
        {
1023
0
       E T3E, T3G, T3D, T3F;
1024
0
       T3E = T3x + T3w;
1025
0
       T3G = T3A - T3B;
1026
0
       T3D = W[36];
1027
0
       T3F = W[37];
1028
0
       Ip[WS(rs, 9)] = FNMS(T3F, T3G, T3D * T3E);
1029
0
       Im[WS(rs, 9)] = FMA(T3D, T3G, T3F * T3E);
1030
0
        }
1031
0
        {
1032
0
       E T3s, T3u, T3r, T3t;
1033
0
       T3s = T3b - T2Q;
1034
0
       T3u = T3m + T3p;
1035
0
       T3r = W[12];
1036
0
       T3t = W[13];
1037
0
       Ip[WS(rs, 3)] = FNMS(T3t, T3u, T3r * T3s);
1038
0
       Im[WS(rs, 3)] = FMA(T3r, T3u, T3t * T3s);
1039
0
        }
1040
0
        {
1041
0
       E T3y, T3C, T3v, T3z;
1042
0
       T3y = T3w - T3x;
1043
0
       T3C = T3A + T3B;
1044
0
       T3v = W[20];
1045
0
       T3z = W[21];
1046
0
       Ip[WS(rs, 5)] = FNMS(T3z, T3C, T3v * T3y);
1047
0
       Im[WS(rs, 5)] = FMA(T3v, T3C, T3z * T3y);
1048
0
        }
1049
0
         }
1050
0
    }
1051
0
     }
1052
0
}
1053
1054
static const tw_instr twinstr[] = {
1055
     { TW_FULL, 1, 20 },
1056
     { TW_NEXT, 1, 0 }
1057
};
1058
1059
static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 184, 62, 62, 0 } };
1060
1061
1
void X(codelet_hc2cb_20) (planner *p) {
1062
1
     X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT);
1063
1
}
1064
#endif