/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_16.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Tue Aug 26 06:33:46 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 228 FP additions, 166 FP multiplications, |
32 | | * (or, 136 additions, 74 multiplications, 92 fused multiply/add), |
33 | | * 91 stack variables, 4 constants, and 64 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
40 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
41 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
42 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { |
46 | | E T1, T2, Tw, Ty, Th, Tj, T4, T5, TY, T6, Tk, T1o, T1d, Tz, T1j; |
47 | | E Tq, TF, T18, TR, TL, T13, T1A, T1K, T1E, T1H, Tc, T25, T2k, T29, T2h; |
48 | | { |
49 | | E Tx, TE, Ti, TK, Tp, TQ, Tb, T3; |
50 | | T1 = W[0]; |
51 | | T2 = W[2]; |
52 | | T3 = T1 * T2; |
53 | | Tw = W[6]; |
54 | | Tx = T1 * Tw; |
55 | | Ty = W[7]; |
56 | | TE = T1 * Ty; |
57 | | Th = W[4]; |
58 | | Ti = T1 * Th; |
59 | | TK = T2 * Th; |
60 | | Tj = W[5]; |
61 | | Tp = T1 * Tj; |
62 | | TQ = T2 * Tj; |
63 | | T4 = W[1]; |
64 | | T5 = W[3]; |
65 | | Tb = T1 * T5; |
66 | | TY = FNMS(T4, T5, T3); |
67 | | T6 = FMA(T4, T5, T3); |
68 | | Tk = FNMS(T4, Tj, Ti); |
69 | | T1o = FNMS(T4, Th, Tp); |
70 | | T1d = FMA(T5, Th, TQ); |
71 | | Tz = FMA(T4, Ty, Tx); |
72 | | T1j = FMA(T4, Tj, Ti); |
73 | | Tq = FMA(T4, Th, Tp); |
74 | | TF = FNMS(T4, Tw, TE); |
75 | | T18 = FNMS(T5, Tj, TK); |
76 | | TR = FNMS(T5, Th, TQ); |
77 | | TL = FMA(T5, Tj, TK); |
78 | | { |
79 | | E T1z, T1D, T24, T28; |
80 | | T1z = TY * Th; |
81 | | T1D = TY * Tj; |
82 | | T13 = FMA(T4, T2, Tb); |
83 | | T1A = FMA(T13, Tj, T1z); |
84 | | T1K = FMA(T13, Th, T1D); |
85 | | T1E = FNMS(T13, Th, T1D); |
86 | | T1H = FNMS(T13, Tj, T1z); |
87 | | T24 = T6 * Th; |
88 | | T28 = T6 * Tj; |
89 | | Tc = FNMS(T4, T2, Tb); |
90 | | T25 = FNMS(Tc, Tj, T24); |
91 | | T2k = FNMS(Tc, Th, T28); |
92 | | T29 = FMA(Tc, Th, T28); |
93 | | T2h = FMA(Tc, Tj, T24); |
94 | | } |
95 | | } |
96 | | { |
97 | | E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T1N; |
98 | | E T3S, Tg, Tu, T3A, T2B, T2D, T3B, T2c, T3L, T2S, T3I, TJ, TV, T3E, T2G; |
99 | | E T2I, T3D, T2n, T3J, T2X, T3M; |
100 | | { |
101 | | E T1t, T1u, T1W, T1m, T1Q, T1S, T1T, T1V, T36, T1r, T34, T1P, T1k, T1l, T1n; |
102 | | E T2r; |
103 | | T1t = Ip[0]; |
104 | | T1u = Im[0]; |
105 | | T1W = T1t + T1u; |
106 | | T1k = Ip[WS(rs, 4)]; |
107 | | T1l = Im[WS(rs, 4)]; |
108 | | T1m = T1k - T1l; |
109 | | T1Q = T1k + T1l; |
110 | | { |
111 | | E T1U, T1p, T1q, T1O; |
112 | | T1S = Rm[0]; |
113 | | T1T = Rp[0]; |
114 | | T1U = T1S - T1T; |
115 | | T1V = T1 * T1U; |
116 | | T36 = T4 * T1U; |
117 | | T1p = Rp[WS(rs, 4)]; |
118 | | T1q = Rm[WS(rs, 4)]; |
119 | | T1O = T1q - T1p; |
120 | | T1r = T1p + T1q; |
121 | | T34 = Tj * T1O; |
122 | | T1P = Th * T1O; |
123 | | } |
124 | | T1v = T1t - T1u; |
125 | | T2q = T1T + T1S; |
126 | | T1n = T1j * T1m; |
127 | | T1s = FNMS(T1o, T1r, T1n); |
128 | | T2r = T1j * T1r; |
129 | | T2s = FMA(T1o, T1m, T2r); |
130 | | { |
131 | | E T35, T37, T1R, T1X; |
132 | | T35 = FMA(Th, T1Q, T34); |
133 | | T37 = FMA(T1, T1W, T36); |
134 | | T38 = T35 + T37; |
135 | | T3T = T37 - T35; |
136 | | T1R = FNMS(Tj, T1Q, T1P); |
137 | | T1X = FNMS(T4, T1W, T1V); |
138 | | T1Y = T1R + T1X; |
139 | | T3P = T1X - T1R; |
140 | | } |
141 | | } |
142 | | { |
143 | | E T11, T1F, T16, T2Z, T1C, T1b, T1L, T1g, T31, T1J; |
144 | | { |
145 | | E TZ, T10, T14, T15, T1B; |
146 | | TZ = Ip[WS(rs, 2)]; |
147 | | T10 = Im[WS(rs, 2)]; |
148 | | T11 = TZ - T10; |
149 | | T1F = TZ + T10; |
150 | | T14 = Rp[WS(rs, 2)]; |
151 | | T15 = Rm[WS(rs, 2)]; |
152 | | T1B = T15 - T14; |
153 | | T16 = T14 + T15; |
154 | | T2Z = T1E * T1B; |
155 | | T1C = T1A * T1B; |
156 | | } |
157 | | { |
158 | | E T19, T1a, T1e, T1f, T1I; |
159 | | T19 = Ip[WS(rs, 6)]; |
160 | | T1a = Im[WS(rs, 6)]; |
161 | | T1b = T19 - T1a; |
162 | | T1L = T19 + T1a; |
163 | | T1e = Rp[WS(rs, 6)]; |
164 | | T1f = Rm[WS(rs, 6)]; |
165 | | T1I = T1f - T1e; |
166 | | T1g = T1e + T1f; |
167 | | T31 = T1K * T1I; |
168 | | T1J = T1H * T1I; |
169 | | } |
170 | | { |
171 | | E T12, T1c, T2w, T2u; |
172 | | T12 = TY * T11; |
173 | | T17 = FNMS(T13, T16, T12); |
174 | | T1c = T18 * T1b; |
175 | | T1h = FNMS(T1d, T1g, T1c); |
176 | | T2w = T18 * T1g; |
177 | | T2x = FMA(T1d, T1b, T2w); |
178 | | T2u = TY * T16; |
179 | | T2v = FMA(T13, T11, T2u); |
180 | | { |
181 | | E T30, T32, T1G, T1M; |
182 | | T30 = FMA(T1A, T1F, T2Z); |
183 | | T32 = FMA(T1H, T1L, T31); |
184 | | T33 = T30 + T32; |
185 | | T3Q = T30 - T32; |
186 | | T1G = FNMS(T1E, T1F, T1C); |
187 | | T1M = FNMS(T1K, T1L, T1J); |
188 | | T1N = T1G + T1M; |
189 | | T3S = T1G - T1M; |
190 | | } |
191 | | } |
192 | | } |
193 | | { |
194 | | E T9, T22, Ta, T2O, Tf, T20, T21, T2A, Tn, T2a, To, T2Q, Tt, T26, T27; |
195 | | E T2C; |
196 | | { |
197 | | E T7, T8, Td, Te; |
198 | | T7 = Ip[WS(rs, 1)]; |
199 | | T8 = Im[WS(rs, 1)]; |
200 | | T9 = T7 - T8; |
201 | | T22 = T7 + T8; |
202 | | Ta = T6 * T9; |
203 | | T2O = T2 * T22; |
204 | | Td = Rp[WS(rs, 1)]; |
205 | | Te = Rm[WS(rs, 1)]; |
206 | | Tf = Td + Te; |
207 | | T20 = Td - Te; |
208 | | T21 = T2 * T20; |
209 | | T2A = T6 * Tf; |
210 | | } |
211 | | { |
212 | | E Tl, Tm, Tr, Ts; |
213 | | Tl = Ip[WS(rs, 5)]; |
214 | | Tm = Im[WS(rs, 5)]; |
215 | | Tn = Tl - Tm; |
216 | | T2a = Tl + Tm; |
217 | | To = Tk * Tn; |
218 | | T2Q = T25 * T2a; |
219 | | Tr = Rp[WS(rs, 5)]; |
220 | | Ts = Rm[WS(rs, 5)]; |
221 | | Tt = Tr + Ts; |
222 | | T26 = Tr - Ts; |
223 | | T27 = T25 * T26; |
224 | | T2C = Tk * Tt; |
225 | | } |
226 | | Tg = FNMS(Tc, Tf, Ta); |
227 | | Tu = FNMS(Tq, Tt, To); |
228 | | T3A = Tg - Tu; |
229 | | T2B = FMA(Tc, T9, T2A); |
230 | | T2D = FMA(Tq, Tn, T2C); |
231 | | T3B = T2B - T2D; |
232 | | { |
233 | | E T23, T2b, T2P, T2R; |
234 | | T23 = FMA(T5, T22, T21); |
235 | | T2b = FMA(T29, T2a, T27); |
236 | | T2c = T23 + T2b; |
237 | | T3L = T2b - T23; |
238 | | T2P = FNMS(T5, T20, T2O); |
239 | | T2R = FNMS(T29, T26, T2Q); |
240 | | T2S = T2P + T2R; |
241 | | T3I = T2R - T2P; |
242 | | } |
243 | | } |
244 | | { |
245 | | E TC, T2f, TD, T2T, TI, T2d, T2e, T2F, TO, T2l, TP, T2V, TU, T2i, T2j; |
246 | | E T2H; |
247 | | { |
248 | | E TA, TB, TG, TH; |
249 | | TA = Ip[WS(rs, 7)]; |
250 | | TB = Im[WS(rs, 7)]; |
251 | | TC = TA - TB; |
252 | | T2f = TA + TB; |
253 | | TD = Tz * TC; |
254 | | T2T = Tw * T2f; |
255 | | TG = Rp[WS(rs, 7)]; |
256 | | TH = Rm[WS(rs, 7)]; |
257 | | TI = TG + TH; |
258 | | T2d = TG - TH; |
259 | | T2e = Tw * T2d; |
260 | | T2F = Tz * TI; |
261 | | } |
262 | | { |
263 | | E TM, TN, TS, TT; |
264 | | TM = Ip[WS(rs, 3)]; |
265 | | TN = Im[WS(rs, 3)]; |
266 | | TO = TM - TN; |
267 | | T2l = TM + TN; |
268 | | TP = TL * TO; |
269 | | T2V = T2h * T2l; |
270 | | TS = Rp[WS(rs, 3)]; |
271 | | TT = Rm[WS(rs, 3)]; |
272 | | TU = TS + TT; |
273 | | T2i = TS - TT; |
274 | | T2j = T2h * T2i; |
275 | | T2H = TL * TU; |
276 | | } |
277 | | TJ = FNMS(TF, TI, TD); |
278 | | TV = FNMS(TR, TU, TP); |
279 | | T3E = TJ - TV; |
280 | | T2G = FMA(TF, TC, T2F); |
281 | | T2I = FMA(TR, TO, T2H); |
282 | | T3D = T2G - T2I; |
283 | | { |
284 | | E T2g, T2m, T2U, T2W; |
285 | | T2g = FMA(Ty, T2f, T2e); |
286 | | T2m = FMA(T2k, T2l, T2j); |
287 | | T2n = T2g + T2m; |
288 | | T3J = T2m - T2g; |
289 | | T2U = FNMS(Ty, T2d, T2T); |
290 | | T2W = FNMS(T2k, T2i, T2V); |
291 | | T2X = T2U + T2W; |
292 | | T3M = T2U - T2W; |
293 | | } |
294 | | } |
295 | | { |
296 | | E TX, T3o, T3i, T3s, T3l, T3t, T1x, T3e, T2p, T2M, T2K, T3d, T3a, T3c, T2z; |
297 | | E T3n; |
298 | | { |
299 | | E Tv, TW, T3g, T3h; |
300 | | Tv = Tg + Tu; |
301 | | TW = TJ + TV; |
302 | | TX = Tv + TW; |
303 | | T3o = Tv - TW; |
304 | | T3g = T2X - T2S; |
305 | | T3h = T2c - T2n; |
306 | | T3i = T3g + T3h; |
307 | | T3s = T3g - T3h; |
308 | | } |
309 | | { |
310 | | E T3j, T3k, T1i, T1w; |
311 | | T3j = T1Y - T1N; |
312 | | T3k = T38 - T33; |
313 | | T3l = T3j - T3k; |
314 | | T3t = T3j + T3k; |
315 | | T1i = T17 + T1h; |
316 | | T1w = T1s + T1v; |
317 | | T1x = T1i + T1w; |
318 | | T3e = T1w - T1i; |
319 | | } |
320 | | { |
321 | | E T1Z, T2o, T2E, T2J; |
322 | | T1Z = T1N + T1Y; |
323 | | T2o = T2c + T2n; |
324 | | T2p = T1Z - T2o; |
325 | | T2M = T2o + T1Z; |
326 | | T2E = T2B + T2D; |
327 | | T2J = T2G + T2I; |
328 | | T2K = T2E + T2J; |
329 | | T3d = T2J - T2E; |
330 | | } |
331 | | { |
332 | | E T2Y, T39, T2t, T2y; |
333 | | T2Y = T2S + T2X; |
334 | | T39 = T33 + T38; |
335 | | T3a = T2Y - T39; |
336 | | T3c = T2Y + T39; |
337 | | T2t = T2q + T2s; |
338 | | T2y = T2v + T2x; |
339 | | T2z = T2t + T2y; |
340 | | T3n = T2t - T2y; |
341 | | } |
342 | | { |
343 | | E T1y, T3b, T2L, T2N; |
344 | | T1y = TX + T1x; |
345 | | Ip[0] = KP500000000 * (T1y + T2p); |
346 | | Im[WS(rs, 7)] = KP500000000 * (T2p - T1y); |
347 | | T3b = T2z + T2K; |
348 | | Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c); |
349 | | Rp[0] = KP500000000 * (T3b + T3c); |
350 | | T2L = T2z - T2K; |
351 | | Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M); |
352 | | Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M); |
353 | | T2N = T1x - TX; |
354 | | Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a); |
355 | | Im[WS(rs, 3)] = KP500000000 * (T3a - T2N); |
356 | | } |
357 | | { |
358 | | E T3f, T3m, T3v, T3w; |
359 | | T3f = T3d + T3e; |
360 | | T3m = T3i + T3l; |
361 | | Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f)); |
362 | | Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f))); |
363 | | T3v = T3n + T3o; |
364 | | T3w = T3s + T3t; |
365 | | Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v)); |
366 | | Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v)); |
367 | | } |
368 | | { |
369 | | E T3p, T3q, T3r, T3u; |
370 | | T3p = T3n - T3o; |
371 | | T3q = T3l - T3i; |
372 | | Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p)); |
373 | | Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p)); |
374 | | T3r = T3e - T3d; |
375 | | T3u = T3s - T3t; |
376 | | Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r)); |
377 | | Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r))); |
378 | | } |
379 | | } |
380 | | { |
381 | | E T3z, T4b, T4g, T4q, T4j, T4r, T3G, T4m, T3O, T46, T3Z, T4l, T42, T4c, T3V; |
382 | | E T47; |
383 | | { |
384 | | E T3x, T3y, T4e, T4f; |
385 | | T3x = T1v - T1s; |
386 | | T3y = T2v - T2x; |
387 | | T3z = T3x - T3y; |
388 | | T4b = T3y + T3x; |
389 | | T4e = T3I - T3J; |
390 | | T4f = T3M - T3L; |
391 | | T4g = FMA(KP414213562, T4f, T4e); |
392 | | T4q = FNMS(KP414213562, T4e, T4f); |
393 | | } |
394 | | { |
395 | | E T4h, T4i, T3C, T3F; |
396 | | T4h = T3Q + T3P; |
397 | | T4i = T3T - T3S; |
398 | | T4j = FMA(KP414213562, T4i, T4h); |
399 | | T4r = FNMS(KP414213562, T4h, T4i); |
400 | | T3C = T3A - T3B; |
401 | | T3F = T3D + T3E; |
402 | | T3G = T3C + T3F; |
403 | | T4m = T3C - T3F; |
404 | | } |
405 | | { |
406 | | E T3K, T3N, T3X, T3Y; |
407 | | T3K = T3I + T3J; |
408 | | T3N = T3L + T3M; |
409 | | T3O = FMA(KP414213562, T3N, T3K); |
410 | | T46 = FNMS(KP414213562, T3K, T3N); |
411 | | T3X = T2q - T2s; |
412 | | T3Y = T17 - T1h; |
413 | | T3Z = T3X + T3Y; |
414 | | T4l = T3X - T3Y; |
415 | | } |
416 | | { |
417 | | E T40, T41, T3R, T3U; |
418 | | T40 = T3B + T3A; |
419 | | T41 = T3D - T3E; |
420 | | T42 = T40 + T41; |
421 | | T4c = T41 - T40; |
422 | | T3R = T3P - T3Q; |
423 | | T3U = T3S + T3T; |
424 | | T3V = FNMS(KP414213562, T3U, T3R); |
425 | | T47 = FMA(KP414213562, T3R, T3U); |
426 | | } |
427 | | { |
428 | | E T3H, T3W, T49, T4a; |
429 | | T3H = FMA(KP707106781, T3G, T3z); |
430 | | T3W = T3O + T3V; |
431 | | Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H)); |
432 | | Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H))); |
433 | | T49 = FMA(KP707106781, T42, T3Z); |
434 | | T4a = T46 + T47; |
435 | | Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49)); |
436 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49)); |
437 | | } |
438 | | { |
439 | | E T43, T44, T45, T48; |
440 | | T43 = FNMS(KP707106781, T42, T3Z); |
441 | | T44 = T3V - T3O; |
442 | | Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43)); |
443 | | Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43)); |
444 | | T45 = FNMS(KP707106781, T3G, T3z); |
445 | | T48 = T46 - T47; |
446 | | Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45)); |
447 | | Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45))); |
448 | | } |
449 | | { |
450 | | E T4d, T4k, T4t, T4u; |
451 | | T4d = FNMS(KP707106781, T4c, T4b); |
452 | | T4k = T4g - T4j; |
453 | | Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d)); |
454 | | Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d))); |
455 | | T4t = FNMS(KP707106781, T4m, T4l); |
456 | | T4u = T4q + T4r; |
457 | | Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t)); |
458 | | Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t)); |
459 | | } |
460 | | { |
461 | | E T4n, T4o, T4p, T4s; |
462 | | T4n = FMA(KP707106781, T4m, T4l); |
463 | | T4o = T4g + T4j; |
464 | | Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n)); |
465 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n)); |
466 | | T4p = FMA(KP707106781, T4c, T4b); |
467 | | T4s = T4q - T4r; |
468 | | Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p)); |
469 | | Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p))); |
470 | | } |
471 | | } |
472 | | } |
473 | | } |
474 | | } |
475 | | } |
476 | | |
477 | | static const tw_instr twinstr[] = { |
478 | | { TW_CEXP, 1, 1 }, |
479 | | { TW_CEXP, 1, 3 }, |
480 | | { TW_CEXP, 1, 9 }, |
481 | | { TW_CEXP, 1, 15 }, |
482 | | { TW_NEXT, 1, 0 } |
483 | | }; |
484 | | |
485 | | static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 136, 74, 92, 0 } }; |
486 | | |
487 | | void X(codelet_hc2cfdft2_16) (planner *p) { |
488 | | X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); |
489 | | } |
490 | | #else |
491 | | |
492 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */ |
493 | | |
494 | | /* |
495 | | * This function contains 228 FP additions, 124 FP multiplications, |
496 | | * (or, 188 additions, 84 multiplications, 40 fused multiply/add), |
497 | | * 91 stack variables, 4 constants, and 64 memory accesses |
498 | | */ |
499 | | #include "rdft/scalar/hc2cf.h" |
500 | | |
501 | | static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
502 | 0 | { |
503 | 0 | DK(KP461939766, +0.461939766255643378064091594698394143411208313); |
504 | 0 | DK(KP191341716, +0.191341716182544885864229992015199433380672281); |
505 | 0 | DK(KP353553390, +0.353553390593273762200422181052424519642417969); |
506 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
507 | 0 | { |
508 | 0 | INT m; |
509 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) { |
510 | 0 | E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h; |
511 | 0 | E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b; |
512 | 0 | { |
513 | 0 | E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ; |
514 | 0 | { |
515 | 0 | E T3, Tc, T6, Tb; |
516 | 0 | T1 = W[0]; |
517 | 0 | T4 = W[1]; |
518 | 0 | T2 = W[2]; |
519 | 0 | T5 = W[3]; |
520 | 0 | T3 = T1 * T2; |
521 | 0 | Tc = T4 * T2; |
522 | 0 | T6 = T4 * T5; |
523 | 0 | Tb = T1 * T5; |
524 | 0 | T7 = T3 + T6; |
525 | 0 | Td = Tb - Tc; |
526 | 0 | T12 = Tb + Tc; |
527 | 0 | TY = T3 - T6; |
528 | 0 | Tk = W[5]; |
529 | 0 | Tl = T4 * Tk; |
530 | 0 | TP = T2 * Tk; |
531 | 0 | Tq = T1 * Tk; |
532 | 0 | TK = T5 * Tk; |
533 | 0 | Ti = W[4]; |
534 | 0 | Tj = T1 * Ti; |
535 | 0 | TQ = T5 * Ti; |
536 | 0 | Tr = T4 * Ti; |
537 | 0 | TJ = T2 * Ti; |
538 | 0 | } |
539 | 0 | Tm = Tj - Tl; |
540 | 0 | T1l = Tq - Tr; |
541 | 0 | T1b = TP + TQ; |
542 | 0 | TL = TJ + TK; |
543 | 0 | T1h = Tj + Tl; |
544 | 0 | Ts = Tq + Tr; |
545 | 0 | TR = TP - TQ; |
546 | 0 | T17 = TJ - TK; |
547 | 0 | Ty = W[6]; |
548 | 0 | Tz = W[7]; |
549 | 0 | TA = FMA(T1, Ty, T4 * Tz); |
550 | 0 | TE = FNMS(T4, Ty, T1 * Tz); |
551 | 0 | { |
552 | 0 | E T1J, T1K, T1F, T1G; |
553 | 0 | T1J = TY * Tk; |
554 | 0 | T1K = T12 * Ti; |
555 | 0 | T1L = T1J - T1K; |
556 | 0 | T1Q = T1J + T1K; |
557 | 0 | T1F = TY * Ti; |
558 | 0 | T1G = T12 * Tk; |
559 | 0 | T1H = T1F + T1G; |
560 | 0 | T1O = T1F - T1G; |
561 | 0 | } |
562 | 0 | { |
563 | 0 | E T22, T23, T1Y, T1Z; |
564 | 0 | T22 = T7 * Tk; |
565 | 0 | T23 = Td * Ti; |
566 | 0 | T24 = T22 + T23; |
567 | 0 | T2d = T22 - T23; |
568 | 0 | T1Y = T7 * Ti; |
569 | 0 | T1Z = Td * Tk; |
570 | 0 | T20 = T1Y - T1Z; |
571 | 0 | T2b = T1Y + T1Z; |
572 | 0 | } |
573 | 0 | } |
574 | 0 | { |
575 | 0 | E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o; |
576 | 0 | E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p; |
577 | 0 | E T2v, T3e; |
578 | 0 | { |
579 | 0 | E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k; |
580 | 0 | { |
581 | 0 | E T1i, T1j, T1m, T1n; |
582 | 0 | T1i = Ip[WS(rs, 4)]; |
583 | 0 | T1j = Im[WS(rs, 4)]; |
584 | 0 | T1k = T1i - T1j; |
585 | 0 | T1C = T1i + T1j; |
586 | 0 | T1m = Rp[WS(rs, 4)]; |
587 | 0 | T1n = Rm[WS(rs, 4)]; |
588 | 0 | T1o = T1m + T1n; |
589 | 0 | T1B = T1m - T1n; |
590 | 0 | } |
591 | 0 | { |
592 | 0 | E T1q, T1r, T1w, T1x; |
593 | 0 | T1q = Ip[0]; |
594 | 0 | T1r = Im[0]; |
595 | 0 | T1s = T1q - T1r; |
596 | 0 | T1z = T1q + T1r; |
597 | 0 | T1w = Rm[0]; |
598 | 0 | T1x = Rp[0]; |
599 | 0 | T1y = T1w - T1x; |
600 | 0 | T2j = T1x + T1w; |
601 | 0 | } |
602 | 0 | T1p = FNMS(T1l, T1o, T1h * T1k); |
603 | 0 | T1t = T1p + T1s; |
604 | 0 | T3i = T1s - T1p; |
605 | 0 | T2k = FMA(T1h, T1o, T1l * T1k); |
606 | 0 | T2l = T2j + T2k; |
607 | 0 | T3B = T2j - T2k; |
608 | 0 | { |
609 | 0 | E T1A, T1D, T2K, T2L; |
610 | 0 | T1A = FNMS(T4, T1z, T1 * T1y); |
611 | 0 | T1D = FMA(Ti, T1B, Tk * T1C); |
612 | 0 | T1E = T1A - T1D; |
613 | 0 | T3t = T1D + T1A; |
614 | 0 | T2K = FNMS(Tk, T1B, Ti * T1C); |
615 | 0 | T2L = FMA(T4, T1y, T1 * T1z); |
616 | 0 | T2M = T2K + T2L; |
617 | 0 | T3x = T2L - T2K; |
618 | 0 | } |
619 | 0 | } |
620 | 0 | { |
621 | 0 | E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P; |
622 | 0 | { |
623 | 0 | E TZ, T10, T13, T14; |
624 | 0 | TZ = Ip[WS(rs, 2)]; |
625 | 0 | T10 = Im[WS(rs, 2)]; |
626 | 0 | T11 = TZ - T10; |
627 | 0 | T1M = TZ + T10; |
628 | 0 | T13 = Rp[WS(rs, 2)]; |
629 | 0 | T14 = Rm[WS(rs, 2)]; |
630 | 0 | T15 = T13 + T14; |
631 | 0 | T1I = T13 - T14; |
632 | 0 | } |
633 | 0 | { |
634 | 0 | E T18, T19, T1c, T1d; |
635 | 0 | T18 = Ip[WS(rs, 6)]; |
636 | 0 | T19 = Im[WS(rs, 6)]; |
637 | 0 | T1a = T18 - T19; |
638 | 0 | T1R = T18 + T19; |
639 | 0 | T1c = Rp[WS(rs, 6)]; |
640 | 0 | T1d = Rm[WS(rs, 6)]; |
641 | 0 | T1e = T1c + T1d; |
642 | 0 | T1P = T1c - T1d; |
643 | 0 | } |
644 | 0 | { |
645 | 0 | E T16, T1f, T2H, T2I; |
646 | 0 | T16 = FNMS(T12, T15, TY * T11); |
647 | 0 | T1f = FNMS(T1b, T1e, T17 * T1a); |
648 | 0 | T1g = T16 + T1f; |
649 | 0 | T3C = T16 - T1f; |
650 | 0 | T2H = FNMS(T1L, T1I, T1H * T1M); |
651 | 0 | T2I = FNMS(T1Q, T1P, T1O * T1R); |
652 | 0 | T2J = T2H + T2I; |
653 | 0 | T3u = T2H - T2I; |
654 | 0 | } |
655 | 0 | { |
656 | 0 | E T1N, T1S, T2m, T2n; |
657 | 0 | T1N = FMA(T1H, T1I, T1L * T1M); |
658 | 0 | T1S = FMA(T1O, T1P, T1Q * T1R); |
659 | 0 | T1T = T1N + T1S; |
660 | 0 | T3w = T1S - T1N; |
661 | 0 | T2m = FMA(TY, T15, T12 * T11); |
662 | 0 | T2n = FMA(T17, T1e, T1b * T1a); |
663 | 0 | T2o = T2m + T2n; |
664 | 0 | T3j = T2m - T2n; |
665 | 0 | } |
666 | 0 | } |
667 | 0 | { |
668 | 0 | E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21; |
669 | 0 | { |
670 | 0 | E T8, T9, Te, Tf; |
671 | 0 | T8 = Ip[WS(rs, 1)]; |
672 | 0 | T9 = Im[WS(rs, 1)]; |
673 | 0 | Ta = T8 - T9; |
674 | 0 | T1W = T8 + T9; |
675 | 0 | Te = Rp[WS(rs, 1)]; |
676 | 0 | Tf = Rm[WS(rs, 1)]; |
677 | 0 | Tg = Te + Tf; |
678 | 0 | T1V = Te - Tf; |
679 | 0 | } |
680 | 0 | { |
681 | 0 | E Tn, To, Tt, Tu; |
682 | 0 | Tn = Ip[WS(rs, 5)]; |
683 | 0 | To = Im[WS(rs, 5)]; |
684 | 0 | Tp = Tn - To; |
685 | 0 | T25 = Tn + To; |
686 | 0 | Tt = Rp[WS(rs, 5)]; |
687 | 0 | Tu = Rm[WS(rs, 5)]; |
688 | 0 | Tv = Tt + Tu; |
689 | 0 | T21 = Tt - Tu; |
690 | 0 | } |
691 | 0 | { |
692 | 0 | E Th, Tw, T2A, T2B; |
693 | 0 | Th = FNMS(Td, Tg, T7 * Ta); |
694 | 0 | Tw = FNMS(Ts, Tv, Tm * Tp); |
695 | 0 | Tx = Th + Tw; |
696 | 0 | T3b = Th - Tw; |
697 | 0 | T2A = FNMS(T5, T1V, T2 * T1W); |
698 | 0 | T2B = FNMS(T24, T21, T20 * T25); |
699 | 0 | T2C = T2A + T2B; |
700 | 0 | T3q = T2A - T2B; |
701 | 0 | } |
702 | 0 | { |
703 | 0 | E T1X, T26, T2q, T2r; |
704 | 0 | T1X = FMA(T2, T1V, T5 * T1W); |
705 | 0 | T26 = FMA(T20, T21, T24 * T25); |
706 | 0 | T27 = T1X + T26; |
707 | 0 | T3m = T26 - T1X; |
708 | 0 | T2q = FMA(T7, Tg, Td * Ta); |
709 | 0 | T2r = FMA(Tm, Tv, Ts * Tp); |
710 | 0 | T2s = T2q + T2r; |
711 | 0 | T3c = T2q - T2r; |
712 | 0 | } |
713 | 0 | } |
714 | 0 | { |
715 | 0 | E TD, T29, TH, T28, TO, T2e, TU, T2c; |
716 | 0 | { |
717 | 0 | E TB, TC, TF, TG; |
718 | 0 | TB = Ip[WS(rs, 7)]; |
719 | 0 | TC = Im[WS(rs, 7)]; |
720 | 0 | TD = TB - TC; |
721 | 0 | T29 = TB + TC; |
722 | 0 | TF = Rp[WS(rs, 7)]; |
723 | 0 | TG = Rm[WS(rs, 7)]; |
724 | 0 | TH = TF + TG; |
725 | 0 | T28 = TF - TG; |
726 | 0 | } |
727 | 0 | { |
728 | 0 | E TM, TN, TS, TT; |
729 | 0 | TM = Ip[WS(rs, 3)]; |
730 | 0 | TN = Im[WS(rs, 3)]; |
731 | 0 | TO = TM - TN; |
732 | 0 | T2e = TM + TN; |
733 | 0 | TS = Rp[WS(rs, 3)]; |
734 | 0 | TT = Rm[WS(rs, 3)]; |
735 | 0 | TU = TS + TT; |
736 | 0 | T2c = TS - TT; |
737 | 0 | } |
738 | 0 | { |
739 | 0 | E TI, TV, T2D, T2E; |
740 | 0 | TI = FNMS(TE, TH, TA * TD); |
741 | 0 | TV = FNMS(TR, TU, TL * TO); |
742 | 0 | TW = TI + TV; |
743 | 0 | T3f = TI - TV; |
744 | 0 | T2D = FNMS(Tz, T28, Ty * T29); |
745 | 0 | T2E = FNMS(T2d, T2c, T2b * T2e); |
746 | 0 | T2F = T2D + T2E; |
747 | 0 | T3n = T2D - T2E; |
748 | 0 | } |
749 | 0 | { |
750 | 0 | E T2a, T2f, T2t, T2u; |
751 | 0 | T2a = FMA(Ty, T28, Tz * T29); |
752 | 0 | T2f = FMA(T2b, T2c, T2d * T2e); |
753 | 0 | T2g = T2a + T2f; |
754 | 0 | T3p = T2f - T2a; |
755 | 0 | T2t = FMA(TA, TH, TE * TD); |
756 | 0 | T2u = FMA(TL, TU, TR * TO); |
757 | 0 | T2v = T2t + T2u; |
758 | 0 | T3e = T2t - T2u; |
759 | 0 | } |
760 | 0 | } |
761 | 0 | { |
762 | 0 | E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P; |
763 | 0 | { |
764 | 0 | E TX, T1u, T2G, T2N; |
765 | 0 | TX = Tx + TW; |
766 | 0 | T1u = T1g + T1t; |
767 | 0 | T1v = TX + T1u; |
768 | 0 | T2z = T1u - TX; |
769 | 0 | T2G = T2C + T2F; |
770 | 0 | T2N = T2J + T2M; |
771 | 0 | T2O = T2G - T2N; |
772 | 0 | T2Q = T2G + T2N; |
773 | 0 | } |
774 | 0 | { |
775 | 0 | E T1U, T2h, T2p, T2w; |
776 | 0 | T1U = T1E - T1T; |
777 | 0 | T2h = T27 + T2g; |
778 | 0 | T2i = T1U - T2h; |
779 | 0 | T2y = T2h + T1U; |
780 | 0 | T2p = T2l + T2o; |
781 | 0 | T2w = T2s + T2v; |
782 | 0 | T2x = T2p - T2w; |
783 | 0 | T2P = T2p + T2w; |
784 | 0 | } |
785 | 0 | Ip[0] = KP500000000 * (T1v + T2i); |
786 | 0 | Rp[0] = KP500000000 * (T2P + T2Q); |
787 | 0 | Im[WS(rs, 7)] = KP500000000 * (T2i - T1v); |
788 | 0 | Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q); |
789 | 0 | Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y); |
790 | 0 | Im[WS(rs, 3)] = KP500000000 * (T2O - T2z); |
791 | 0 | Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y); |
792 | 0 | Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O); |
793 | 0 | } |
794 | 0 | { |
795 | 0 | E T2T, T35, T33, T39, T2W, T36, T2Z, T37; |
796 | 0 | { |
797 | 0 | E T2R, T2S, T31, T32; |
798 | 0 | T2R = T2v - T2s; |
799 | 0 | T2S = T1t - T1g; |
800 | 0 | T2T = KP500000000 * (T2R + T2S); |
801 | 0 | T35 = KP500000000 * (T2S - T2R); |
802 | 0 | T31 = T2l - T2o; |
803 | 0 | T32 = Tx - TW; |
804 | 0 | T33 = KP500000000 * (T31 - T32); |
805 | 0 | T39 = KP500000000 * (T31 + T32); |
806 | 0 | } |
807 | 0 | { |
808 | 0 | E T2U, T2V, T2X, T2Y; |
809 | 0 | T2U = T2F - T2C; |
810 | 0 | T2V = T27 - T2g; |
811 | 0 | T2W = T2U + T2V; |
812 | 0 | T36 = T2U - T2V; |
813 | 0 | T2X = T1T + T1E; |
814 | 0 | T2Y = T2M - T2J; |
815 | 0 | T2Z = T2X - T2Y; |
816 | 0 | T37 = T2X + T2Y; |
817 | 0 | } |
818 | 0 | { |
819 | 0 | E T30, T3a, T34, T38; |
820 | 0 | T30 = KP353553390 * (T2W + T2Z); |
821 | 0 | Ip[WS(rs, 2)] = T2T + T30; |
822 | 0 | Im[WS(rs, 5)] = T30 - T2T; |
823 | 0 | T3a = KP353553390 * (T36 + T37); |
824 | 0 | Rm[WS(rs, 5)] = T39 - T3a; |
825 | 0 | Rp[WS(rs, 2)] = T39 + T3a; |
826 | 0 | T34 = KP353553390 * (T2Z - T2W); |
827 | 0 | Rm[WS(rs, 1)] = T33 - T34; |
828 | 0 | Rp[WS(rs, 6)] = T33 + T34; |
829 | 0 | T38 = KP353553390 * (T36 - T37); |
830 | 0 | Ip[WS(rs, 6)] = T35 + T38; |
831 | 0 | Im[WS(rs, 1)] = T38 - T35; |
832 | 0 | } |
833 | 0 | } |
834 | 0 | { |
835 | 0 | E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z; |
836 | 0 | E T3L; |
837 | 0 | { |
838 | 0 | E T3d, T3g, T3o, T3r; |
839 | 0 | T3k = KP500000000 * (T3i - T3j); |
840 | 0 | T3Q = KP500000000 * (T3j + T3i); |
841 | 0 | T3Z = KP500000000 * (T3B - T3C); |
842 | 0 | T3D = KP500000000 * (T3B + T3C); |
843 | 0 | T3d = T3b - T3c; |
844 | 0 | T3g = T3e + T3f; |
845 | 0 | T3h = KP353553390 * (T3d + T3g); |
846 | 0 | T40 = KP353553390 * (T3d - T3g); |
847 | 0 | { |
848 | 0 | E T3V, T3W, T3E, T3F; |
849 | 0 | T3V = T3u + T3t; |
850 | 0 | T3W = T3x - T3w; |
851 | 0 | T3X = FNMS(KP461939766, T3W, KP191341716 * T3V); |
852 | 0 | T45 = FMA(KP461939766, T3V, KP191341716 * T3W); |
853 | 0 | T3E = T3c + T3b; |
854 | 0 | T3F = T3e - T3f; |
855 | 0 | T3G = KP353553390 * (T3E + T3F); |
856 | 0 | T3P = KP353553390 * (T3F - T3E); |
857 | 0 | } |
858 | 0 | T3o = T3m + T3n; |
859 | 0 | T3r = T3p - T3q; |
860 | 0 | T3s = FMA(KP191341716, T3o, KP461939766 * T3r); |
861 | 0 | T3K = FNMS(KP191341716, T3r, KP461939766 * T3o); |
862 | 0 | { |
863 | 0 | E T3S, T3T, T3v, T3y; |
864 | 0 | T3S = T3n - T3m; |
865 | 0 | T3T = T3q + T3p; |
866 | 0 | T3U = FMA(KP461939766, T3S, KP191341716 * T3T); |
867 | 0 | T44 = FNMS(KP461939766, T3T, KP191341716 * T3S); |
868 | 0 | T3v = T3t - T3u; |
869 | 0 | T3y = T3w + T3x; |
870 | 0 | T3z = FNMS(KP191341716, T3y, KP461939766 * T3v); |
871 | 0 | T3L = FMA(KP191341716, T3v, KP461939766 * T3y); |
872 | 0 | } |
873 | 0 | } |
874 | 0 | { |
875 | 0 | E T3l, T3A, T3N, T3O; |
876 | 0 | T3l = T3h + T3k; |
877 | 0 | T3A = T3s + T3z; |
878 | 0 | Ip[WS(rs, 1)] = T3l + T3A; |
879 | 0 | Im[WS(rs, 6)] = T3A - T3l; |
880 | 0 | T3N = T3D + T3G; |
881 | 0 | T3O = T3K + T3L; |
882 | 0 | Rm[WS(rs, 6)] = T3N - T3O; |
883 | 0 | Rp[WS(rs, 1)] = T3N + T3O; |
884 | 0 | } |
885 | 0 | { |
886 | 0 | E T3H, T3I, T3J, T3M; |
887 | 0 | T3H = T3D - T3G; |
888 | 0 | T3I = T3z - T3s; |
889 | 0 | Rm[WS(rs, 2)] = T3H - T3I; |
890 | 0 | Rp[WS(rs, 5)] = T3H + T3I; |
891 | 0 | T3J = T3k - T3h; |
892 | 0 | T3M = T3K - T3L; |
893 | 0 | Ip[WS(rs, 5)] = T3J + T3M; |
894 | 0 | Im[WS(rs, 2)] = T3M - T3J; |
895 | 0 | } |
896 | 0 | { |
897 | 0 | E T3R, T3Y, T47, T48; |
898 | 0 | T3R = T3P + T3Q; |
899 | 0 | T3Y = T3U + T3X; |
900 | 0 | Ip[WS(rs, 3)] = T3R + T3Y; |
901 | 0 | Im[WS(rs, 4)] = T3Y - T3R; |
902 | 0 | T47 = T3Z + T40; |
903 | 0 | T48 = T44 + T45; |
904 | 0 | Rm[WS(rs, 4)] = T47 - T48; |
905 | 0 | Rp[WS(rs, 3)] = T47 + T48; |
906 | 0 | } |
907 | 0 | { |
908 | 0 | E T41, T42, T43, T46; |
909 | 0 | T41 = T3Z - T40; |
910 | 0 | T42 = T3X - T3U; |
911 | 0 | Rm[0] = T41 - T42; |
912 | 0 | Rp[WS(rs, 7)] = T41 + T42; |
913 | 0 | T43 = T3Q - T3P; |
914 | 0 | T46 = T44 - T45; |
915 | 0 | Ip[WS(rs, 7)] = T43 + T46; |
916 | 0 | Im[0] = T46 - T43; |
917 | 0 | } |
918 | 0 | } |
919 | 0 | } |
920 | 0 | } |
921 | 0 | } |
922 | 0 | } |
923 | | |
924 | | static const tw_instr twinstr[] = { |
925 | | { TW_CEXP, 1, 1 }, |
926 | | { TW_CEXP, 1, 3 }, |
927 | | { TW_CEXP, 1, 9 }, |
928 | | { TW_CEXP, 1, 15 }, |
929 | | { TW_NEXT, 1, 0 } |
930 | | }; |
931 | | |
932 | | static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 188, 84, 40, 0 } }; |
933 | | |
934 | 1 | void X(codelet_hc2cfdft2_16) (planner *p) { |
935 | 1 | X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT); |
936 | 1 | } |
937 | | #endif |