Coverage Report

Created: 2025-08-26 06:35

/src/fftw3/rdft/scalar/r2cb/r2cb_9.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Aug 26 06:33:55 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 32 FP additions, 24 FP multiplications,
32
 * (or, 8 additions, 0 multiplications, 24 fused multiply/add),
33
 * 35 stack variables, 12 constants, and 18 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
40
     DK(KP1_969615506, +1.969615506024416118733486049179046027341286503);
41
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
42
     DK(KP176326980, +0.176326980708464973471090386868618986121633062);
43
     DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
44
     DK(KP1_532088886, +1.532088886237956070404785301110833347871664914);
45
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
46
     DK(KP839099631, +0.839099631177280011763127298123181364687434283);
47
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
50
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
51
     {
52
    INT i;
53
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
54
         E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw;
55
         {
56
        E Ta, T1, T2, T9;
57
        Ta = Ci[WS(csi, 3)];
58
        T1 = Cr[0];
59
        T2 = Cr[WS(csr, 3)];
60
        T9 = T1 - T2;
61
        T3 = FMA(KP2_000000000, T2, T1);
62
        Tp = FMA(KP1_732050807, Ta, T9);
63
        Tb = FNMS(KP1_732050807, Ta, T9);
64
         }
65
         {
66
        E T4, T7, Tk, Tf, Tj, Tc;
67
        T4 = Cr[WS(csr, 1)];
68
        Th = Ci[WS(csi, 1)];
69
        {
70
       E T5, T6, Td, Te;
71
       T5 = Cr[WS(csr, 4)];
72
       T6 = Cr[WS(csr, 2)];
73
       T7 = T5 + T6;
74
       Tk = T6 - T5;
75
       Td = Ci[WS(csi, 4)];
76
       Te = Ci[WS(csi, 2)];
77
       Tf = Td + Te;
78
       Ti = Td - Te;
79
        }
80
        T8 = T4 + T7;
81
        Tj = FNMS(KP500000000, Ti, Th);
82
        Tl = FNMS(KP866025403, Tk, Tj);
83
        Tq = FMA(KP866025403, Tk, Tj);
84
        Tc = FNMS(KP500000000, T7, T4);
85
        Tg = FNMS(KP866025403, Tf, Tc);
86
        Tr = FMA(KP866025403, Tf, Tc);
87
         }
88
         R0[0] = FMA(KP2_000000000, T8, T3);
89
         Tv = T3 - T8;
90
         Tw = Ti + Th;
91
         R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv);
92
         R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv);
93
         {
94
        E To, Tm, Tn, Tu, Ts, Tt;
95
        To = FMA(KP839099631, Tg, Tl);
96
        Tm = FNMS(KP839099631, Tl, Tg);
97
        Tn = FNMS(KP766044443, Tm, Tb);
98
        R1[0] = FMA(KP1_532088886, Tm, Tb);
99
        R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn);
100
        R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn);
101
        Tu = FMA(KP176326980, Tq, Tr);
102
        Ts = FNMS(KP176326980, Tr, Tq);
103
        Tt = FMA(KP984807753, Ts, Tp);
104
        R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp);
105
        R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt);
106
        R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt);
107
         }
108
    }
109
     }
110
}
111
112
static const kr2c_desc desc = { 9, "r2cb_9", { 8, 0, 24, 0 }, &GENUS };
113
114
void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc);
115
}
116
117
#else
118
119
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */
120
121
/*
122
 * This function contains 32 FP additions, 18 FP multiplications,
123
 * (or, 22 additions, 8 multiplications, 10 fused multiply/add),
124
 * 35 stack variables, 12 constants, and 18 memory accesses
125
 */
126
#include "rdft/scalar/r2cb.h"
127
128
static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
129
0
{
130
0
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
131
0
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
132
0
     DK(KP300767466, +0.300767466360870593278543795225003852144476517);
133
0
     DK(KP1_705737063, +1.705737063904886419256501927880148143872040591);
134
0
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
135
0
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
136
0
     DK(KP1_326827896, +1.326827896337876792410842639271782594433726619);
137
0
     DK(KP1_113340798, +1.113340798452838732905825904094046265936583811);
138
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
139
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
140
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
141
0
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
142
0
     {
143
0
    INT i;
144
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) {
145
0
         E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx;
146
0
         {
147
0
        E Tb, T1, T2, T9, Ta;
148
0
        Ta = Ci[WS(csi, 3)];
149
0
        Tb = KP1_732050807 * Ta;
150
0
        T1 = Cr[0];
151
0
        T2 = Cr[WS(csr, 3)];
152
0
        T9 = T1 - T2;
153
0
        T3 = FMA(KP2_000000000, T2, T1);
154
0
        Tq = T9 + Tb;
155
0
        Tc = T9 - Tb;
156
0
         }
157
0
         {
158
0
        E T4, T7, Ti, Tg, Tl, Td;
159
0
        T4 = Cr[WS(csr, 1)];
160
0
        Tk = Ci[WS(csi, 1)];
161
0
        {
162
0
       E T5, T6, Te, Tf;
163
0
       T5 = Cr[WS(csr, 4)];
164
0
       T6 = Cr[WS(csr, 2)];
165
0
       T7 = T5 + T6;
166
0
       Ti = KP866025403 * (T5 - T6);
167
0
       Te = Ci[WS(csi, 4)];
168
0
       Tf = Ci[WS(csi, 2)];
169
0
       Tg = KP866025403 * (Te + Tf);
170
0
       Tj = Tf - Te;
171
0
        }
172
0
        T8 = T4 + T7;
173
0
        Tl = FMA(KP500000000, Tj, Tk);
174
0
        Tm = Ti + Tl;
175
0
        Ts = Tl - Ti;
176
0
        Td = FNMS(KP500000000, T7, T4);
177
0
        Th = Td - Tg;
178
0
        Tr = Td + Tg;
179
0
         }
180
0
         R0[0] = FMA(KP2_000000000, T8, T3);
181
0
         Tw = T3 - T8;
182
0
         Tx = KP1_732050807 * (Tk - Tj);
183
0
         R1[WS(rs, 1)] = Tw - Tx;
184
0
         R0[WS(rs, 3)] = Tw + Tx;
185
0
         {
186
0
        E Tp, Tn, To, Tv, Tt, Tu;
187
0
        Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm);
188
0
        Tn = FNMS(KP642787609, Tm, KP766044443 * Th);
189
0
        To = Tc - Tn;
190
0
        R1[0] = FMA(KP2_000000000, Tn, Tc);
191
0
        R1[WS(rs, 3)] = To + Tp;
192
0
        R0[WS(rs, 2)] = To - Tp;
193
0
        Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts);
194
0
        Tt = FNMS(KP984807753, Ts, KP173648177 * Tr);
195
0
        Tu = Tq - Tt;
196
0
        R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq);
197
0
        R0[WS(rs, 4)] = Tu + Tv;
198
0
        R1[WS(rs, 2)] = Tu - Tv;
199
0
         }
200
0
    }
201
0
     }
202
0
}
203
204
static const kr2c_desc desc = { 9, "r2cb_9", { 22, 8, 10, 0 }, &GENUS };
205
206
1
void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc);
207
1
}
208
209
#endif