Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/dft/scalar/codelets/t2_5.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:43:19 UTC 2025 */
23
24
#include "dft/codelet-dft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */
29
30
/*
31
 * This function contains 44 FP additions, 40 FP multiplications,
32
 * (or, 14 additions, 10 multiplications, 30 fused multiply/add),
33
 * 38 stack variables, 4 constants, and 20 memory accesses
34
 */
35
#include "dft/scalar/t.h"
36
37
static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
42
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43
     {
44
    INT m;
45
    for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
46
         E T2, Ta, T8, T5, Tb, Tm, Tf, Tj, T9, Te;
47
         T2 = W[0];
48
         Ta = W[3];
49
         T8 = W[2];
50
         T9 = T2 * T8;
51
         Te = T2 * Ta;
52
         T5 = W[1];
53
         Tb = FNMS(T5, Ta, T9);
54
         Tm = FNMS(T5, T8, Te);
55
         Tf = FMA(T5, T8, Te);
56
         Tj = FMA(T5, Ta, T9);
57
         {
58
        E T1, TO, T7, Th, Ti, Tz, TB, TL, To, Ts, Tt, TE, TG, TM;
59
        T1 = ri[0];
60
        TO = ii[0];
61
        {
62
       E T3, T4, T6, Ty, Tc, Td, Tg, TA;
63
       T3 = ri[WS(rs, 1)];
64
       T4 = T2 * T3;
65
       T6 = ii[WS(rs, 1)];
66
       Ty = T2 * T6;
67
       Tc = ri[WS(rs, 4)];
68
       Td = Tb * Tc;
69
       Tg = ii[WS(rs, 4)];
70
       TA = Tb * Tg;
71
       T7 = FMA(T5, T6, T4);
72
       Th = FMA(Tf, Tg, Td);
73
       Ti = T7 + Th;
74
       Tz = FNMS(T5, T3, Ty);
75
       TB = FNMS(Tf, Tc, TA);
76
       TL = Tz + TB;
77
        }
78
        {
79
       E Tk, Tl, Tn, TD, Tp, Tq, Tr, TF;
80
       Tk = ri[WS(rs, 2)];
81
       Tl = Tj * Tk;
82
       Tn = ii[WS(rs, 2)];
83
       TD = Tj * Tn;
84
       Tp = ri[WS(rs, 3)];
85
       Tq = T8 * Tp;
86
       Tr = ii[WS(rs, 3)];
87
       TF = T8 * Tr;
88
       To = FMA(Tm, Tn, Tl);
89
       Ts = FMA(Ta, Tr, Tq);
90
       Tt = To + Ts;
91
       TE = FNMS(Tm, Tk, TD);
92
       TG = FNMS(Ta, Tp, TF);
93
       TM = TE + TG;
94
        }
95
        {
96
       E Tw, Tu, Tv, TI, TK, TC, TH, TJ, Tx;
97
       Tw = Ti - Tt;
98
       Tu = Ti + Tt;
99
       Tv = FNMS(KP250000000, Tu, T1);
100
       TC = Tz - TB;
101
       TH = TE - TG;
102
       TI = FMA(KP618033988, TH, TC);
103
       TK = FNMS(KP618033988, TC, TH);
104
       ri[0] = T1 + Tu;
105
       TJ = FNMS(KP559016994, Tw, Tv);
106
       ri[WS(rs, 2)] = FNMS(KP951056516, TK, TJ);
107
       ri[WS(rs, 3)] = FMA(KP951056516, TK, TJ);
108
       Tx = FMA(KP559016994, Tw, Tv);
109
       ri[WS(rs, 4)] = FNMS(KP951056516, TI, Tx);
110
       ri[WS(rs, 1)] = FMA(KP951056516, TI, Tx);
111
        }
112
        {
113
       E TQ, TN, TP, TU, TW, TS, TT, TV, TR;
114
       TQ = TL - TM;
115
       TN = TL + TM;
116
       TP = FNMS(KP250000000, TN, TO);
117
       TS = T7 - Th;
118
       TT = To - Ts;
119
       TU = FMA(KP618033988, TT, TS);
120
       TW = FNMS(KP618033988, TS, TT);
121
       ii[0] = TN + TO;
122
       TV = FNMS(KP559016994, TQ, TP);
123
       ii[WS(rs, 2)] = FMA(KP951056516, TW, TV);
124
       ii[WS(rs, 3)] = FNMS(KP951056516, TW, TV);
125
       TR = FMA(KP559016994, TQ, TP);
126
       ii[WS(rs, 1)] = FNMS(KP951056516, TU, TR);
127
       ii[WS(rs, 4)] = FMA(KP951056516, TU, TR);
128
        }
129
         }
130
    }
131
     }
132
}
133
134
static const tw_instr twinstr[] = {
135
     { TW_CEXP, 0, 1 },
136
     { TW_CEXP, 0, 3 },
137
     { TW_NEXT, 1, 0 }
138
};
139
140
static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, { 14, 10, 30, 0 }, 0, 0, 0 };
141
142
void X(codelet_t2_5) (planner *p) {
143
     X(kdft_dit_register) (p, t2_5, &desc);
144
}
145
#else
146
147
/* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 5 -name t2_5 -include dft/scalar/t.h */
148
149
/*
150
 * This function contains 44 FP additions, 32 FP multiplications,
151
 * (or, 30 additions, 18 multiplications, 14 fused multiply/add),
152
 * 37 stack variables, 4 constants, and 20 memory accesses
153
 */
154
#include "dft/scalar/t.h"
155
156
static void t2_5(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
157
104
{
158
104
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
159
104
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
160
104
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
161
104
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
162
104
     {
163
104
    INT m;
164
1.90k
    for (m = mb, W = W + (mb * 4); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 4, MAKE_VOLATILE_STRIDE(10, rs)) {
165
1.79k
         E T2, T4, T7, T9, Tb, Tl, Tf, Tj;
166
1.79k
         {
167
1.79k
        E T8, Te, Ta, Td;
168
1.79k
        T2 = W[0];
169
1.79k
        T4 = W[1];
170
1.79k
        T7 = W[2];
171
1.79k
        T9 = W[3];
172
1.79k
        T8 = T2 * T7;
173
1.79k
        Te = T4 * T7;
174
1.79k
        Ta = T4 * T9;
175
1.79k
        Td = T2 * T9;
176
1.79k
        Tb = T8 - Ta;
177
1.79k
        Tl = Td - Te;
178
1.79k
        Tf = Td + Te;
179
1.79k
        Tj = T8 + Ta;
180
1.79k
         }
181
1.79k
         {
182
1.79k
        E T1, TI, Ty, TB, TN, TM, TF, TG, TH, Ti, Tr, Ts;
183
1.79k
        T1 = ri[0];
184
1.79k
        TI = ii[0];
185
1.79k
        {
186
1.79k
       E T6, Tw, Tq, TA, Th, Tx, Tn, Tz;
187
1.79k
       {
188
1.79k
            E T3, T5, To, Tp;
189
1.79k
            T3 = ri[WS(rs, 1)];
190
1.79k
            T5 = ii[WS(rs, 1)];
191
1.79k
            T6 = FMA(T2, T3, T4 * T5);
192
1.79k
            Tw = FNMS(T4, T3, T2 * T5);
193
1.79k
            To = ri[WS(rs, 3)];
194
1.79k
            Tp = ii[WS(rs, 3)];
195
1.79k
            Tq = FMA(T7, To, T9 * Tp);
196
1.79k
            TA = FNMS(T9, To, T7 * Tp);
197
1.79k
       }
198
1.79k
       {
199
1.79k
            E Tc, Tg, Tk, Tm;
200
1.79k
            Tc = ri[WS(rs, 4)];
201
1.79k
            Tg = ii[WS(rs, 4)];
202
1.79k
            Th = FMA(Tb, Tc, Tf * Tg);
203
1.79k
            Tx = FNMS(Tf, Tc, Tb * Tg);
204
1.79k
            Tk = ri[WS(rs, 2)];
205
1.79k
            Tm = ii[WS(rs, 2)];
206
1.79k
            Tn = FMA(Tj, Tk, Tl * Tm);
207
1.79k
            Tz = FNMS(Tl, Tk, Tj * Tm);
208
1.79k
       }
209
1.79k
       Ty = Tw - Tx;
210
1.79k
       TB = Tz - TA;
211
1.79k
       TN = Tn - Tq;
212
1.79k
       TM = T6 - Th;
213
1.79k
       TF = Tw + Tx;
214
1.79k
       TG = Tz + TA;
215
1.79k
       TH = TF + TG;
216
1.79k
       Ti = T6 + Th;
217
1.79k
       Tr = Tn + Tq;
218
1.79k
       Ts = Ti + Tr;
219
1.79k
        }
220
1.79k
        ri[0] = T1 + Ts;
221
1.79k
        ii[0] = TH + TI;
222
1.79k
        {
223
1.79k
       E TC, TE, Tv, TD, Tt, Tu;
224
1.79k
       TC = FMA(KP951056516, Ty, KP587785252 * TB);
225
1.79k
       TE = FNMS(KP587785252, Ty, KP951056516 * TB);
226
1.79k
       Tt = KP559016994 * (Ti - Tr);
227
1.79k
       Tu = FNMS(KP250000000, Ts, T1);
228
1.79k
       Tv = Tt + Tu;
229
1.79k
       TD = Tu - Tt;
230
1.79k
       ri[WS(rs, 4)] = Tv - TC;
231
1.79k
       ri[WS(rs, 3)] = TD + TE;
232
1.79k
       ri[WS(rs, 1)] = Tv + TC;
233
1.79k
       ri[WS(rs, 2)] = TD - TE;
234
1.79k
        }
235
1.79k
        {
236
1.79k
       E TO, TP, TL, TQ, TJ, TK;
237
1.79k
       TO = FMA(KP951056516, TM, KP587785252 * TN);
238
1.79k
       TP = FNMS(KP587785252, TM, KP951056516 * TN);
239
1.79k
       TJ = KP559016994 * (TF - TG);
240
1.79k
       TK = FNMS(KP250000000, TH, TI);
241
1.79k
       TL = TJ + TK;
242
1.79k
       TQ = TK - TJ;
243
1.79k
       ii[WS(rs, 1)] = TL - TO;
244
1.79k
       ii[WS(rs, 3)] = TQ - TP;
245
1.79k
       ii[WS(rs, 4)] = TO + TL;
246
1.79k
       ii[WS(rs, 2)] = TP + TQ;
247
1.79k
        }
248
1.79k
         }
249
1.79k
    }
250
104
     }
251
104
}
252
253
static const tw_instr twinstr[] = {
254
     { TW_CEXP, 0, 1 },
255
     { TW_CEXP, 0, 3 },
256
     { TW_NEXT, 1, 0 }
257
};
258
259
static const ct_desc desc = { 5, "t2_5", twinstr, &GENUS, { 30, 18, 14, 0 }, 0, 0, 0 };
260
261
1
void X(codelet_t2_5) (planner *p) {
262
1
     X(kdft_dit_register) (p, t2_5, &desc);
263
1
}
264
#endif