/src/fftw3/rdft/scalar/r2cb/hc2cb_20.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Aug 26 06:34:20 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 246 FP additions, 148 FP multiplications, |
32 | | * (or, 136 additions, 38 multiplications, 110 fused multiply/add), |
33 | | * 91 stack variables, 4 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cb.h" |
36 | | |
37 | | static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
46 | | E T7, T4e, T4z, TE, T1t, T2W, T3z, T2l, T13, T3G, T3H, T1i, T2g, T4H, T4G; |
47 | | E T2d, T1B, T4u, T4r, T1A, T2s, T3l, T2t, T3s, T2m, T2n, T2o, T1u, T1v, T1w; |
48 | | E TC, T29, T3C, T3E, T4l, T4n, TL, TN, T3b, T3d, T4C, T4E; |
49 | | { |
50 | | E T3, T2U, T1p, T3x, T6, T3y, T1s, T2V; |
51 | | { |
52 | | E T1, T2, T1n, T1o; |
53 | | T1 = Rp[0]; |
54 | | T2 = Rm[WS(rs, 9)]; |
55 | | T3 = T1 + T2; |
56 | | T2U = T1 - T2; |
57 | | T1n = Ip[0]; |
58 | | T1o = Im[WS(rs, 9)]; |
59 | | T1p = T1n - T1o; |
60 | | T3x = T1n + T1o; |
61 | | } |
62 | | { |
63 | | E T4, T5, T1q, T1r; |
64 | | T4 = Rp[WS(rs, 5)]; |
65 | | T5 = Rm[WS(rs, 4)]; |
66 | | T6 = T4 + T5; |
67 | | T3y = T4 - T5; |
68 | | T1q = Ip[WS(rs, 5)]; |
69 | | T1r = Im[WS(rs, 4)]; |
70 | | T1s = T1q - T1r; |
71 | | T2V = T1q + T1r; |
72 | | } |
73 | | T7 = T3 + T6; |
74 | | T4e = T2U - T2V; |
75 | | T4z = T3y + T3x; |
76 | | TE = T3 - T6; |
77 | | T1t = T1p - T1s; |
78 | | T2W = T2U + T2V; |
79 | | T3z = T3x - T3y; |
80 | | T2l = T1p + T1s; |
81 | | } |
82 | | { |
83 | | E Te, T4f, T4p, TF, T1a, T2Z, T3o, T2b, TA, T4j, T4t, TJ, T12, T39, T3k; |
84 | | E T2f, Tl, T4g, T4q, TG, T1h, T32, T3r, T2c, Tt, T4i, T4s, TI, TV, T36; |
85 | | E T3h, T2e; |
86 | | { |
87 | | E Ta, T2X, T16, T3m, Td, T3n, T19, T2Y; |
88 | | { |
89 | | E T8, T9, T14, T15; |
90 | | T8 = Rp[WS(rs, 4)]; |
91 | | T9 = Rm[WS(rs, 5)]; |
92 | | Ta = T8 + T9; |
93 | | T2X = T8 - T9; |
94 | | T14 = Ip[WS(rs, 4)]; |
95 | | T15 = Im[WS(rs, 5)]; |
96 | | T16 = T14 - T15; |
97 | | T3m = T14 + T15; |
98 | | } |
99 | | { |
100 | | E Tb, Tc, T17, T18; |
101 | | Tb = Rp[WS(rs, 9)]; |
102 | | Tc = Rm[0]; |
103 | | Td = Tb + Tc; |
104 | | T3n = Tb - Tc; |
105 | | T17 = Ip[WS(rs, 9)]; |
106 | | T18 = Im[0]; |
107 | | T19 = T17 - T18; |
108 | | T2Y = T17 + T18; |
109 | | } |
110 | | Te = Ta + Td; |
111 | | T4f = T2X - T2Y; |
112 | | T4p = T3n + T3m; |
113 | | TF = Ta - Td; |
114 | | T1a = T16 - T19; |
115 | | T2Z = T2X + T2Y; |
116 | | T3o = T3m - T3n; |
117 | | T2b = T16 + T19; |
118 | | } |
119 | | { |
120 | | E Tw, T37, TY, T3j, Tz, T3i, T11, T38; |
121 | | { |
122 | | E Tu, Tv, TW, TX; |
123 | | Tu = Rm[WS(rs, 7)]; |
124 | | Tv = Rp[WS(rs, 2)]; |
125 | | Tw = Tu + Tv; |
126 | | T37 = Tu - Tv; |
127 | | TW = Ip[WS(rs, 2)]; |
128 | | TX = Im[WS(rs, 7)]; |
129 | | TY = TW - TX; |
130 | | T3j = TW + TX; |
131 | | } |
132 | | { |
133 | | E Tx, Ty, TZ, T10; |
134 | | Tx = Rm[WS(rs, 2)]; |
135 | | Ty = Rp[WS(rs, 7)]; |
136 | | Tz = Tx + Ty; |
137 | | T3i = Tx - Ty; |
138 | | TZ = Ip[WS(rs, 7)]; |
139 | | T10 = Im[WS(rs, 2)]; |
140 | | T11 = TZ - T10; |
141 | | T38 = TZ + T10; |
142 | | } |
143 | | TA = Tw + Tz; |
144 | | T4j = T37 + T38; |
145 | | T4t = T3i - T3j; |
146 | | TJ = Tw - Tz; |
147 | | T12 = TY - T11; |
148 | | T39 = T37 - T38; |
149 | | T3k = T3i + T3j; |
150 | | T2f = TY + T11; |
151 | | } |
152 | | { |
153 | | E Th, T30, T1d, T3q, Tk, T3p, T1g, T31; |
154 | | { |
155 | | E Tf, Tg, T1b, T1c; |
156 | | Tf = Rm[WS(rs, 3)]; |
157 | | Tg = Rp[WS(rs, 6)]; |
158 | | Th = Tf + Tg; |
159 | | T30 = Tf - Tg; |
160 | | T1b = Ip[WS(rs, 6)]; |
161 | | T1c = Im[WS(rs, 3)]; |
162 | | T1d = T1b - T1c; |
163 | | T3q = T1b + T1c; |
164 | | } |
165 | | { |
166 | | E Ti, Tj, T1e, T1f; |
167 | | Ti = Rp[WS(rs, 1)]; |
168 | | Tj = Rm[WS(rs, 8)]; |
169 | | Tk = Ti + Tj; |
170 | | T3p = Ti - Tj; |
171 | | T1e = Ip[WS(rs, 1)]; |
172 | | T1f = Im[WS(rs, 8)]; |
173 | | T1g = T1e - T1f; |
174 | | T31 = T1e + T1f; |
175 | | } |
176 | | Tl = Th + Tk; |
177 | | T4g = T30 - T31; |
178 | | T4q = T3p - T3q; |
179 | | TG = Th - Tk; |
180 | | T1h = T1d - T1g; |
181 | | T32 = T30 + T31; |
182 | | T3r = T3p + T3q; |
183 | | T2c = T1d + T1g; |
184 | | } |
185 | | { |
186 | | E Tp, T34, TR, T3f, Ts, T3g, TU, T35; |
187 | | { |
188 | | E Tn, To, TP, TQ; |
189 | | Tn = Rp[WS(rs, 8)]; |
190 | | To = Rm[WS(rs, 1)]; |
191 | | Tp = Tn + To; |
192 | | T34 = Tn - To; |
193 | | TP = Ip[WS(rs, 8)]; |
194 | | TQ = Im[WS(rs, 1)]; |
195 | | TR = TP - TQ; |
196 | | T3f = TP + TQ; |
197 | | } |
198 | | { |
199 | | E Tq, Tr, TS, TT; |
200 | | Tq = Rm[WS(rs, 6)]; |
201 | | Tr = Rp[WS(rs, 3)]; |
202 | | Ts = Tq + Tr; |
203 | | T3g = Tq - Tr; |
204 | | TS = Ip[WS(rs, 3)]; |
205 | | TT = Im[WS(rs, 6)]; |
206 | | TU = TS - TT; |
207 | | T35 = TS + TT; |
208 | | } |
209 | | Tt = Tp + Ts; |
210 | | T4i = T34 + T35; |
211 | | T4s = T3g + T3f; |
212 | | TI = Tp - Ts; |
213 | | TV = TR - TU; |
214 | | T36 = T34 - T35; |
215 | | T3h = T3f - T3g; |
216 | | T2e = TR + TU; |
217 | | } |
218 | | T13 = TV - T12; |
219 | | T3G = T36 - T39; |
220 | | T3H = T2Z - T32; |
221 | | T1i = T1a - T1h; |
222 | | T2g = T2e - T2f; |
223 | | T4H = T4i - T4j; |
224 | | T4G = T4f - T4g; |
225 | | T2d = T2b - T2c; |
226 | | T1B = TF - TG; |
227 | | T4u = T4s - T4t; |
228 | | T4r = T4p - T4q; |
229 | | T1A = TI - TJ; |
230 | | T2s = Te - Tl; |
231 | | T3l = T3h + T3k; |
232 | | T2t = Tt - TA; |
233 | | T3s = T3o + T3r; |
234 | | T2m = T2b + T2c; |
235 | | T2n = T2e + T2f; |
236 | | T2o = T2m + T2n; |
237 | | T1u = T1a + T1h; |
238 | | T1v = TV + T12; |
239 | | T1w = T1u + T1v; |
240 | | { |
241 | | E Tm, TB, TH, TK; |
242 | | Tm = Te + Tl; |
243 | | TB = Tt + TA; |
244 | | TC = Tm + TB; |
245 | | T29 = Tm - TB; |
246 | | { |
247 | | E T3A, T3B, T4h, T4k; |
248 | | T3A = T3o - T3r; |
249 | | T3B = T3h - T3k; |
250 | | T3C = T3A + T3B; |
251 | | T3E = T3A - T3B; |
252 | | T4h = T4f + T4g; |
253 | | T4k = T4i + T4j; |
254 | | T4l = T4h + T4k; |
255 | | T4n = T4h - T4k; |
256 | | } |
257 | | TH = TF + TG; |
258 | | TK = TI + TJ; |
259 | | TL = TH + TK; |
260 | | TN = TH - TK; |
261 | | { |
262 | | E T33, T3a, T4A, T4B; |
263 | | T33 = T2Z + T32; |
264 | | T3a = T36 + T39; |
265 | | T3b = T33 + T3a; |
266 | | T3d = T33 - T3a; |
267 | | T4A = T4p + T4q; |
268 | | T4B = T4s + T4t; |
269 | | T4C = T4A + T4B; |
270 | | T4E = T4A - T4B; |
271 | | } |
272 | | } |
273 | | } |
274 | | Rp[0] = T7 + TC; |
275 | | Rm[0] = T2l + T2o; |
276 | | { |
277 | | E T25, T21, T23, T24, T26, T22; |
278 | | T25 = T1t + T1w; |
279 | | T22 = TE + TL; |
280 | | T21 = W[18]; |
281 | | T23 = T21 * T22; |
282 | | T24 = W[19]; |
283 | | T26 = T24 * T22; |
284 | | Rp[WS(rs, 5)] = FNMS(T24, T25, T23); |
285 | | Rm[WS(rs, 5)] = FMA(T21, T25, T26); |
286 | | } |
287 | | { |
288 | | E T58, T5b, T59, T5c, T57, T5a; |
289 | | T58 = T4e + T4l; |
290 | | T5b = T4z + T4C; |
291 | | T57 = W[8]; |
292 | | T59 = T57 * T58; |
293 | | T5c = T57 * T5b; |
294 | | T5a = W[9]; |
295 | | Ip[WS(rs, 2)] = FNMS(T5a, T5b, T59); |
296 | | Im[WS(rs, 2)] = FMA(T5a, T58, T5c); |
297 | | } |
298 | | { |
299 | | E T48, T4b, T49, T4c, T47, T4a; |
300 | | T48 = T2W + T3b; |
301 | | T4b = T3z + T3C; |
302 | | T47 = W[28]; |
303 | | T49 = T47 * T48; |
304 | | T4c = T47 * T4b; |
305 | | T4a = W[29]; |
306 | | Ip[WS(rs, 7)] = FNMS(T4a, T4b, T49); |
307 | | Im[WS(rs, 7)] = FMA(T4a, T48, T4c); |
308 | | } |
309 | | { |
310 | | E T3u, T42, T3M, T3U, T3J, T45, T3P, T3Z; |
311 | | { |
312 | | E T3t, T3T, T3e, T3S, T3c; |
313 | | T3t = FNMS(KP618033988, T3s, T3l); |
314 | | T3T = FMA(KP618033988, T3l, T3s); |
315 | | T3c = FNMS(KP250000000, T3b, T2W); |
316 | | T3e = FNMS(KP559016994, T3d, T3c); |
317 | | T3S = FMA(KP559016994, T3d, T3c); |
318 | | T3u = FNMS(KP951056516, T3t, T3e); |
319 | | T42 = FMA(KP951056516, T3T, T3S); |
320 | | T3M = FMA(KP951056516, T3t, T3e); |
321 | | T3U = FNMS(KP951056516, T3T, T3S); |
322 | | } |
323 | | { |
324 | | E T3I, T3Y, T3F, T3X, T3D; |
325 | | T3I = FNMS(KP618033988, T3H, T3G); |
326 | | T3Y = FMA(KP618033988, T3G, T3H); |
327 | | T3D = FNMS(KP250000000, T3C, T3z); |
328 | | T3F = FNMS(KP559016994, T3E, T3D); |
329 | | T3X = FMA(KP559016994, T3E, T3D); |
330 | | T3J = FMA(KP951056516, T3I, T3F); |
331 | | T45 = FNMS(KP951056516, T3Y, T3X); |
332 | | T3P = FNMS(KP951056516, T3I, T3F); |
333 | | T3Z = FMA(KP951056516, T3Y, T3X); |
334 | | } |
335 | | { |
336 | | E T3v, T3K, T2T, T3w; |
337 | | T2T = W[4]; |
338 | | T3v = T2T * T3u; |
339 | | T3K = T2T * T3J; |
340 | | T3w = W[5]; |
341 | | Ip[WS(rs, 1)] = FNMS(T3w, T3J, T3v); |
342 | | Im[WS(rs, 1)] = FMA(T3w, T3u, T3K); |
343 | | } |
344 | | { |
345 | | E T43, T46, T41, T44; |
346 | | T41 = W[36]; |
347 | | T43 = T41 * T42; |
348 | | T46 = T41 * T45; |
349 | | T44 = W[37]; |
350 | | Ip[WS(rs, 9)] = FNMS(T44, T45, T43); |
351 | | Im[WS(rs, 9)] = FMA(T44, T42, T46); |
352 | | } |
353 | | { |
354 | | E T3N, T3Q, T3L, T3O; |
355 | | T3L = W[12]; |
356 | | T3N = T3L * T3M; |
357 | | T3Q = T3L * T3P; |
358 | | T3O = W[13]; |
359 | | Ip[WS(rs, 3)] = FNMS(T3O, T3P, T3N); |
360 | | Im[WS(rs, 3)] = FMA(T3O, T3M, T3Q); |
361 | | } |
362 | | { |
363 | | E T3V, T40, T3R, T3W; |
364 | | T3R = W[20]; |
365 | | T3V = T3R * T3U; |
366 | | T40 = T3R * T3Z; |
367 | | T3W = W[21]; |
368 | | Ip[WS(rs, 5)] = FNMS(T3W, T3Z, T3V); |
369 | | Im[WS(rs, 5)] = FMA(T3W, T3U, T40); |
370 | | } |
371 | | } |
372 | | { |
373 | | E T4w, T52, T4M, T4U, T4J, T55, T4P, T4Z; |
374 | | { |
375 | | E T4v, T4T, T4o, T4S, T4m; |
376 | | T4v = FMA(KP618033988, T4u, T4r); |
377 | | T4T = FNMS(KP618033988, T4r, T4u); |
378 | | T4m = FNMS(KP250000000, T4l, T4e); |
379 | | T4o = FMA(KP559016994, T4n, T4m); |
380 | | T4S = FNMS(KP559016994, T4n, T4m); |
381 | | T4w = FNMS(KP951056516, T4v, T4o); |
382 | | T52 = FMA(KP951056516, T4T, T4S); |
383 | | T4M = FMA(KP951056516, T4v, T4o); |
384 | | T4U = FNMS(KP951056516, T4T, T4S); |
385 | | } |
386 | | { |
387 | | E T4I, T4Y, T4F, T4X, T4D; |
388 | | T4I = FMA(KP618033988, T4H, T4G); |
389 | | T4Y = FNMS(KP618033988, T4G, T4H); |
390 | | T4D = FNMS(KP250000000, T4C, T4z); |
391 | | T4F = FMA(KP559016994, T4E, T4D); |
392 | | T4X = FNMS(KP559016994, T4E, T4D); |
393 | | T4J = FMA(KP951056516, T4I, T4F); |
394 | | T55 = FNMS(KP951056516, T4Y, T4X); |
395 | | T4P = FNMS(KP951056516, T4I, T4F); |
396 | | T4Z = FMA(KP951056516, T4Y, T4X); |
397 | | } |
398 | | { |
399 | | E T4x, T4K, T4d, T4y; |
400 | | T4d = W[0]; |
401 | | T4x = T4d * T4w; |
402 | | T4K = T4d * T4J; |
403 | | T4y = W[1]; |
404 | | Ip[0] = FNMS(T4y, T4J, T4x); |
405 | | Im[0] = FMA(T4y, T4w, T4K); |
406 | | } |
407 | | { |
408 | | E T53, T56, T51, T54; |
409 | | T51 = W[32]; |
410 | | T53 = T51 * T52; |
411 | | T56 = T51 * T55; |
412 | | T54 = W[33]; |
413 | | Ip[WS(rs, 8)] = FNMS(T54, T55, T53); |
414 | | Im[WS(rs, 8)] = FMA(T54, T52, T56); |
415 | | } |
416 | | { |
417 | | E T4N, T4Q, T4L, T4O; |
418 | | T4L = W[16]; |
419 | | T4N = T4L * T4M; |
420 | | T4Q = T4L * T4P; |
421 | | T4O = W[17]; |
422 | | Ip[WS(rs, 4)] = FNMS(T4O, T4P, T4N); |
423 | | Im[WS(rs, 4)] = FMA(T4O, T4M, T4Q); |
424 | | } |
425 | | { |
426 | | E T4V, T50, T4R, T4W; |
427 | | T4R = W[24]; |
428 | | T4V = T4R * T4U; |
429 | | T50 = T4R * T4Z; |
430 | | T4W = W[25]; |
431 | | Ip[WS(rs, 6)] = FNMS(T4W, T4Z, T4V); |
432 | | Im[WS(rs, 6)] = FMA(T4W, T4U, T50); |
433 | | } |
434 | | } |
435 | | { |
436 | | E T2u, T2K, T2r, T2J, T2i, T2O, T2y, T2G, T2p, T2q; |
437 | | T2u = FMA(KP618033988, T2t, T2s); |
438 | | T2K = FNMS(KP618033988, T2s, T2t); |
439 | | T2p = FNMS(KP250000000, T2o, T2l); |
440 | | T2q = T2m - T2n; |
441 | | T2r = FMA(KP559016994, T2q, T2p); |
442 | | T2J = FNMS(KP559016994, T2q, T2p); |
443 | | { |
444 | | E T2h, T2F, T2a, T2E, T28; |
445 | | T2h = FMA(KP618033988, T2g, T2d); |
446 | | T2F = FNMS(KP618033988, T2d, T2g); |
447 | | T28 = FNMS(KP250000000, TC, T7); |
448 | | T2a = FMA(KP559016994, T29, T28); |
449 | | T2E = FNMS(KP559016994, T29, T28); |
450 | | T2i = FMA(KP951056516, T2h, T2a); |
451 | | T2O = FMA(KP951056516, T2F, T2E); |
452 | | T2y = FNMS(KP951056516, T2h, T2a); |
453 | | T2G = FNMS(KP951056516, T2F, T2E); |
454 | | } |
455 | | { |
456 | | E T2v, T2k, T2w, T27, T2j; |
457 | | T2v = FNMS(KP951056516, T2u, T2r); |
458 | | T2k = W[7]; |
459 | | T2w = T2k * T2i; |
460 | | T27 = W[6]; |
461 | | T2j = T27 * T2i; |
462 | | Rp[WS(rs, 2)] = FNMS(T2k, T2v, T2j); |
463 | | Rm[WS(rs, 2)] = FMA(T27, T2v, T2w); |
464 | | } |
465 | | { |
466 | | E T2R, T2Q, T2S, T2N, T2P; |
467 | | T2R = FNMS(KP951056516, T2K, T2J); |
468 | | T2Q = W[23]; |
469 | | T2S = T2Q * T2O; |
470 | | T2N = W[22]; |
471 | | T2P = T2N * T2O; |
472 | | Rp[WS(rs, 6)] = FNMS(T2Q, T2R, T2P); |
473 | | Rm[WS(rs, 6)] = FMA(T2N, T2R, T2S); |
474 | | } |
475 | | { |
476 | | E T2B, T2A, T2C, T2x, T2z; |
477 | | T2B = FMA(KP951056516, T2u, T2r); |
478 | | T2A = W[31]; |
479 | | T2C = T2A * T2y; |
480 | | T2x = W[30]; |
481 | | T2z = T2x * T2y; |
482 | | Rp[WS(rs, 8)] = FNMS(T2A, T2B, T2z); |
483 | | Rm[WS(rs, 8)] = FMA(T2x, T2B, T2C); |
484 | | } |
485 | | { |
486 | | E T2L, T2I, T2M, T2D, T2H; |
487 | | T2L = FMA(KP951056516, T2K, T2J); |
488 | | T2I = W[15]; |
489 | | T2M = T2I * T2G; |
490 | | T2D = W[14]; |
491 | | T2H = T2D * T2G; |
492 | | Rp[WS(rs, 4)] = FNMS(T2I, T2L, T2H); |
493 | | Rm[WS(rs, 4)] = FMA(T2D, T2L, T2M); |
494 | | } |
495 | | } |
496 | | { |
497 | | E T1C, T1S, T1z, T1R, T1k, T1W, T1G, T1O, T1x, T1y; |
498 | | T1C = FNMS(KP618033988, T1B, T1A); |
499 | | T1S = FMA(KP618033988, T1A, T1B); |
500 | | T1x = FNMS(KP250000000, T1w, T1t); |
501 | | T1y = T1u - T1v; |
502 | | T1z = FNMS(KP559016994, T1y, T1x); |
503 | | T1R = FMA(KP559016994, T1y, T1x); |
504 | | { |
505 | | E T1j, T1N, TO, T1M, TM; |
506 | | T1j = FNMS(KP618033988, T1i, T13); |
507 | | T1N = FMA(KP618033988, T13, T1i); |
508 | | TM = FNMS(KP250000000, TL, TE); |
509 | | TO = FNMS(KP559016994, TN, TM); |
510 | | T1M = FMA(KP559016994, TN, TM); |
511 | | T1k = FMA(KP951056516, T1j, TO); |
512 | | T1W = FMA(KP951056516, T1N, T1M); |
513 | | T1G = FNMS(KP951056516, T1j, TO); |
514 | | T1O = FNMS(KP951056516, T1N, T1M); |
515 | | } |
516 | | { |
517 | | E T1D, T1m, T1E, TD, T1l; |
518 | | T1D = FNMS(KP951056516, T1C, T1z); |
519 | | T1m = W[3]; |
520 | | T1E = T1m * T1k; |
521 | | TD = W[2]; |
522 | | T1l = TD * T1k; |
523 | | Rp[WS(rs, 1)] = FNMS(T1m, T1D, T1l); |
524 | | Rm[WS(rs, 1)] = FMA(TD, T1D, T1E); |
525 | | } |
526 | | { |
527 | | E T1Z, T1Y, T20, T1V, T1X; |
528 | | T1Z = FNMS(KP951056516, T1S, T1R); |
529 | | T1Y = W[27]; |
530 | | T20 = T1Y * T1W; |
531 | | T1V = W[26]; |
532 | | T1X = T1V * T1W; |
533 | | Rp[WS(rs, 7)] = FNMS(T1Y, T1Z, T1X); |
534 | | Rm[WS(rs, 7)] = FMA(T1V, T1Z, T20); |
535 | | } |
536 | | { |
537 | | E T1J, T1I, T1K, T1F, T1H; |
538 | | T1J = FMA(KP951056516, T1C, T1z); |
539 | | T1I = W[35]; |
540 | | T1K = T1I * T1G; |
541 | | T1F = W[34]; |
542 | | T1H = T1F * T1G; |
543 | | Rp[WS(rs, 9)] = FNMS(T1I, T1J, T1H); |
544 | | Rm[WS(rs, 9)] = FMA(T1F, T1J, T1K); |
545 | | } |
546 | | { |
547 | | E T1T, T1Q, T1U, T1L, T1P; |
548 | | T1T = FMA(KP951056516, T1S, T1R); |
549 | | T1Q = W[11]; |
550 | | T1U = T1Q * T1O; |
551 | | T1L = W[10]; |
552 | | T1P = T1L * T1O; |
553 | | Rp[WS(rs, 3)] = FNMS(T1Q, T1T, T1P); |
554 | | Rm[WS(rs, 3)] = FMA(T1L, T1T, T1U); |
555 | | } |
556 | | } |
557 | | } |
558 | | } |
559 | | } |
560 | | |
561 | | static const tw_instr twinstr[] = { |
562 | | { TW_FULL, 1, 20 }, |
563 | | { TW_NEXT, 1, 0 } |
564 | | }; |
565 | | |
566 | | static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 136, 38, 110, 0 } }; |
567 | | |
568 | | void X(codelet_hc2cb_20) (planner *p) { |
569 | | X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT); |
570 | | } |
571 | | #else |
572 | | |
573 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 20 -dif -name hc2cb_20 -include rdft/scalar/hc2cb.h */ |
574 | | |
575 | | /* |
576 | | * This function contains 246 FP additions, 124 FP multiplications, |
577 | | * (or, 184 additions, 62 multiplications, 62 fused multiply/add), |
578 | | * 97 stack variables, 4 constants, and 80 memory accesses |
579 | | */ |
580 | | #include "rdft/scalar/hc2cb.h" |
581 | | |
582 | | static void hc2cb_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
583 | 0 | { |
584 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
585 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
586 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
587 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
588 | 0 | { |
589 | 0 | INT m; |
590 | 0 | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
591 | 0 | E T7, T3T, T49, TE, T1v, T2T, T3g, T2d, T13, T3n, T3o, T1i, T26, T4e, T4d; |
592 | 0 | E T23, T1n, T42, T3Z, T1m, T2h, T2I, T2i, T2P, T30, T37, T38, Tm, TB, TC; |
593 | 0 | E T46, T47, T4a, T2a, T2b, T2e, T1w, T1x, T1y, T3O, T3R, T3U, T3h, T3i, T3j; |
594 | 0 | E TH, TK, TL; |
595 | 0 | { |
596 | 0 | E T3, T2R, T1r, T3e, T6, T3f, T1u, T2S; |
597 | 0 | { |
598 | 0 | E T1, T2, T1p, T1q; |
599 | 0 | T1 = Rp[0]; |
600 | 0 | T2 = Rm[WS(rs, 9)]; |
601 | 0 | T3 = T1 + T2; |
602 | 0 | T2R = T1 - T2; |
603 | 0 | T1p = Ip[0]; |
604 | 0 | T1q = Im[WS(rs, 9)]; |
605 | 0 | T1r = T1p - T1q; |
606 | 0 | T3e = T1p + T1q; |
607 | 0 | } |
608 | 0 | { |
609 | 0 | E T4, T5, T1s, T1t; |
610 | 0 | T4 = Rp[WS(rs, 5)]; |
611 | 0 | T5 = Rm[WS(rs, 4)]; |
612 | 0 | T6 = T4 + T5; |
613 | 0 | T3f = T4 - T5; |
614 | 0 | T1s = Ip[WS(rs, 5)]; |
615 | 0 | T1t = Im[WS(rs, 4)]; |
616 | 0 | T1u = T1s - T1t; |
617 | 0 | T2S = T1s + T1t; |
618 | 0 | } |
619 | 0 | T7 = T3 + T6; |
620 | 0 | T3T = T2R - T2S; |
621 | 0 | T49 = T3f + T3e; |
622 | 0 | TE = T3 - T6; |
623 | 0 | T1v = T1r - T1u; |
624 | 0 | T2T = T2R + T2S; |
625 | 0 | T3g = T3e - T3f; |
626 | 0 | T2d = T1r + T1u; |
627 | 0 | } |
628 | 0 | { |
629 | 0 | E Te, T3M, T3X, TF, TV, T2E, T2W, T21, TA, T3Q, T41, TJ, T1h, T2O, T36; |
630 | 0 | E T25, Tl, T3N, T3Y, TG, T12, T2H, T2Z, T22, Tt, T3P, T40, TI, T1a, T2L; |
631 | 0 | E T33, T24; |
632 | 0 | { |
633 | 0 | E Ta, T2U, TR, T2C, Td, T2D, TU, T2V; |
634 | 0 | { |
635 | 0 | E T8, T9, TP, TQ; |
636 | 0 | T8 = Rp[WS(rs, 4)]; |
637 | 0 | T9 = Rm[WS(rs, 5)]; |
638 | 0 | Ta = T8 + T9; |
639 | 0 | T2U = T8 - T9; |
640 | 0 | TP = Ip[WS(rs, 4)]; |
641 | 0 | TQ = Im[WS(rs, 5)]; |
642 | 0 | TR = TP - TQ; |
643 | 0 | T2C = TP + TQ; |
644 | 0 | } |
645 | 0 | { |
646 | 0 | E Tb, Tc, TS, TT; |
647 | 0 | Tb = Rp[WS(rs, 9)]; |
648 | 0 | Tc = Rm[0]; |
649 | 0 | Td = Tb + Tc; |
650 | 0 | T2D = Tb - Tc; |
651 | 0 | TS = Ip[WS(rs, 9)]; |
652 | 0 | TT = Im[0]; |
653 | 0 | TU = TS - TT; |
654 | 0 | T2V = TS + TT; |
655 | 0 | } |
656 | 0 | Te = Ta + Td; |
657 | 0 | T3M = T2U - T2V; |
658 | 0 | T3X = T2D + T2C; |
659 | 0 | TF = Ta - Td; |
660 | 0 | TV = TR - TU; |
661 | 0 | T2E = T2C - T2D; |
662 | 0 | T2W = T2U + T2V; |
663 | 0 | T21 = TR + TU; |
664 | 0 | } |
665 | 0 | { |
666 | 0 | E Tw, T34, T1d, T2N, Tz, T2M, T1g, T35; |
667 | 0 | { |
668 | 0 | E Tu, Tv, T1b, T1c; |
669 | 0 | Tu = Rm[WS(rs, 7)]; |
670 | 0 | Tv = Rp[WS(rs, 2)]; |
671 | 0 | Tw = Tu + Tv; |
672 | 0 | T34 = Tu - Tv; |
673 | 0 | T1b = Ip[WS(rs, 2)]; |
674 | 0 | T1c = Im[WS(rs, 7)]; |
675 | 0 | T1d = T1b - T1c; |
676 | 0 | T2N = T1b + T1c; |
677 | 0 | } |
678 | 0 | { |
679 | 0 | E Tx, Ty, T1e, T1f; |
680 | 0 | Tx = Rm[WS(rs, 2)]; |
681 | 0 | Ty = Rp[WS(rs, 7)]; |
682 | 0 | Tz = Tx + Ty; |
683 | 0 | T2M = Tx - Ty; |
684 | 0 | T1e = Ip[WS(rs, 7)]; |
685 | 0 | T1f = Im[WS(rs, 2)]; |
686 | 0 | T1g = T1e - T1f; |
687 | 0 | T35 = T1e + T1f; |
688 | 0 | } |
689 | 0 | TA = Tw + Tz; |
690 | 0 | T3Q = T34 + T35; |
691 | 0 | T41 = T2M - T2N; |
692 | 0 | TJ = Tw - Tz; |
693 | 0 | T1h = T1d - T1g; |
694 | 0 | T2O = T2M + T2N; |
695 | 0 | T36 = T34 - T35; |
696 | 0 | T25 = T1d + T1g; |
697 | 0 | } |
698 | 0 | { |
699 | 0 | E Th, T2X, TY, T2G, Tk, T2F, T11, T2Y; |
700 | 0 | { |
701 | 0 | E Tf, Tg, TW, TX; |
702 | 0 | Tf = Rm[WS(rs, 3)]; |
703 | 0 | Tg = Rp[WS(rs, 6)]; |
704 | 0 | Th = Tf + Tg; |
705 | 0 | T2X = Tf - Tg; |
706 | 0 | TW = Ip[WS(rs, 6)]; |
707 | 0 | TX = Im[WS(rs, 3)]; |
708 | 0 | TY = TW - TX; |
709 | 0 | T2G = TW + TX; |
710 | 0 | } |
711 | 0 | { |
712 | 0 | E Ti, Tj, TZ, T10; |
713 | 0 | Ti = Rp[WS(rs, 1)]; |
714 | 0 | Tj = Rm[WS(rs, 8)]; |
715 | 0 | Tk = Ti + Tj; |
716 | 0 | T2F = Ti - Tj; |
717 | 0 | TZ = Ip[WS(rs, 1)]; |
718 | 0 | T10 = Im[WS(rs, 8)]; |
719 | 0 | T11 = TZ - T10; |
720 | 0 | T2Y = TZ + T10; |
721 | 0 | } |
722 | 0 | Tl = Th + Tk; |
723 | 0 | T3N = T2X - T2Y; |
724 | 0 | T3Y = T2F - T2G; |
725 | 0 | TG = Th - Tk; |
726 | 0 | T12 = TY - T11; |
727 | 0 | T2H = T2F + T2G; |
728 | 0 | T2Z = T2X + T2Y; |
729 | 0 | T22 = TY + T11; |
730 | 0 | } |
731 | 0 | { |
732 | 0 | E Tp, T31, T16, T2J, Ts, T2K, T19, T32; |
733 | 0 | { |
734 | 0 | E Tn, To, T14, T15; |
735 | 0 | Tn = Rp[WS(rs, 8)]; |
736 | 0 | To = Rm[WS(rs, 1)]; |
737 | 0 | Tp = Tn + To; |
738 | 0 | T31 = Tn - To; |
739 | 0 | T14 = Ip[WS(rs, 8)]; |
740 | 0 | T15 = Im[WS(rs, 1)]; |
741 | 0 | T16 = T14 - T15; |
742 | 0 | T2J = T14 + T15; |
743 | 0 | } |
744 | 0 | { |
745 | 0 | E Tq, Tr, T17, T18; |
746 | 0 | Tq = Rm[WS(rs, 6)]; |
747 | 0 | Tr = Rp[WS(rs, 3)]; |
748 | 0 | Ts = Tq + Tr; |
749 | 0 | T2K = Tq - Tr; |
750 | 0 | T17 = Ip[WS(rs, 3)]; |
751 | 0 | T18 = Im[WS(rs, 6)]; |
752 | 0 | T19 = T17 - T18; |
753 | 0 | T32 = T17 + T18; |
754 | 0 | } |
755 | 0 | Tt = Tp + Ts; |
756 | 0 | T3P = T31 + T32; |
757 | 0 | T40 = T2K + T2J; |
758 | 0 | TI = Tp - Ts; |
759 | 0 | T1a = T16 - T19; |
760 | 0 | T2L = T2J - T2K; |
761 | 0 | T33 = T31 - T32; |
762 | 0 | T24 = T16 + T19; |
763 | 0 | } |
764 | 0 | T13 = TV - T12; |
765 | 0 | T3n = T2W - T2Z; |
766 | 0 | T3o = T33 - T36; |
767 | 0 | T1i = T1a - T1h; |
768 | 0 | T26 = T24 - T25; |
769 | 0 | T4e = T3P - T3Q; |
770 | 0 | T4d = T3M - T3N; |
771 | 0 | T23 = T21 - T22; |
772 | 0 | T1n = TI - TJ; |
773 | 0 | T42 = T40 - T41; |
774 | 0 | T3Z = T3X - T3Y; |
775 | 0 | T1m = TF - TG; |
776 | 0 | T2h = Te - Tl; |
777 | 0 | T2I = T2E + T2H; |
778 | 0 | T2i = Tt - TA; |
779 | 0 | T2P = T2L + T2O; |
780 | 0 | T30 = T2W + T2Z; |
781 | 0 | T37 = T33 + T36; |
782 | 0 | T38 = T30 + T37; |
783 | 0 | Tm = Te + Tl; |
784 | 0 | TB = Tt + TA; |
785 | 0 | TC = Tm + TB; |
786 | 0 | T46 = T3X + T3Y; |
787 | 0 | T47 = T40 + T41; |
788 | 0 | T4a = T46 + T47; |
789 | 0 | T2a = T21 + T22; |
790 | 0 | T2b = T24 + T25; |
791 | 0 | T2e = T2a + T2b; |
792 | 0 | T1w = TV + T12; |
793 | 0 | T1x = T1a + T1h; |
794 | 0 | T1y = T1w + T1x; |
795 | 0 | T3O = T3M + T3N; |
796 | 0 | T3R = T3P + T3Q; |
797 | 0 | T3U = T3O + T3R; |
798 | 0 | T3h = T2E - T2H; |
799 | 0 | T3i = T2L - T2O; |
800 | 0 | T3j = T3h + T3i; |
801 | 0 | TH = TF + TG; |
802 | 0 | TK = TI + TJ; |
803 | 0 | TL = TH + TK; |
804 | 0 | } |
805 | 0 | Rp[0] = T7 + TC; |
806 | 0 | Rm[0] = T2d + T2e; |
807 | 0 | { |
808 | 0 | E T1U, T1W, T1T, T1V; |
809 | 0 | T1U = TE + TL; |
810 | 0 | T1W = T1v + T1y; |
811 | 0 | T1T = W[18]; |
812 | 0 | T1V = W[19]; |
813 | 0 | Rp[WS(rs, 5)] = FNMS(T1V, T1W, T1T * T1U); |
814 | 0 | Rm[WS(rs, 5)] = FMA(T1V, T1U, T1T * T1W); |
815 | 0 | } |
816 | 0 | { |
817 | 0 | E T4y, T4A, T4x, T4z; |
818 | 0 | T4y = T3T + T3U; |
819 | 0 | T4A = T49 + T4a; |
820 | 0 | T4x = W[8]; |
821 | 0 | T4z = W[9]; |
822 | 0 | Ip[WS(rs, 2)] = FNMS(T4z, T4A, T4x * T4y); |
823 | 0 | Im[WS(rs, 2)] = FMA(T4x, T4A, T4z * T4y); |
824 | 0 | } |
825 | 0 | { |
826 | 0 | E T3I, T3K, T3H, T3J; |
827 | 0 | T3I = T2T + T38; |
828 | 0 | T3K = T3g + T3j; |
829 | 0 | T3H = W[28]; |
830 | 0 | T3J = W[29]; |
831 | 0 | Ip[WS(rs, 7)] = FNMS(T3J, T3K, T3H * T3I); |
832 | 0 | Im[WS(rs, 7)] = FMA(T3H, T3K, T3J * T3I); |
833 | 0 | } |
834 | 0 | { |
835 | 0 | E T27, T2j, T2v, T2r, T2g, T2u, T20, T2q; |
836 | 0 | T27 = FMA(KP951056516, T23, KP587785252 * T26); |
837 | 0 | T2j = FMA(KP951056516, T2h, KP587785252 * T2i); |
838 | 0 | T2v = FNMS(KP951056516, T2i, KP587785252 * T2h); |
839 | 0 | T2r = FNMS(KP951056516, T26, KP587785252 * T23); |
840 | 0 | { |
841 | 0 | E T2c, T2f, T1Y, T1Z; |
842 | 0 | T2c = KP559016994 * (T2a - T2b); |
843 | 0 | T2f = FNMS(KP250000000, T2e, T2d); |
844 | 0 | T2g = T2c + T2f; |
845 | 0 | T2u = T2f - T2c; |
846 | 0 | T1Y = KP559016994 * (Tm - TB); |
847 | 0 | T1Z = FNMS(KP250000000, TC, T7); |
848 | 0 | T20 = T1Y + T1Z; |
849 | 0 | T2q = T1Z - T1Y; |
850 | 0 | } |
851 | 0 | { |
852 | 0 | E T28, T2k, T1X, T29; |
853 | 0 | T28 = T20 + T27; |
854 | 0 | T2k = T2g - T2j; |
855 | 0 | T1X = W[6]; |
856 | 0 | T29 = W[7]; |
857 | 0 | Rp[WS(rs, 2)] = FNMS(T29, T2k, T1X * T28); |
858 | 0 | Rm[WS(rs, 2)] = FMA(T29, T28, T1X * T2k); |
859 | 0 | } |
860 | 0 | { |
861 | 0 | E T2y, T2A, T2x, T2z; |
862 | 0 | T2y = T2q - T2r; |
863 | 0 | T2A = T2v + T2u; |
864 | 0 | T2x = W[22]; |
865 | 0 | T2z = W[23]; |
866 | 0 | Rp[WS(rs, 6)] = FNMS(T2z, T2A, T2x * T2y); |
867 | 0 | Rm[WS(rs, 6)] = FMA(T2z, T2y, T2x * T2A); |
868 | 0 | } |
869 | 0 | { |
870 | 0 | E T2m, T2o, T2l, T2n; |
871 | 0 | T2m = T20 - T27; |
872 | 0 | T2o = T2j + T2g; |
873 | 0 | T2l = W[30]; |
874 | 0 | T2n = W[31]; |
875 | 0 | Rp[WS(rs, 8)] = FNMS(T2n, T2o, T2l * T2m); |
876 | 0 | Rm[WS(rs, 8)] = FMA(T2n, T2m, T2l * T2o); |
877 | 0 | } |
878 | 0 | { |
879 | 0 | E T2s, T2w, T2p, T2t; |
880 | 0 | T2s = T2q + T2r; |
881 | 0 | T2w = T2u - T2v; |
882 | 0 | T2p = W[14]; |
883 | 0 | T2t = W[15]; |
884 | 0 | Rp[WS(rs, 4)] = FNMS(T2t, T2w, T2p * T2s); |
885 | 0 | Rm[WS(rs, 4)] = FMA(T2t, T2s, T2p * T2w); |
886 | 0 | } |
887 | 0 | } |
888 | 0 | { |
889 | 0 | E T43, T4f, T4r, T4m, T4c, T4q, T3W, T4n; |
890 | 0 | T43 = FMA(KP951056516, T3Z, KP587785252 * T42); |
891 | 0 | T4f = FMA(KP951056516, T4d, KP587785252 * T4e); |
892 | 0 | T4r = FNMS(KP951056516, T4e, KP587785252 * T4d); |
893 | 0 | T4m = FNMS(KP951056516, T42, KP587785252 * T3Z); |
894 | 0 | { |
895 | 0 | E T48, T4b, T3S, T3V; |
896 | 0 | T48 = KP559016994 * (T46 - T47); |
897 | 0 | T4b = FNMS(KP250000000, T4a, T49); |
898 | 0 | T4c = T48 + T4b; |
899 | 0 | T4q = T4b - T48; |
900 | 0 | T3S = KP559016994 * (T3O - T3R); |
901 | 0 | T3V = FNMS(KP250000000, T3U, T3T); |
902 | 0 | T3W = T3S + T3V; |
903 | 0 | T4n = T3V - T3S; |
904 | 0 | } |
905 | 0 | { |
906 | 0 | E T44, T4g, T3L, T45; |
907 | 0 | T44 = T3W - T43; |
908 | 0 | T4g = T4c + T4f; |
909 | 0 | T3L = W[0]; |
910 | 0 | T45 = W[1]; |
911 | 0 | Ip[0] = FNMS(T45, T4g, T3L * T44); |
912 | 0 | Im[0] = FMA(T3L, T4g, T45 * T44); |
913 | 0 | } |
914 | 0 | { |
915 | 0 | E T4u, T4w, T4t, T4v; |
916 | 0 | T4u = T4n - T4m; |
917 | 0 | T4w = T4q + T4r; |
918 | 0 | T4t = W[32]; |
919 | 0 | T4v = W[33]; |
920 | 0 | Ip[WS(rs, 8)] = FNMS(T4v, T4w, T4t * T4u); |
921 | 0 | Im[WS(rs, 8)] = FMA(T4t, T4w, T4v * T4u); |
922 | 0 | } |
923 | 0 | { |
924 | 0 | E T4i, T4k, T4h, T4j; |
925 | 0 | T4i = T43 + T3W; |
926 | 0 | T4k = T4c - T4f; |
927 | 0 | T4h = W[16]; |
928 | 0 | T4j = W[17]; |
929 | 0 | Ip[WS(rs, 4)] = FNMS(T4j, T4k, T4h * T4i); |
930 | 0 | Im[WS(rs, 4)] = FMA(T4h, T4k, T4j * T4i); |
931 | 0 | } |
932 | 0 | { |
933 | 0 | E T4o, T4s, T4l, T4p; |
934 | 0 | T4o = T4m + T4n; |
935 | 0 | T4s = T4q - T4r; |
936 | 0 | T4l = W[24]; |
937 | 0 | T4p = W[25]; |
938 | 0 | Ip[WS(rs, 6)] = FNMS(T4p, T4s, T4l * T4o); |
939 | 0 | Im[WS(rs, 6)] = FMA(T4l, T4s, T4p * T4o); |
940 | 0 | } |
941 | 0 | } |
942 | 0 | { |
943 | 0 | E T1j, T1o, T1M, T1J, T1B, T1N, TO, T1I; |
944 | 0 | T1j = FNMS(KP951056516, T1i, KP587785252 * T13); |
945 | 0 | T1o = FNMS(KP951056516, T1n, KP587785252 * T1m); |
946 | 0 | T1M = FMA(KP951056516, T1m, KP587785252 * T1n); |
947 | 0 | T1J = FMA(KP951056516, T13, KP587785252 * T1i); |
948 | 0 | { |
949 | 0 | E T1z, T1A, TM, TN; |
950 | 0 | T1z = FNMS(KP250000000, T1y, T1v); |
951 | 0 | T1A = KP559016994 * (T1w - T1x); |
952 | 0 | T1B = T1z - T1A; |
953 | 0 | T1N = T1A + T1z; |
954 | 0 | TM = FNMS(KP250000000, TL, TE); |
955 | 0 | TN = KP559016994 * (TH - TK); |
956 | 0 | TO = TM - TN; |
957 | 0 | T1I = TN + TM; |
958 | 0 | } |
959 | 0 | { |
960 | 0 | E T1k, T1C, TD, T1l; |
961 | 0 | T1k = TO - T1j; |
962 | 0 | T1C = T1o + T1B; |
963 | 0 | TD = W[2]; |
964 | 0 | T1l = W[3]; |
965 | 0 | Rp[WS(rs, 1)] = FNMS(T1l, T1C, TD * T1k); |
966 | 0 | Rm[WS(rs, 1)] = FMA(T1l, T1k, TD * T1C); |
967 | 0 | } |
968 | 0 | { |
969 | 0 | E T1Q, T1S, T1P, T1R; |
970 | 0 | T1Q = T1I + T1J; |
971 | 0 | T1S = T1N - T1M; |
972 | 0 | T1P = W[26]; |
973 | 0 | T1R = W[27]; |
974 | 0 | Rp[WS(rs, 7)] = FNMS(T1R, T1S, T1P * T1Q); |
975 | 0 | Rm[WS(rs, 7)] = FMA(T1R, T1Q, T1P * T1S); |
976 | 0 | } |
977 | 0 | { |
978 | 0 | E T1E, T1G, T1D, T1F; |
979 | 0 | T1E = TO + T1j; |
980 | 0 | T1G = T1B - T1o; |
981 | 0 | T1D = W[34]; |
982 | 0 | T1F = W[35]; |
983 | 0 | Rp[WS(rs, 9)] = FNMS(T1F, T1G, T1D * T1E); |
984 | 0 | Rm[WS(rs, 9)] = FMA(T1F, T1E, T1D * T1G); |
985 | 0 | } |
986 | 0 | { |
987 | 0 | E T1K, T1O, T1H, T1L; |
988 | 0 | T1K = T1I - T1J; |
989 | 0 | T1O = T1M + T1N; |
990 | 0 | T1H = W[10]; |
991 | 0 | T1L = W[11]; |
992 | 0 | Rp[WS(rs, 3)] = FNMS(T1L, T1O, T1H * T1K); |
993 | 0 | Rm[WS(rs, 3)] = FMA(T1L, T1K, T1H * T1O); |
994 | 0 | } |
995 | 0 | } |
996 | 0 | { |
997 | 0 | E T2Q, T3p, T3B, T3x, T3m, T3A, T3b, T3w; |
998 | 0 | T2Q = FNMS(KP951056516, T2P, KP587785252 * T2I); |
999 | 0 | T3p = FNMS(KP951056516, T3o, KP587785252 * T3n); |
1000 | 0 | T3B = FMA(KP951056516, T3n, KP587785252 * T3o); |
1001 | 0 | T3x = FMA(KP951056516, T2I, KP587785252 * T2P); |
1002 | 0 | { |
1003 | 0 | E T3k, T3l, T39, T3a; |
1004 | 0 | T3k = FNMS(KP250000000, T3j, T3g); |
1005 | 0 | T3l = KP559016994 * (T3h - T3i); |
1006 | 0 | T3m = T3k - T3l; |
1007 | 0 | T3A = T3l + T3k; |
1008 | 0 | T39 = FNMS(KP250000000, T38, T2T); |
1009 | 0 | T3a = KP559016994 * (T30 - T37); |
1010 | 0 | T3b = T39 - T3a; |
1011 | 0 | T3w = T3a + T39; |
1012 | 0 | } |
1013 | 0 | { |
1014 | 0 | E T3c, T3q, T2B, T3d; |
1015 | 0 | T3c = T2Q + T3b; |
1016 | 0 | T3q = T3m - T3p; |
1017 | 0 | T2B = W[4]; |
1018 | 0 | T3d = W[5]; |
1019 | 0 | Ip[WS(rs, 1)] = FNMS(T3d, T3q, T2B * T3c); |
1020 | 0 | Im[WS(rs, 1)] = FMA(T2B, T3q, T3d * T3c); |
1021 | 0 | } |
1022 | 0 | { |
1023 | 0 | E T3E, T3G, T3D, T3F; |
1024 | 0 | T3E = T3x + T3w; |
1025 | 0 | T3G = T3A - T3B; |
1026 | 0 | T3D = W[36]; |
1027 | 0 | T3F = W[37]; |
1028 | 0 | Ip[WS(rs, 9)] = FNMS(T3F, T3G, T3D * T3E); |
1029 | 0 | Im[WS(rs, 9)] = FMA(T3D, T3G, T3F * T3E); |
1030 | 0 | } |
1031 | 0 | { |
1032 | 0 | E T3s, T3u, T3r, T3t; |
1033 | 0 | T3s = T3b - T2Q; |
1034 | 0 | T3u = T3m + T3p; |
1035 | 0 | T3r = W[12]; |
1036 | 0 | T3t = W[13]; |
1037 | 0 | Ip[WS(rs, 3)] = FNMS(T3t, T3u, T3r * T3s); |
1038 | 0 | Im[WS(rs, 3)] = FMA(T3r, T3u, T3t * T3s); |
1039 | 0 | } |
1040 | 0 | { |
1041 | 0 | E T3y, T3C, T3v, T3z; |
1042 | 0 | T3y = T3w - T3x; |
1043 | 0 | T3C = T3A + T3B; |
1044 | 0 | T3v = W[20]; |
1045 | 0 | T3z = W[21]; |
1046 | 0 | Ip[WS(rs, 5)] = FNMS(T3z, T3C, T3v * T3y); |
1047 | 0 | Im[WS(rs, 5)] = FMA(T3v, T3C, T3z * T3y); |
1048 | 0 | } |
1049 | 0 | } |
1050 | 0 | } |
1051 | 0 | } |
1052 | 0 | } |
1053 | | |
1054 | | static const tw_instr twinstr[] = { |
1055 | | { TW_FULL, 1, 20 }, |
1056 | | { TW_NEXT, 1, 0 } |
1057 | | }; |
1058 | | |
1059 | | static const hc2c_desc desc = { 20, "hc2cb_20", twinstr, &GENUS, { 184, 62, 62, 0 } }; |
1060 | | |
1061 | 1 | void X(codelet_hc2cb_20) (planner *p) { |
1062 | 1 | X(khc2c_register) (p, hc2cb_20, &desc, HC2C_VIA_RDFT); |
1063 | 1 | } |
1064 | | #endif |