/src/fftw3/rdft/scalar/r2cb/r2cb_9.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Aug 26 06:33:55 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 32 FP additions, 24 FP multiplications, |
32 | | * (or, 8 additions, 0 multiplications, 24 fused multiply/add), |
33 | | * 35 stack variables, 12 constants, and 18 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); |
40 | | DK(KP1_969615506, +1.969615506024416118733486049179046027341286503); |
41 | | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
42 | | DK(KP176326980, +0.176326980708464973471090386868618986121633062); |
43 | | DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); |
44 | | DK(KP1_532088886, +1.532088886237956070404785301110833347871664914); |
45 | | DK(KP766044443, +0.766044443118978035202392650555416673935832457); |
46 | | DK(KP839099631, +0.839099631177280011763127298123181364687434283); |
47 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
48 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
49 | | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
50 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
51 | | { |
52 | | INT i; |
53 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { |
54 | | E T3, Tp, Tb, Th, Ti, T8, Tl, Tq, Tg, Tr, Tv, Tw; |
55 | | { |
56 | | E Ta, T1, T2, T9; |
57 | | Ta = Ci[WS(csi, 3)]; |
58 | | T1 = Cr[0]; |
59 | | T2 = Cr[WS(csr, 3)]; |
60 | | T9 = T1 - T2; |
61 | | T3 = FMA(KP2_000000000, T2, T1); |
62 | | Tp = FMA(KP1_732050807, Ta, T9); |
63 | | Tb = FNMS(KP1_732050807, Ta, T9); |
64 | | } |
65 | | { |
66 | | E T4, T7, Tk, Tf, Tj, Tc; |
67 | | T4 = Cr[WS(csr, 1)]; |
68 | | Th = Ci[WS(csi, 1)]; |
69 | | { |
70 | | E T5, T6, Td, Te; |
71 | | T5 = Cr[WS(csr, 4)]; |
72 | | T6 = Cr[WS(csr, 2)]; |
73 | | T7 = T5 + T6; |
74 | | Tk = T6 - T5; |
75 | | Td = Ci[WS(csi, 4)]; |
76 | | Te = Ci[WS(csi, 2)]; |
77 | | Tf = Td + Te; |
78 | | Ti = Td - Te; |
79 | | } |
80 | | T8 = T4 + T7; |
81 | | Tj = FNMS(KP500000000, Ti, Th); |
82 | | Tl = FNMS(KP866025403, Tk, Tj); |
83 | | Tq = FMA(KP866025403, Tk, Tj); |
84 | | Tc = FNMS(KP500000000, T7, T4); |
85 | | Tg = FNMS(KP866025403, Tf, Tc); |
86 | | Tr = FMA(KP866025403, Tf, Tc); |
87 | | } |
88 | | R0[0] = FMA(KP2_000000000, T8, T3); |
89 | | Tv = T3 - T8; |
90 | | Tw = Ti + Th; |
91 | | R1[WS(rs, 1)] = FNMS(KP1_732050807, Tw, Tv); |
92 | | R0[WS(rs, 3)] = FMA(KP1_732050807, Tw, Tv); |
93 | | { |
94 | | E To, Tm, Tn, Tu, Ts, Tt; |
95 | | To = FMA(KP839099631, Tg, Tl); |
96 | | Tm = FNMS(KP839099631, Tl, Tg); |
97 | | Tn = FNMS(KP766044443, Tm, Tb); |
98 | | R1[0] = FMA(KP1_532088886, Tm, Tb); |
99 | | R1[WS(rs, 3)] = FMA(KP1_326827896, To, Tn); |
100 | | R0[WS(rs, 2)] = FNMS(KP1_326827896, To, Tn); |
101 | | Tu = FMA(KP176326980, Tq, Tr); |
102 | | Ts = FNMS(KP176326980, Tr, Tq); |
103 | | Tt = FMA(KP984807753, Ts, Tp); |
104 | | R0[WS(rs, 1)] = FNMS(KP1_969615506, Ts, Tp); |
105 | | R0[WS(rs, 4)] = FMA(KP1_705737063, Tu, Tt); |
106 | | R1[WS(rs, 2)] = FNMS(KP1_705737063, Tu, Tt); |
107 | | } |
108 | | } |
109 | | } |
110 | | } |
111 | | |
112 | | static const kr2c_desc desc = { 9, "r2cb_9", { 8, 0, 24, 0 }, &GENUS }; |
113 | | |
114 | | void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); |
115 | | } |
116 | | |
117 | | #else |
118 | | |
119 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 9 -name r2cb_9 -include rdft/scalar/r2cb.h */ |
120 | | |
121 | | /* |
122 | | * This function contains 32 FP additions, 18 FP multiplications, |
123 | | * (or, 22 additions, 8 multiplications, 10 fused multiply/add), |
124 | | * 35 stack variables, 12 constants, and 18 memory accesses |
125 | | */ |
126 | | #include "rdft/scalar/r2cb.h" |
127 | | |
128 | | static void r2cb_9(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
129 | 0 | { |
130 | 0 | DK(KP984807753, +0.984807753012208059366743024589523013670643252); |
131 | 0 | DK(KP173648177, +0.173648177666930348851716626769314796000375677); |
132 | 0 | DK(KP300767466, +0.300767466360870593278543795225003852144476517); |
133 | 0 | DK(KP1_705737063, +1.705737063904886419256501927880148143872040591); |
134 | 0 | DK(KP642787609, +0.642787609686539326322643409907263432907559884); |
135 | 0 | DK(KP766044443, +0.766044443118978035202392650555416673935832457); |
136 | 0 | DK(KP1_326827896, +1.326827896337876792410842639271782594433726619); |
137 | 0 | DK(KP1_113340798, +1.113340798452838732905825904094046265936583811); |
138 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
139 | 0 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
140 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
141 | 0 | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
142 | 0 | { |
143 | 0 | INT i; |
144 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(36, rs), MAKE_VOLATILE_STRIDE(36, csr), MAKE_VOLATILE_STRIDE(36, csi)) { |
145 | 0 | E T3, Tq, Tc, Tk, Tj, T8, Tm, Ts, Th, Tr, Tw, Tx; |
146 | 0 | { |
147 | 0 | E Tb, T1, T2, T9, Ta; |
148 | 0 | Ta = Ci[WS(csi, 3)]; |
149 | 0 | Tb = KP1_732050807 * Ta; |
150 | 0 | T1 = Cr[0]; |
151 | 0 | T2 = Cr[WS(csr, 3)]; |
152 | 0 | T9 = T1 - T2; |
153 | 0 | T3 = FMA(KP2_000000000, T2, T1); |
154 | 0 | Tq = T9 + Tb; |
155 | 0 | Tc = T9 - Tb; |
156 | 0 | } |
157 | 0 | { |
158 | 0 | E T4, T7, Ti, Tg, Tl, Td; |
159 | 0 | T4 = Cr[WS(csr, 1)]; |
160 | 0 | Tk = Ci[WS(csi, 1)]; |
161 | 0 | { |
162 | 0 | E T5, T6, Te, Tf; |
163 | 0 | T5 = Cr[WS(csr, 4)]; |
164 | 0 | T6 = Cr[WS(csr, 2)]; |
165 | 0 | T7 = T5 + T6; |
166 | 0 | Ti = KP866025403 * (T5 - T6); |
167 | 0 | Te = Ci[WS(csi, 4)]; |
168 | 0 | Tf = Ci[WS(csi, 2)]; |
169 | 0 | Tg = KP866025403 * (Te + Tf); |
170 | 0 | Tj = Tf - Te; |
171 | 0 | } |
172 | 0 | T8 = T4 + T7; |
173 | 0 | Tl = FMA(KP500000000, Tj, Tk); |
174 | 0 | Tm = Ti + Tl; |
175 | 0 | Ts = Tl - Ti; |
176 | 0 | Td = FNMS(KP500000000, T7, T4); |
177 | 0 | Th = Td - Tg; |
178 | 0 | Tr = Td + Tg; |
179 | 0 | } |
180 | 0 | R0[0] = FMA(KP2_000000000, T8, T3); |
181 | 0 | Tw = T3 - T8; |
182 | 0 | Tx = KP1_732050807 * (Tk - Tj); |
183 | 0 | R1[WS(rs, 1)] = Tw - Tx; |
184 | 0 | R0[WS(rs, 3)] = Tw + Tx; |
185 | 0 | { |
186 | 0 | E Tp, Tn, To, Tv, Tt, Tu; |
187 | 0 | Tp = FMA(KP1_113340798, Th, KP1_326827896 * Tm); |
188 | 0 | Tn = FNMS(KP642787609, Tm, KP766044443 * Th); |
189 | 0 | To = Tc - Tn; |
190 | 0 | R1[0] = FMA(KP2_000000000, Tn, Tc); |
191 | 0 | R1[WS(rs, 3)] = To + Tp; |
192 | 0 | R0[WS(rs, 2)] = To - Tp; |
193 | 0 | Tv = FMA(KP1_705737063, Tr, KP300767466 * Ts); |
194 | 0 | Tt = FNMS(KP984807753, Ts, KP173648177 * Tr); |
195 | 0 | Tu = Tq - Tt; |
196 | 0 | R0[WS(rs, 1)] = FMA(KP2_000000000, Tt, Tq); |
197 | 0 | R0[WS(rs, 4)] = Tu + Tv; |
198 | 0 | R1[WS(rs, 2)] = Tu - Tv; |
199 | 0 | } |
200 | 0 | } |
201 | 0 | } |
202 | 0 | } |
203 | | |
204 | | static const kr2c_desc desc = { 9, "r2cb_9", { 22, 8, 10, 0 }, &GENUS }; |
205 | | |
206 | 1 | void X(codelet_r2cb_9) (planner *p) { X(kr2c_register) (p, r2cb_9, &desc); |
207 | 1 | } |
208 | | |
209 | | #endif |