Coverage Report

Created: 2025-08-26 06:35

/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_16.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Tue Aug 26 06:33:46 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 228 FP additions, 166 FP multiplications,
32
 * (or, 136 additions, 74 multiplications, 92 fused multiply/add),
33
 * 91 stack variables, 4 constants, and 64 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
40
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
41
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
42
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
46
         E T1, T2, Tw, Ty, Th, Tj, T4, T5, TY, T6, Tk, T1o, T1d, Tz, T1j;
47
         E Tq, TF, T18, TR, TL, T13, T1A, T1K, T1E, T1H, Tc, T25, T2k, T29, T2h;
48
         {
49
        E Tx, TE, Ti, TK, Tp, TQ, Tb, T3;
50
        T1 = W[0];
51
        T2 = W[2];
52
        T3 = T1 * T2;
53
        Tw = W[6];
54
        Tx = T1 * Tw;
55
        Ty = W[7];
56
        TE = T1 * Ty;
57
        Th = W[4];
58
        Ti = T1 * Th;
59
        TK = T2 * Th;
60
        Tj = W[5];
61
        Tp = T1 * Tj;
62
        TQ = T2 * Tj;
63
        T4 = W[1];
64
        T5 = W[3];
65
        Tb = T1 * T5;
66
        TY = FNMS(T4, T5, T3);
67
        T6 = FMA(T4, T5, T3);
68
        Tk = FNMS(T4, Tj, Ti);
69
        T1o = FNMS(T4, Th, Tp);
70
        T1d = FMA(T5, Th, TQ);
71
        Tz = FMA(T4, Ty, Tx);
72
        T1j = FMA(T4, Tj, Ti);
73
        Tq = FMA(T4, Th, Tp);
74
        TF = FNMS(T4, Tw, TE);
75
        T18 = FNMS(T5, Tj, TK);
76
        TR = FNMS(T5, Th, TQ);
77
        TL = FMA(T5, Tj, TK);
78
        {
79
       E T1z, T1D, T24, T28;
80
       T1z = TY * Th;
81
       T1D = TY * Tj;
82
       T13 = FMA(T4, T2, Tb);
83
       T1A = FMA(T13, Tj, T1z);
84
       T1K = FMA(T13, Th, T1D);
85
       T1E = FNMS(T13, Th, T1D);
86
       T1H = FNMS(T13, Tj, T1z);
87
       T24 = T6 * Th;
88
       T28 = T6 * Tj;
89
       Tc = FNMS(T4, T2, Tb);
90
       T25 = FNMS(Tc, Tj, T24);
91
       T2k = FNMS(Tc, Th, T28);
92
       T29 = FMA(Tc, Th, T28);
93
       T2h = FMA(Tc, Tj, T24);
94
        }
95
         }
96
         {
97
        E T1v, T2q, T1s, T2s, T38, T3T, T1Y, T3P, T17, T1h, T2x, T2v, T33, T3Q, T1N;
98
        E T3S, Tg, Tu, T3A, T2B, T2D, T3B, T2c, T3L, T2S, T3I, TJ, TV, T3E, T2G;
99
        E T2I, T3D, T2n, T3J, T2X, T3M;
100
        {
101
       E T1t, T1u, T1W, T1m, T1Q, T1S, T1T, T1V, T36, T1r, T34, T1P, T1k, T1l, T1n;
102
       E T2r;
103
       T1t = Ip[0];
104
       T1u = Im[0];
105
       T1W = T1t + T1u;
106
       T1k = Ip[WS(rs, 4)];
107
       T1l = Im[WS(rs, 4)];
108
       T1m = T1k - T1l;
109
       T1Q = T1k + T1l;
110
       {
111
            E T1U, T1p, T1q, T1O;
112
            T1S = Rm[0];
113
            T1T = Rp[0];
114
            T1U = T1S - T1T;
115
            T1V = T1 * T1U;
116
            T36 = T4 * T1U;
117
            T1p = Rp[WS(rs, 4)];
118
            T1q = Rm[WS(rs, 4)];
119
            T1O = T1q - T1p;
120
            T1r = T1p + T1q;
121
            T34 = Tj * T1O;
122
            T1P = Th * T1O;
123
       }
124
       T1v = T1t - T1u;
125
       T2q = T1T + T1S;
126
       T1n = T1j * T1m;
127
       T1s = FNMS(T1o, T1r, T1n);
128
       T2r = T1j * T1r;
129
       T2s = FMA(T1o, T1m, T2r);
130
       {
131
            E T35, T37, T1R, T1X;
132
            T35 = FMA(Th, T1Q, T34);
133
            T37 = FMA(T1, T1W, T36);
134
            T38 = T35 + T37;
135
            T3T = T37 - T35;
136
            T1R = FNMS(Tj, T1Q, T1P);
137
            T1X = FNMS(T4, T1W, T1V);
138
            T1Y = T1R + T1X;
139
            T3P = T1X - T1R;
140
       }
141
        }
142
        {
143
       E T11, T1F, T16, T2Z, T1C, T1b, T1L, T1g, T31, T1J;
144
       {
145
            E TZ, T10, T14, T15, T1B;
146
            TZ = Ip[WS(rs, 2)];
147
            T10 = Im[WS(rs, 2)];
148
            T11 = TZ - T10;
149
            T1F = TZ + T10;
150
            T14 = Rp[WS(rs, 2)];
151
            T15 = Rm[WS(rs, 2)];
152
            T1B = T15 - T14;
153
            T16 = T14 + T15;
154
            T2Z = T1E * T1B;
155
            T1C = T1A * T1B;
156
       }
157
       {
158
            E T19, T1a, T1e, T1f, T1I;
159
            T19 = Ip[WS(rs, 6)];
160
            T1a = Im[WS(rs, 6)];
161
            T1b = T19 - T1a;
162
            T1L = T19 + T1a;
163
            T1e = Rp[WS(rs, 6)];
164
            T1f = Rm[WS(rs, 6)];
165
            T1I = T1f - T1e;
166
            T1g = T1e + T1f;
167
            T31 = T1K * T1I;
168
            T1J = T1H * T1I;
169
       }
170
       {
171
            E T12, T1c, T2w, T2u;
172
            T12 = TY * T11;
173
            T17 = FNMS(T13, T16, T12);
174
            T1c = T18 * T1b;
175
            T1h = FNMS(T1d, T1g, T1c);
176
            T2w = T18 * T1g;
177
            T2x = FMA(T1d, T1b, T2w);
178
            T2u = TY * T16;
179
            T2v = FMA(T13, T11, T2u);
180
            {
181
           E T30, T32, T1G, T1M;
182
           T30 = FMA(T1A, T1F, T2Z);
183
           T32 = FMA(T1H, T1L, T31);
184
           T33 = T30 + T32;
185
           T3Q = T30 - T32;
186
           T1G = FNMS(T1E, T1F, T1C);
187
           T1M = FNMS(T1K, T1L, T1J);
188
           T1N = T1G + T1M;
189
           T3S = T1G - T1M;
190
            }
191
       }
192
        }
193
        {
194
       E T9, T22, Ta, T2O, Tf, T20, T21, T2A, Tn, T2a, To, T2Q, Tt, T26, T27;
195
       E T2C;
196
       {
197
            E T7, T8, Td, Te;
198
            T7 = Ip[WS(rs, 1)];
199
            T8 = Im[WS(rs, 1)];
200
            T9 = T7 - T8;
201
            T22 = T7 + T8;
202
            Ta = T6 * T9;
203
            T2O = T2 * T22;
204
            Td = Rp[WS(rs, 1)];
205
            Te = Rm[WS(rs, 1)];
206
            Tf = Td + Te;
207
            T20 = Td - Te;
208
            T21 = T2 * T20;
209
            T2A = T6 * Tf;
210
       }
211
       {
212
            E Tl, Tm, Tr, Ts;
213
            Tl = Ip[WS(rs, 5)];
214
            Tm = Im[WS(rs, 5)];
215
            Tn = Tl - Tm;
216
            T2a = Tl + Tm;
217
            To = Tk * Tn;
218
            T2Q = T25 * T2a;
219
            Tr = Rp[WS(rs, 5)];
220
            Ts = Rm[WS(rs, 5)];
221
            Tt = Tr + Ts;
222
            T26 = Tr - Ts;
223
            T27 = T25 * T26;
224
            T2C = Tk * Tt;
225
       }
226
       Tg = FNMS(Tc, Tf, Ta);
227
       Tu = FNMS(Tq, Tt, To);
228
       T3A = Tg - Tu;
229
       T2B = FMA(Tc, T9, T2A);
230
       T2D = FMA(Tq, Tn, T2C);
231
       T3B = T2B - T2D;
232
       {
233
            E T23, T2b, T2P, T2R;
234
            T23 = FMA(T5, T22, T21);
235
            T2b = FMA(T29, T2a, T27);
236
            T2c = T23 + T2b;
237
            T3L = T2b - T23;
238
            T2P = FNMS(T5, T20, T2O);
239
            T2R = FNMS(T29, T26, T2Q);
240
            T2S = T2P + T2R;
241
            T3I = T2R - T2P;
242
       }
243
        }
244
        {
245
       E TC, T2f, TD, T2T, TI, T2d, T2e, T2F, TO, T2l, TP, T2V, TU, T2i, T2j;
246
       E T2H;
247
       {
248
            E TA, TB, TG, TH;
249
            TA = Ip[WS(rs, 7)];
250
            TB = Im[WS(rs, 7)];
251
            TC = TA - TB;
252
            T2f = TA + TB;
253
            TD = Tz * TC;
254
            T2T = Tw * T2f;
255
            TG = Rp[WS(rs, 7)];
256
            TH = Rm[WS(rs, 7)];
257
            TI = TG + TH;
258
            T2d = TG - TH;
259
            T2e = Tw * T2d;
260
            T2F = Tz * TI;
261
       }
262
       {
263
            E TM, TN, TS, TT;
264
            TM = Ip[WS(rs, 3)];
265
            TN = Im[WS(rs, 3)];
266
            TO = TM - TN;
267
            T2l = TM + TN;
268
            TP = TL * TO;
269
            T2V = T2h * T2l;
270
            TS = Rp[WS(rs, 3)];
271
            TT = Rm[WS(rs, 3)];
272
            TU = TS + TT;
273
            T2i = TS - TT;
274
            T2j = T2h * T2i;
275
            T2H = TL * TU;
276
       }
277
       TJ = FNMS(TF, TI, TD);
278
       TV = FNMS(TR, TU, TP);
279
       T3E = TJ - TV;
280
       T2G = FMA(TF, TC, T2F);
281
       T2I = FMA(TR, TO, T2H);
282
       T3D = T2G - T2I;
283
       {
284
            E T2g, T2m, T2U, T2W;
285
            T2g = FMA(Ty, T2f, T2e);
286
            T2m = FMA(T2k, T2l, T2j);
287
            T2n = T2g + T2m;
288
            T3J = T2m - T2g;
289
            T2U = FNMS(Ty, T2d, T2T);
290
            T2W = FNMS(T2k, T2i, T2V);
291
            T2X = T2U + T2W;
292
            T3M = T2U - T2W;
293
       }
294
        }
295
        {
296
       E TX, T3o, T3i, T3s, T3l, T3t, T1x, T3e, T2p, T2M, T2K, T3d, T3a, T3c, T2z;
297
       E T3n;
298
       {
299
            E Tv, TW, T3g, T3h;
300
            Tv = Tg + Tu;
301
            TW = TJ + TV;
302
            TX = Tv + TW;
303
            T3o = Tv - TW;
304
            T3g = T2X - T2S;
305
            T3h = T2c - T2n;
306
            T3i = T3g + T3h;
307
            T3s = T3g - T3h;
308
       }
309
       {
310
            E T3j, T3k, T1i, T1w;
311
            T3j = T1Y - T1N;
312
            T3k = T38 - T33;
313
            T3l = T3j - T3k;
314
            T3t = T3j + T3k;
315
            T1i = T17 + T1h;
316
            T1w = T1s + T1v;
317
            T1x = T1i + T1w;
318
            T3e = T1w - T1i;
319
       }
320
       {
321
            E T1Z, T2o, T2E, T2J;
322
            T1Z = T1N + T1Y;
323
            T2o = T2c + T2n;
324
            T2p = T1Z - T2o;
325
            T2M = T2o + T1Z;
326
            T2E = T2B + T2D;
327
            T2J = T2G + T2I;
328
            T2K = T2E + T2J;
329
            T3d = T2J - T2E;
330
       }
331
       {
332
            E T2Y, T39, T2t, T2y;
333
            T2Y = T2S + T2X;
334
            T39 = T33 + T38;
335
            T3a = T2Y - T39;
336
            T3c = T2Y + T39;
337
            T2t = T2q + T2s;
338
            T2y = T2v + T2x;
339
            T2z = T2t + T2y;
340
            T3n = T2t - T2y;
341
       }
342
       {
343
            E T1y, T3b, T2L, T2N;
344
            T1y = TX + T1x;
345
            Ip[0] = KP500000000 * (T1y + T2p);
346
            Im[WS(rs, 7)] = KP500000000 * (T2p - T1y);
347
            T3b = T2z + T2K;
348
            Rm[WS(rs, 7)] = KP500000000 * (T3b - T3c);
349
            Rp[0] = KP500000000 * (T3b + T3c);
350
            T2L = T2z - T2K;
351
            Rm[WS(rs, 3)] = KP500000000 * (T2L - T2M);
352
            Rp[WS(rs, 4)] = KP500000000 * (T2L + T2M);
353
            T2N = T1x - TX;
354
            Ip[WS(rs, 4)] = KP500000000 * (T2N + T3a);
355
            Im[WS(rs, 3)] = KP500000000 * (T3a - T2N);
356
       }
357
       {
358
            E T3f, T3m, T3v, T3w;
359
            T3f = T3d + T3e;
360
            T3m = T3i + T3l;
361
            Ip[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3m, T3f));
362
            Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP707106781, T3m, T3f)));
363
            T3v = T3n + T3o;
364
            T3w = T3s + T3t;
365
            Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP707106781, T3w, T3v));
366
            Rp[WS(rs, 2)] = KP500000000 * (FMA(KP707106781, T3w, T3v));
367
       }
368
       {
369
            E T3p, T3q, T3r, T3u;
370
            T3p = T3n - T3o;
371
            T3q = T3l - T3i;
372
            Rm[WS(rs, 1)] = KP500000000 * (FNMS(KP707106781, T3q, T3p));
373
            Rp[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3q, T3p));
374
            T3r = T3e - T3d;
375
            T3u = T3s - T3t;
376
            Ip[WS(rs, 6)] = KP500000000 * (FMA(KP707106781, T3u, T3r));
377
            Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP707106781, T3u, T3r)));
378
       }
379
        }
380
        {
381
       E T3z, T4b, T4g, T4q, T4j, T4r, T3G, T4m, T3O, T46, T3Z, T4l, T42, T4c, T3V;
382
       E T47;
383
       {
384
            E T3x, T3y, T4e, T4f;
385
            T3x = T1v - T1s;
386
            T3y = T2v - T2x;
387
            T3z = T3x - T3y;
388
            T4b = T3y + T3x;
389
            T4e = T3I - T3J;
390
            T4f = T3M - T3L;
391
            T4g = FMA(KP414213562, T4f, T4e);
392
            T4q = FNMS(KP414213562, T4e, T4f);
393
       }
394
       {
395
            E T4h, T4i, T3C, T3F;
396
            T4h = T3Q + T3P;
397
            T4i = T3T - T3S;
398
            T4j = FMA(KP414213562, T4i, T4h);
399
            T4r = FNMS(KP414213562, T4h, T4i);
400
            T3C = T3A - T3B;
401
            T3F = T3D + T3E;
402
            T3G = T3C + T3F;
403
            T4m = T3C - T3F;
404
       }
405
       {
406
            E T3K, T3N, T3X, T3Y;
407
            T3K = T3I + T3J;
408
            T3N = T3L + T3M;
409
            T3O = FMA(KP414213562, T3N, T3K);
410
            T46 = FNMS(KP414213562, T3K, T3N);
411
            T3X = T2q - T2s;
412
            T3Y = T17 - T1h;
413
            T3Z = T3X + T3Y;
414
            T4l = T3X - T3Y;
415
       }
416
       {
417
            E T40, T41, T3R, T3U;
418
            T40 = T3B + T3A;
419
            T41 = T3D - T3E;
420
            T42 = T40 + T41;
421
            T4c = T41 - T40;
422
            T3R = T3P - T3Q;
423
            T3U = T3S + T3T;
424
            T3V = FNMS(KP414213562, T3U, T3R);
425
            T47 = FMA(KP414213562, T3R, T3U);
426
       }
427
       {
428
            E T3H, T3W, T49, T4a;
429
            T3H = FMA(KP707106781, T3G, T3z);
430
            T3W = T3O + T3V;
431
            Ip[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T3W, T3H));
432
            Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP923879532, T3W, T3H)));
433
            T49 = FMA(KP707106781, T42, T3Z);
434
            T4a = T46 + T47;
435
            Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP923879532, T4a, T49));
436
            Rp[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T4a, T49));
437
       }
438
       {
439
            E T43, T44, T45, T48;
440
            T43 = FNMS(KP707106781, T42, T3Z);
441
            T44 = T3V - T3O;
442
            Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP923879532, T44, T43));
443
            Rp[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T44, T43));
444
            T45 = FNMS(KP707106781, T3G, T3z);
445
            T48 = T46 - T47;
446
            Ip[WS(rs, 5)] = KP500000000 * (FMA(KP923879532, T48, T45));
447
            Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP923879532, T48, T45)));
448
       }
449
       {
450
            E T4d, T4k, T4t, T4u;
451
            T4d = FNMS(KP707106781, T4c, T4b);
452
            T4k = T4g - T4j;
453
            Ip[WS(rs, 7)] = KP500000000 * (FMA(KP923879532, T4k, T4d));
454
            Im[0] = -(KP500000000 * (FNMS(KP923879532, T4k, T4d)));
455
            T4t = FNMS(KP707106781, T4m, T4l);
456
            T4u = T4q + T4r;
457
            Rp[WS(rs, 7)] = KP500000000 * (FNMS(KP923879532, T4u, T4t));
458
            Rm[0] = KP500000000 * (FMA(KP923879532, T4u, T4t));
459
       }
460
       {
461
            E T4n, T4o, T4p, T4s;
462
            T4n = FMA(KP707106781, T4m, T4l);
463
            T4o = T4g + T4j;
464
            Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP923879532, T4o, T4n));
465
            Rp[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4o, T4n));
466
            T4p = FMA(KP707106781, T4c, T4b);
467
            T4s = T4q - T4r;
468
            Ip[WS(rs, 3)] = KP500000000 * (FMA(KP923879532, T4s, T4p));
469
            Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP923879532, T4s, T4p)));
470
       }
471
        }
472
         }
473
    }
474
     }
475
}
476
477
static const tw_instr twinstr[] = {
478
     { TW_CEXP, 1, 1 },
479
     { TW_CEXP, 1, 3 },
480
     { TW_CEXP, 1, 9 },
481
     { TW_CEXP, 1, 15 },
482
     { TW_NEXT, 1, 0 }
483
};
484
485
static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 136, 74, 92, 0 } };
486
487
void X(codelet_hc2cfdft2_16) (planner *p) {
488
     X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
489
}
490
#else
491
492
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 16 -dit -name hc2cfdft2_16 -include rdft/scalar/hc2cf.h */
493
494
/*
495
 * This function contains 228 FP additions, 124 FP multiplications,
496
 * (or, 188 additions, 84 multiplications, 40 fused multiply/add),
497
 * 91 stack variables, 4 constants, and 64 memory accesses
498
 */
499
#include "rdft/scalar/hc2cf.h"
500
501
static void hc2cfdft2_16(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
502
0
{
503
0
     DK(KP461939766, +0.461939766255643378064091594698394143411208313);
504
0
     DK(KP191341716, +0.191341716182544885864229992015199433380672281);
505
0
     DK(KP353553390, +0.353553390593273762200422181052424519642417969);
506
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
507
0
     {
508
0
    INT m;
509
0
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(64, rs)) {
510
0
         E T1, T4, T2, T5, T7, Td, T12, TY, Tk, Ti, Tm, T1l, T1b, TL, T1h;
511
0
         E Ts, TR, T17, Ty, Tz, TA, TE, T1L, T1Q, T1H, T1O, T24, T2d, T20, T2b;
512
0
         {
513
0
        E Tl, TP, Tq, TK, Tj, TQ, Tr, TJ;
514
0
        {
515
0
       E T3, Tc, T6, Tb;
516
0
       T1 = W[0];
517
0
       T4 = W[1];
518
0
       T2 = W[2];
519
0
       T5 = W[3];
520
0
       T3 = T1 * T2;
521
0
       Tc = T4 * T2;
522
0
       T6 = T4 * T5;
523
0
       Tb = T1 * T5;
524
0
       T7 = T3 + T6;
525
0
       Td = Tb - Tc;
526
0
       T12 = Tb + Tc;
527
0
       TY = T3 - T6;
528
0
       Tk = W[5];
529
0
       Tl = T4 * Tk;
530
0
       TP = T2 * Tk;
531
0
       Tq = T1 * Tk;
532
0
       TK = T5 * Tk;
533
0
       Ti = W[4];
534
0
       Tj = T1 * Ti;
535
0
       TQ = T5 * Ti;
536
0
       Tr = T4 * Ti;
537
0
       TJ = T2 * Ti;
538
0
        }
539
0
        Tm = Tj - Tl;
540
0
        T1l = Tq - Tr;
541
0
        T1b = TP + TQ;
542
0
        TL = TJ + TK;
543
0
        T1h = Tj + Tl;
544
0
        Ts = Tq + Tr;
545
0
        TR = TP - TQ;
546
0
        T17 = TJ - TK;
547
0
        Ty = W[6];
548
0
        Tz = W[7];
549
0
        TA = FMA(T1, Ty, T4 * Tz);
550
0
        TE = FNMS(T4, Ty, T1 * Tz);
551
0
        {
552
0
       E T1J, T1K, T1F, T1G;
553
0
       T1J = TY * Tk;
554
0
       T1K = T12 * Ti;
555
0
       T1L = T1J - T1K;
556
0
       T1Q = T1J + T1K;
557
0
       T1F = TY * Ti;
558
0
       T1G = T12 * Tk;
559
0
       T1H = T1F + T1G;
560
0
       T1O = T1F - T1G;
561
0
        }
562
0
        {
563
0
       E T22, T23, T1Y, T1Z;
564
0
       T22 = T7 * Tk;
565
0
       T23 = Td * Ti;
566
0
       T24 = T22 + T23;
567
0
       T2d = T22 - T23;
568
0
       T1Y = T7 * Ti;
569
0
       T1Z = Td * Tk;
570
0
       T20 = T1Y - T1Z;
571
0
       T2b = T1Y + T1Z;
572
0
        }
573
0
         }
574
0
         {
575
0
        E T1t, T3i, T2l, T3B, T1E, T3t, T2M, T3x, T1g, T3C, T2J, T3u, T1T, T3w, T2o;
576
0
        E T3j, Tx, T3b, T2C, T3q, T27, T3m, T2s, T3c, TW, T3f, T2F, T3n, T2g, T3p;
577
0
        E T2v, T3e;
578
0
        {
579
0
       E T1k, T1C, T1o, T1B, T1s, T1z, T1y, T2j, T1p, T2k;
580
0
       {
581
0
            E T1i, T1j, T1m, T1n;
582
0
            T1i = Ip[WS(rs, 4)];
583
0
            T1j = Im[WS(rs, 4)];
584
0
            T1k = T1i - T1j;
585
0
            T1C = T1i + T1j;
586
0
            T1m = Rp[WS(rs, 4)];
587
0
            T1n = Rm[WS(rs, 4)];
588
0
            T1o = T1m + T1n;
589
0
            T1B = T1m - T1n;
590
0
       }
591
0
       {
592
0
            E T1q, T1r, T1w, T1x;
593
0
            T1q = Ip[0];
594
0
            T1r = Im[0];
595
0
            T1s = T1q - T1r;
596
0
            T1z = T1q + T1r;
597
0
            T1w = Rm[0];
598
0
            T1x = Rp[0];
599
0
            T1y = T1w - T1x;
600
0
            T2j = T1x + T1w;
601
0
       }
602
0
       T1p = FNMS(T1l, T1o, T1h * T1k);
603
0
       T1t = T1p + T1s;
604
0
       T3i = T1s - T1p;
605
0
       T2k = FMA(T1h, T1o, T1l * T1k);
606
0
       T2l = T2j + T2k;
607
0
       T3B = T2j - T2k;
608
0
       {
609
0
            E T1A, T1D, T2K, T2L;
610
0
            T1A = FNMS(T4, T1z, T1 * T1y);
611
0
            T1D = FMA(Ti, T1B, Tk * T1C);
612
0
            T1E = T1A - T1D;
613
0
            T3t = T1D + T1A;
614
0
            T2K = FNMS(Tk, T1B, Ti * T1C);
615
0
            T2L = FMA(T4, T1y, T1 * T1z);
616
0
            T2M = T2K + T2L;
617
0
            T3x = T2L - T2K;
618
0
       }
619
0
        }
620
0
        {
621
0
       E T11, T1M, T15, T1I, T1a, T1R, T1e, T1P;
622
0
       {
623
0
            E TZ, T10, T13, T14;
624
0
            TZ = Ip[WS(rs, 2)];
625
0
            T10 = Im[WS(rs, 2)];
626
0
            T11 = TZ - T10;
627
0
            T1M = TZ + T10;
628
0
            T13 = Rp[WS(rs, 2)];
629
0
            T14 = Rm[WS(rs, 2)];
630
0
            T15 = T13 + T14;
631
0
            T1I = T13 - T14;
632
0
       }
633
0
       {
634
0
            E T18, T19, T1c, T1d;
635
0
            T18 = Ip[WS(rs, 6)];
636
0
            T19 = Im[WS(rs, 6)];
637
0
            T1a = T18 - T19;
638
0
            T1R = T18 + T19;
639
0
            T1c = Rp[WS(rs, 6)];
640
0
            T1d = Rm[WS(rs, 6)];
641
0
            T1e = T1c + T1d;
642
0
            T1P = T1c - T1d;
643
0
       }
644
0
       {
645
0
            E T16, T1f, T2H, T2I;
646
0
            T16 = FNMS(T12, T15, TY * T11);
647
0
            T1f = FNMS(T1b, T1e, T17 * T1a);
648
0
            T1g = T16 + T1f;
649
0
            T3C = T16 - T1f;
650
0
            T2H = FNMS(T1L, T1I, T1H * T1M);
651
0
            T2I = FNMS(T1Q, T1P, T1O * T1R);
652
0
            T2J = T2H + T2I;
653
0
            T3u = T2H - T2I;
654
0
       }
655
0
       {
656
0
            E T1N, T1S, T2m, T2n;
657
0
            T1N = FMA(T1H, T1I, T1L * T1M);
658
0
            T1S = FMA(T1O, T1P, T1Q * T1R);
659
0
            T1T = T1N + T1S;
660
0
            T3w = T1S - T1N;
661
0
            T2m = FMA(TY, T15, T12 * T11);
662
0
            T2n = FMA(T17, T1e, T1b * T1a);
663
0
            T2o = T2m + T2n;
664
0
            T3j = T2m - T2n;
665
0
       }
666
0
        }
667
0
        {
668
0
       E Ta, T1W, Tg, T1V, Tp, T25, Tv, T21;
669
0
       {
670
0
            E T8, T9, Te, Tf;
671
0
            T8 = Ip[WS(rs, 1)];
672
0
            T9 = Im[WS(rs, 1)];
673
0
            Ta = T8 - T9;
674
0
            T1W = T8 + T9;
675
0
            Te = Rp[WS(rs, 1)];
676
0
            Tf = Rm[WS(rs, 1)];
677
0
            Tg = Te + Tf;
678
0
            T1V = Te - Tf;
679
0
       }
680
0
       {
681
0
            E Tn, To, Tt, Tu;
682
0
            Tn = Ip[WS(rs, 5)];
683
0
            To = Im[WS(rs, 5)];
684
0
            Tp = Tn - To;
685
0
            T25 = Tn + To;
686
0
            Tt = Rp[WS(rs, 5)];
687
0
            Tu = Rm[WS(rs, 5)];
688
0
            Tv = Tt + Tu;
689
0
            T21 = Tt - Tu;
690
0
       }
691
0
       {
692
0
            E Th, Tw, T2A, T2B;
693
0
            Th = FNMS(Td, Tg, T7 * Ta);
694
0
            Tw = FNMS(Ts, Tv, Tm * Tp);
695
0
            Tx = Th + Tw;
696
0
            T3b = Th - Tw;
697
0
            T2A = FNMS(T5, T1V, T2 * T1W);
698
0
            T2B = FNMS(T24, T21, T20 * T25);
699
0
            T2C = T2A + T2B;
700
0
            T3q = T2A - T2B;
701
0
       }
702
0
       {
703
0
            E T1X, T26, T2q, T2r;
704
0
            T1X = FMA(T2, T1V, T5 * T1W);
705
0
            T26 = FMA(T20, T21, T24 * T25);
706
0
            T27 = T1X + T26;
707
0
            T3m = T26 - T1X;
708
0
            T2q = FMA(T7, Tg, Td * Ta);
709
0
            T2r = FMA(Tm, Tv, Ts * Tp);
710
0
            T2s = T2q + T2r;
711
0
            T3c = T2q - T2r;
712
0
       }
713
0
        }
714
0
        {
715
0
       E TD, T29, TH, T28, TO, T2e, TU, T2c;
716
0
       {
717
0
            E TB, TC, TF, TG;
718
0
            TB = Ip[WS(rs, 7)];
719
0
            TC = Im[WS(rs, 7)];
720
0
            TD = TB - TC;
721
0
            T29 = TB + TC;
722
0
            TF = Rp[WS(rs, 7)];
723
0
            TG = Rm[WS(rs, 7)];
724
0
            TH = TF + TG;
725
0
            T28 = TF - TG;
726
0
       }
727
0
       {
728
0
            E TM, TN, TS, TT;
729
0
            TM = Ip[WS(rs, 3)];
730
0
            TN = Im[WS(rs, 3)];
731
0
            TO = TM - TN;
732
0
            T2e = TM + TN;
733
0
            TS = Rp[WS(rs, 3)];
734
0
            TT = Rm[WS(rs, 3)];
735
0
            TU = TS + TT;
736
0
            T2c = TS - TT;
737
0
       }
738
0
       {
739
0
            E TI, TV, T2D, T2E;
740
0
            TI = FNMS(TE, TH, TA * TD);
741
0
            TV = FNMS(TR, TU, TL * TO);
742
0
            TW = TI + TV;
743
0
            T3f = TI - TV;
744
0
            T2D = FNMS(Tz, T28, Ty * T29);
745
0
            T2E = FNMS(T2d, T2c, T2b * T2e);
746
0
            T2F = T2D + T2E;
747
0
            T3n = T2D - T2E;
748
0
       }
749
0
       {
750
0
            E T2a, T2f, T2t, T2u;
751
0
            T2a = FMA(Ty, T28, Tz * T29);
752
0
            T2f = FMA(T2b, T2c, T2d * T2e);
753
0
            T2g = T2a + T2f;
754
0
            T3p = T2f - T2a;
755
0
            T2t = FMA(TA, TH, TE * TD);
756
0
            T2u = FMA(TL, TU, TR * TO);
757
0
            T2v = T2t + T2u;
758
0
            T3e = T2t - T2u;
759
0
       }
760
0
        }
761
0
        {
762
0
       E T1v, T2z, T2O, T2Q, T2i, T2y, T2x, T2P;
763
0
       {
764
0
            E TX, T1u, T2G, T2N;
765
0
            TX = Tx + TW;
766
0
            T1u = T1g + T1t;
767
0
            T1v = TX + T1u;
768
0
            T2z = T1u - TX;
769
0
            T2G = T2C + T2F;
770
0
            T2N = T2J + T2M;
771
0
            T2O = T2G - T2N;
772
0
            T2Q = T2G + T2N;
773
0
       }
774
0
       {
775
0
            E T1U, T2h, T2p, T2w;
776
0
            T1U = T1E - T1T;
777
0
            T2h = T27 + T2g;
778
0
            T2i = T1U - T2h;
779
0
            T2y = T2h + T1U;
780
0
            T2p = T2l + T2o;
781
0
            T2w = T2s + T2v;
782
0
            T2x = T2p - T2w;
783
0
            T2P = T2p + T2w;
784
0
       }
785
0
       Ip[0] = KP500000000 * (T1v + T2i);
786
0
       Rp[0] = KP500000000 * (T2P + T2Q);
787
0
       Im[WS(rs, 7)] = KP500000000 * (T2i - T1v);
788
0
       Rm[WS(rs, 7)] = KP500000000 * (T2P - T2Q);
789
0
       Rm[WS(rs, 3)] = KP500000000 * (T2x - T2y);
790
0
       Im[WS(rs, 3)] = KP500000000 * (T2O - T2z);
791
0
       Rp[WS(rs, 4)] = KP500000000 * (T2x + T2y);
792
0
       Ip[WS(rs, 4)] = KP500000000 * (T2z + T2O);
793
0
        }
794
0
        {
795
0
       E T2T, T35, T33, T39, T2W, T36, T2Z, T37;
796
0
       {
797
0
            E T2R, T2S, T31, T32;
798
0
            T2R = T2v - T2s;
799
0
            T2S = T1t - T1g;
800
0
            T2T = KP500000000 * (T2R + T2S);
801
0
            T35 = KP500000000 * (T2S - T2R);
802
0
            T31 = T2l - T2o;
803
0
            T32 = Tx - TW;
804
0
            T33 = KP500000000 * (T31 - T32);
805
0
            T39 = KP500000000 * (T31 + T32);
806
0
       }
807
0
       {
808
0
            E T2U, T2V, T2X, T2Y;
809
0
            T2U = T2F - T2C;
810
0
            T2V = T27 - T2g;
811
0
            T2W = T2U + T2V;
812
0
            T36 = T2U - T2V;
813
0
            T2X = T1T + T1E;
814
0
            T2Y = T2M - T2J;
815
0
            T2Z = T2X - T2Y;
816
0
            T37 = T2X + T2Y;
817
0
       }
818
0
       {
819
0
            E T30, T3a, T34, T38;
820
0
            T30 = KP353553390 * (T2W + T2Z);
821
0
            Ip[WS(rs, 2)] = T2T + T30;
822
0
            Im[WS(rs, 5)] = T30 - T2T;
823
0
            T3a = KP353553390 * (T36 + T37);
824
0
            Rm[WS(rs, 5)] = T39 - T3a;
825
0
            Rp[WS(rs, 2)] = T39 + T3a;
826
0
            T34 = KP353553390 * (T2Z - T2W);
827
0
            Rm[WS(rs, 1)] = T33 - T34;
828
0
            Rp[WS(rs, 6)] = T33 + T34;
829
0
            T38 = KP353553390 * (T36 - T37);
830
0
            Ip[WS(rs, 6)] = T35 + T38;
831
0
            Im[WS(rs, 1)] = T38 - T35;
832
0
       }
833
0
        }
834
0
        {
835
0
       E T3k, T3Q, T3Z, T3D, T3h, T40, T3X, T45, T3G, T3P, T3s, T3K, T3U, T44, T3z;
836
0
       E T3L;
837
0
       {
838
0
            E T3d, T3g, T3o, T3r;
839
0
            T3k = KP500000000 * (T3i - T3j);
840
0
            T3Q = KP500000000 * (T3j + T3i);
841
0
            T3Z = KP500000000 * (T3B - T3C);
842
0
            T3D = KP500000000 * (T3B + T3C);
843
0
            T3d = T3b - T3c;
844
0
            T3g = T3e + T3f;
845
0
            T3h = KP353553390 * (T3d + T3g);
846
0
            T40 = KP353553390 * (T3d - T3g);
847
0
            {
848
0
           E T3V, T3W, T3E, T3F;
849
0
           T3V = T3u + T3t;
850
0
           T3W = T3x - T3w;
851
0
           T3X = FNMS(KP461939766, T3W, KP191341716 * T3V);
852
0
           T45 = FMA(KP461939766, T3V, KP191341716 * T3W);
853
0
           T3E = T3c + T3b;
854
0
           T3F = T3e - T3f;
855
0
           T3G = KP353553390 * (T3E + T3F);
856
0
           T3P = KP353553390 * (T3F - T3E);
857
0
            }
858
0
            T3o = T3m + T3n;
859
0
            T3r = T3p - T3q;
860
0
            T3s = FMA(KP191341716, T3o, KP461939766 * T3r);
861
0
            T3K = FNMS(KP191341716, T3r, KP461939766 * T3o);
862
0
            {
863
0
           E T3S, T3T, T3v, T3y;
864
0
           T3S = T3n - T3m;
865
0
           T3T = T3q + T3p;
866
0
           T3U = FMA(KP461939766, T3S, KP191341716 * T3T);
867
0
           T44 = FNMS(KP461939766, T3T, KP191341716 * T3S);
868
0
           T3v = T3t - T3u;
869
0
           T3y = T3w + T3x;
870
0
           T3z = FNMS(KP191341716, T3y, KP461939766 * T3v);
871
0
           T3L = FMA(KP191341716, T3v, KP461939766 * T3y);
872
0
            }
873
0
       }
874
0
       {
875
0
            E T3l, T3A, T3N, T3O;
876
0
            T3l = T3h + T3k;
877
0
            T3A = T3s + T3z;
878
0
            Ip[WS(rs, 1)] = T3l + T3A;
879
0
            Im[WS(rs, 6)] = T3A - T3l;
880
0
            T3N = T3D + T3G;
881
0
            T3O = T3K + T3L;
882
0
            Rm[WS(rs, 6)] = T3N - T3O;
883
0
            Rp[WS(rs, 1)] = T3N + T3O;
884
0
       }
885
0
       {
886
0
            E T3H, T3I, T3J, T3M;
887
0
            T3H = T3D - T3G;
888
0
            T3I = T3z - T3s;
889
0
            Rm[WS(rs, 2)] = T3H - T3I;
890
0
            Rp[WS(rs, 5)] = T3H + T3I;
891
0
            T3J = T3k - T3h;
892
0
            T3M = T3K - T3L;
893
0
            Ip[WS(rs, 5)] = T3J + T3M;
894
0
            Im[WS(rs, 2)] = T3M - T3J;
895
0
       }
896
0
       {
897
0
            E T3R, T3Y, T47, T48;
898
0
            T3R = T3P + T3Q;
899
0
            T3Y = T3U + T3X;
900
0
            Ip[WS(rs, 3)] = T3R + T3Y;
901
0
            Im[WS(rs, 4)] = T3Y - T3R;
902
0
            T47 = T3Z + T40;
903
0
            T48 = T44 + T45;
904
0
            Rm[WS(rs, 4)] = T47 - T48;
905
0
            Rp[WS(rs, 3)] = T47 + T48;
906
0
       }
907
0
       {
908
0
            E T41, T42, T43, T46;
909
0
            T41 = T3Z - T40;
910
0
            T42 = T3X - T3U;
911
0
            Rm[0] = T41 - T42;
912
0
            Rp[WS(rs, 7)] = T41 + T42;
913
0
            T43 = T3Q - T3P;
914
0
            T46 = T44 - T45;
915
0
            Ip[WS(rs, 7)] = T43 + T46;
916
0
            Im[0] = T46 - T43;
917
0
       }
918
0
        }
919
0
         }
920
0
    }
921
0
     }
922
0
}
923
924
static const tw_instr twinstr[] = {
925
     { TW_CEXP, 1, 1 },
926
     { TW_CEXP, 1, 3 },
927
     { TW_CEXP, 1, 9 },
928
     { TW_CEXP, 1, 15 },
929
     { TW_NEXT, 1, 0 }
930
};
931
932
static const hc2c_desc desc = { 16, "hc2cfdft2_16", twinstr, &GENUS, { 188, 84, 40, 0 } };
933
934
1
void X(codelet_hc2cfdft2_16) (planner *p) {
935
1
     X(khc2c_register) (p, hc2cfdft2_16, &desc, HC2C_VIA_DFT);
936
1
}
937
#endif