Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cb/hb2_20.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:43 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */
29
30
/*
31
 * This function contains 276 FP additions, 198 FP multiplications,
32
 * (or, 136 additions, 58 multiplications, 140 fused multiply/add),
33
 * 129 stack variables, 4 constants, and 80 memory accesses
34
 */
35
#include "rdft/scalar/hb.h"
36
37
static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
46
         E TD, TH, TE, T1L, T1N, T1X, TG, T29, TI, T2b, T1V, T1O, T24, T36, T5b;
47
         E T1S, T1Y, T3b, T3e, T2o, T2Y, T2U, T31, T2s, T4y, T4u, T2f, T2c, T2g, T5g;
48
         E T2k, T1s, T48, T4c, T5q, T5m, T4k, T4f;
49
         {
50
        E T1r, T1M, T2T, T1R, T2X, T23, T2r, T1W, T2n, T2a, TF, T4x;
51
        TD = W[0];
52
        TH = W[3];
53
        TE = W[2];
54
        TF = TD * TE;
55
        T1r = TD * TH;
56
        T1L = W[6];
57
        T1M = TD * T1L;
58
        T2T = TE * T1L;
59
        T1N = W[7];
60
        T1R = TD * T1N;
61
        T2X = TE * T1N;
62
        T1X = W[5];
63
        T23 = TE * T1X;
64
        T2r = TD * T1X;
65
        TG = W[1];
66
        T29 = FNMS(TG, TH, TF);
67
        TI = FMA(TG, TH, TF);
68
        T2b = FMA(TG, TE, T1r);
69
        T1V = W[4];
70
        T1W = TE * T1V;
71
        T2n = TD * T1V;
72
        T2a = T29 * T1V;
73
        T1O = FMA(TG, T1N, T1M);
74
        T24 = FNMS(TH, T1V, T23);
75
        T36 = FNMS(TG, T1V, T2r);
76
        T5b = FNMS(T2b, T1X, T2a);
77
        T1S = FNMS(TG, T1L, T1R);
78
        T1Y = FMA(TH, T1X, T1W);
79
        T3b = FNMS(TH, T1X, T1W);
80
        T3e = FMA(TH, T1V, T23);
81
        T2o = FNMS(TG, T1X, T2n);
82
        T2Y = FNMS(TH, T1L, T2X);
83
        T2U = FMA(TH, T1N, T2T);
84
        T31 = FMA(TG, T1X, T2n);
85
        T2s = FMA(TG, T1V, T2r);
86
        T4x = T29 * T1N;
87
        T4y = FNMS(T2b, T1L, T4x);
88
        {
89
       E T4t, T2e, T2d, T2j;
90
       T4t = T29 * T1L;
91
       T4u = FMA(T2b, T1N, T4t);
92
       T2e = T29 * T1X;
93
       T2f = FNMS(T2b, T1V, T2e);
94
       T2c = FMA(T2b, T1X, T2a);
95
       T2d = T2c * T1L;
96
       T2j = T2c * T1N;
97
       T2g = FMA(T2f, T1N, T2d);
98
       T5g = FMA(T2b, T1V, T2e);
99
       T2k = FNMS(T2f, T1L, T2j);
100
       {
101
            E T47, T5p, T4b, T5l;
102
            T47 = TI * T1V;
103
            T5p = TI * T1N;
104
            T4b = TI * T1X;
105
            T5l = TI * T1L;
106
            T1s = FNMS(TG, TE, T1r);
107
            T48 = FMA(T1s, T1X, T47);
108
            T4c = FNMS(T1s, T1V, T4b);
109
            T5q = FNMS(T1s, T1L, T5p);
110
            T5m = FMA(T1s, T1N, T5l);
111
            T4k = FMA(T1s, T1V, T4b);
112
            T4f = FNMS(T1s, T1X, T47);
113
       }
114
        }
115
         }
116
         {
117
        E T7, T4B, T4V, TJ, T1z, T3j, T3V, T2H, T18, T42, T43, T1n, T2D, T53, T52;
118
        E T2A, T1H, T4R, T4O, T1G, T2O, T3I, T2P, T3P, T2I, T2J, T2K, T1A, T1B, T1C;
119
        E TC, T2w, T3Y, T40, T4I, T4K, TQ, TS, T3y, T3A, T4Y, T50;
120
        {
121
       E T3, T3h, T1y, T3i, T6, T3U, T1v, T3T;
122
       {
123
            E T1, T2, T1w, T1x;
124
            T1 = cr[0];
125
            T2 = ci[WS(rs, 9)];
126
            T3 = T1 + T2;
127
            T3h = T1 - T2;
128
            T1w = ci[WS(rs, 14)];
129
            T1x = cr[WS(rs, 15)];
130
            T1y = T1w - T1x;
131
            T3i = T1w + T1x;
132
       }
133
       {
134
            E T4, T5, T1t, T1u;
135
            T4 = cr[WS(rs, 5)];
136
            T5 = ci[WS(rs, 4)];
137
            T6 = T4 + T5;
138
            T3U = T4 - T5;
139
            T1t = ci[WS(rs, 19)];
140
            T1u = cr[WS(rs, 10)];
141
            T1v = T1t - T1u;
142
            T3T = T1t + T1u;
143
       }
144
       T7 = T3 + T6;
145
       T4B = T3h - T3i;
146
       T4V = T3U + T3T;
147
       TJ = T3 - T6;
148
       T1z = T1v - T1y;
149
       T3j = T3h + T3i;
150
       T3V = T3T - T3U;
151
       T2H = T1v + T1y;
152
        }
153
        {
154
       E Te, T4C, T4M, TK, T1f, T3m, T3L, T2y, TA, T4G, T4Q, TO, T17, T3w, T3H;
155
       E T2C, Tl, T4D, T4N, TL, T1m, T3p, T3O, T2z, Tt, T4F, T4P, TN, T10, T3t;
156
       E T3E, T2B;
157
       {
158
            E Ta, T3k, T1e, T3l, Td, T3K, T1b, T3J;
159
            {
160
           E T8, T9, T1c, T1d;
161
           T8 = cr[WS(rs, 4)];
162
           T9 = ci[WS(rs, 5)];
163
           Ta = T8 + T9;
164
           T3k = T8 - T9;
165
           T1c = ci[WS(rs, 10)];
166
           T1d = cr[WS(rs, 19)];
167
           T1e = T1c - T1d;
168
           T3l = T1c + T1d;
169
            }
170
            {
171
           E Tb, Tc, T19, T1a;
172
           Tb = cr[WS(rs, 9)];
173
           Tc = ci[0];
174
           Td = Tb + Tc;
175
           T3K = Tb - Tc;
176
           T19 = ci[WS(rs, 15)];
177
           T1a = cr[WS(rs, 14)];
178
           T1b = T19 - T1a;
179
           T3J = T19 + T1a;
180
            }
181
            Te = Ta + Td;
182
            T4C = T3k - T3l;
183
            T4M = T3K + T3J;
184
            TK = Ta - Td;
185
            T1f = T1b - T1e;
186
            T3m = T3k + T3l;
187
            T3L = T3J - T3K;
188
            T2y = T1b + T1e;
189
       }
190
       {
191
            E Tw, T3u, Tz, T3F, T13, T3G, T16, T3v;
192
            {
193
           E Tu, Tv, Tx, Ty;
194
           Tu = ci[WS(rs, 7)];
195
           Tv = cr[WS(rs, 2)];
196
           Tw = Tu + Tv;
197
           T3u = Tu - Tv;
198
           Tx = ci[WS(rs, 2)];
199
           Ty = cr[WS(rs, 7)];
200
           Tz = Tx + Ty;
201
           T3F = Tx - Ty;
202
            }
203
            {
204
           E T11, T12, T14, T15;
205
           T11 = ci[WS(rs, 17)];
206
           T12 = cr[WS(rs, 12)];
207
           T13 = T11 - T12;
208
           T3G = T11 + T12;
209
           T14 = ci[WS(rs, 12)];
210
           T15 = cr[WS(rs, 17)];
211
           T16 = T14 - T15;
212
           T3v = T14 + T15;
213
            }
214
            TA = Tw + Tz;
215
            T4G = T3u + T3v;
216
            T4Q = T3F - T3G;
217
            TO = Tw - Tz;
218
            T17 = T13 - T16;
219
            T3w = T3u - T3v;
220
            T3H = T3F + T3G;
221
            T2C = T13 + T16;
222
       }
223
       {
224
            E Th, T3n, T1l, T3o, Tk, T3M, T1i, T3N;
225
            {
226
           E Tf, Tg, T1j, T1k;
227
           Tf = ci[WS(rs, 3)];
228
           Tg = cr[WS(rs, 6)];
229
           Th = Tf + Tg;
230
           T3n = Tf - Tg;
231
           T1j = ci[WS(rs, 18)];
232
           T1k = cr[WS(rs, 11)];
233
           T1l = T1j - T1k;
234
           T3o = T1j + T1k;
235
            }
236
            {
237
           E Ti, Tj, T1g, T1h;
238
           Ti = cr[WS(rs, 1)];
239
           Tj = ci[WS(rs, 8)];
240
           Tk = Ti + Tj;
241
           T3M = Ti - Tj;
242
           T1g = ci[WS(rs, 13)];
243
           T1h = cr[WS(rs, 16)];
244
           T1i = T1g - T1h;
245
           T3N = T1g + T1h;
246
            }
247
            Tl = Th + Tk;
248
            T4D = T3n - T3o;
249
            T4N = T3M - T3N;
250
            TL = Th - Tk;
251
            T1m = T1i - T1l;
252
            T3p = T3n + T3o;
253
            T3O = T3M + T3N;
254
            T2z = T1i + T1l;
255
       }
256
       {
257
            E Tp, T3r, TZ, T3s, Ts, T3D, TW, T3C;
258
            {
259
           E Tn, To, TX, TY;
260
           Tn = cr[WS(rs, 8)];
261
           To = ci[WS(rs, 1)];
262
           Tp = Tn + To;
263
           T3r = Tn - To;
264
           TX = ci[WS(rs, 16)];
265
           TY = cr[WS(rs, 13)];
266
           TZ = TX - TY;
267
           T3s = TX + TY;
268
            }
269
            {
270
           E Tq, Tr, TU, TV;
271
           Tq = ci[WS(rs, 6)];
272
           Tr = cr[WS(rs, 3)];
273
           Ts = Tq + Tr;
274
           T3D = Tq - Tr;
275
           TU = ci[WS(rs, 11)];
276
           TV = cr[WS(rs, 18)];
277
           TW = TU - TV;
278
           T3C = TU + TV;
279
            }
280
            Tt = Tp + Ts;
281
            T4F = T3r + T3s;
282
            T4P = T3D + T3C;
283
            TN = Tp - Ts;
284
            T10 = TW - TZ;
285
            T3t = T3r - T3s;
286
            T3E = T3C - T3D;
287
            T2B = TW + TZ;
288
       }
289
       T18 = T10 - T17;
290
       T42 = T3t - T3w;
291
       T43 = T3m - T3p;
292
       T1n = T1f - T1m;
293
       T2D = T2B - T2C;
294
       T53 = T4F - T4G;
295
       T52 = T4C - T4D;
296
       T2A = T2y - T2z;
297
       T1H = TK - TL;
298
       T4R = T4P - T4Q;
299
       T4O = T4M - T4N;
300
       T1G = TN - TO;
301
       T2O = Te - Tl;
302
       T3I = T3E + T3H;
303
       T2P = Tt - TA;
304
       T3P = T3L + T3O;
305
       T2I = T2y + T2z;
306
       T2J = T2B + T2C;
307
       T2K = T2I + T2J;
308
       T1A = T1f + T1m;
309
       T1B = T10 + T17;
310
       T1C = T1A + T1B;
311
       {
312
            E Tm, TB, TM, TP;
313
            Tm = Te + Tl;
314
            TB = Tt + TA;
315
            TC = Tm + TB;
316
            T2w = Tm - TB;
317
            {
318
           E T3W, T3X, T4E, T4H;
319
           T3W = T3L - T3O;
320
           T3X = T3E - T3H;
321
           T3Y = T3W + T3X;
322
           T40 = T3W - T3X;
323
           T4E = T4C + T4D;
324
           T4H = T4F + T4G;
325
           T4I = T4E + T4H;
326
           T4K = T4E - T4H;
327
            }
328
            TM = TK + TL;
329
            TP = TN + TO;
330
            TQ = TM + TP;
331
            TS = TM - TP;
332
            {
333
           E T3q, T3x, T4W, T4X;
334
           T3q = T3m + T3p;
335
           T3x = T3t + T3w;
336
           T3y = T3q + T3x;
337
           T3A = T3q - T3x;
338
           T4W = T4M + T4N;
339
           T4X = T4P + T4Q;
340
           T4Y = T4W + T4X;
341
           T50 = T4W - T4X;
342
            }
343
       }
344
        }
345
        cr[0] = T7 + TC;
346
        ci[0] = T2H + T2K;
347
        {
348
       E T2t, T2q, T2u, T2p;
349
       T2t = T1z + T1C;
350
       T2p = TJ + TQ;
351
       T2q = T2o * T2p;
352
       T2u = T2s * T2p;
353
       cr[WS(rs, 10)] = FNMS(T2s, T2t, T2q);
354
       ci[WS(rs, 10)] = FMA(T2o, T2t, T2u);
355
        }
356
        {
357
       E T5t, T5u, T5v, T5w;
358
       T5t = T4B + T4I;
359
       T5u = T2c * T5t;
360
       T5v = T4V + T4Y;
361
       T5w = T2c * T5v;
362
       cr[WS(rs, 5)] = FNMS(T2f, T5v, T5u);
363
       ci[WS(rs, 5)] = FMA(T2f, T5t, T5w);
364
        }
365
        {
366
       E T4v, T4w, T4z, T4A;
367
       T4v = T3j + T3y;
368
       T4w = T4u * T4v;
369
       T4z = T3V + T3Y;
370
       T4A = T4u * T4z;
371
       cr[WS(rs, 15)] = FNMS(T4y, T4z, T4w);
372
       ci[WS(rs, 15)] = FMA(T4y, T4v, T4A);
373
        }
374
        {
375
       E T3R, T4p, T49, T4i, T45, T4r, T4d, T4n;
376
       {
377
            E T3Q, T4h, T3B, T4g, T3z;
378
            T3Q = FNMS(KP618033988, T3P, T3I);
379
            T4h = FMA(KP618033988, T3I, T3P);
380
            T3z = FNMS(KP250000000, T3y, T3j);
381
            T3B = FNMS(KP559016994, T3A, T3z);
382
            T4g = FMA(KP559016994, T3A, T3z);
383
            T3R = FNMS(KP951056516, T3Q, T3B);
384
            T4p = FMA(KP951056516, T4h, T4g);
385
            T49 = FMA(KP951056516, T3Q, T3B);
386
            T4i = FNMS(KP951056516, T4h, T4g);
387
       }
388
       {
389
            E T44, T4m, T41, T4l, T3Z;
390
            T44 = FNMS(KP618033988, T43, T42);
391
            T4m = FMA(KP618033988, T42, T43);
392
            T3Z = FNMS(KP250000000, T3Y, T3V);
393
            T41 = FNMS(KP559016994, T40, T3Z);
394
            T4l = FMA(KP559016994, T40, T3Z);
395
            T45 = FMA(KP951056516, T44, T41);
396
            T4r = FNMS(KP951056516, T4m, T4l);
397
            T4d = FNMS(KP951056516, T44, T41);
398
            T4n = FMA(KP951056516, T4m, T4l);
399
       }
400
       {
401
            E T3S, T46, T4a, T4e;
402
            T3S = TE * T3R;
403
            cr[WS(rs, 3)] = FNMS(TH, T45, T3S);
404
            T46 = TE * T45;
405
            ci[WS(rs, 3)] = FMA(TH, T3R, T46);
406
            T4a = T48 * T49;
407
            cr[WS(rs, 7)] = FNMS(T4c, T4d, T4a);
408
            T4e = T48 * T4d;
409
            ci[WS(rs, 7)] = FMA(T4c, T49, T4e);
410
       }
411
       {
412
            E T4j, T4o, T4q, T4s;
413
            T4j = T4f * T4i;
414
            cr[WS(rs, 11)] = FNMS(T4k, T4n, T4j);
415
            T4o = T4f * T4n;
416
            ci[WS(rs, 11)] = FMA(T4k, T4i, T4o);
417
            T4q = T1L * T4p;
418
            cr[WS(rs, 19)] = FNMS(T1N, T4r, T4q);
419
            T4s = T1L * T4r;
420
            ci[WS(rs, 19)] = FMA(T1N, T4p, T4s);
421
       }
422
        }
423
        {
424
       E T4T, T5n, T57, T5e, T55, T5r, T59, T5j;
425
       {
426
            E T4S, T5d, T4L, T5c, T4J;
427
            T4S = FMA(KP618033988, T4R, T4O);
428
            T5d = FNMS(KP618033988, T4O, T4R);
429
            T4J = FNMS(KP250000000, T4I, T4B);
430
            T4L = FMA(KP559016994, T4K, T4J);
431
            T5c = FNMS(KP559016994, T4K, T4J);
432
            T4T = FNMS(KP951056516, T4S, T4L);
433
            T5n = FMA(KP951056516, T5d, T5c);
434
            T57 = FMA(KP951056516, T4S, T4L);
435
            T5e = FNMS(KP951056516, T5d, T5c);
436
       }
437
       {
438
            E T54, T5i, T51, T5h, T4Z;
439
            T54 = FMA(KP618033988, T53, T52);
440
            T5i = FNMS(KP618033988, T52, T53);
441
            T4Z = FNMS(KP250000000, T4Y, T4V);
442
            T51 = FMA(KP559016994, T50, T4Z);
443
            T5h = FNMS(KP559016994, T50, T4Z);
444
            T55 = FMA(KP951056516, T54, T51);
445
            T5r = FNMS(KP951056516, T5i, T5h);
446
            T59 = FNMS(KP951056516, T54, T51);
447
            T5j = FMA(KP951056516, T5i, T5h);
448
       }
449
       {
450
            E T4U, T56, T58, T5a;
451
            T4U = TD * T4T;
452
            cr[WS(rs, 1)] = FNMS(TG, T55, T4U);
453
            T56 = TD * T55;
454
            ci[WS(rs, 1)] = FMA(TG, T4T, T56);
455
            T58 = T1V * T57;
456
            cr[WS(rs, 9)] = FNMS(T1X, T59, T58);
457
            T5a = T1V * T59;
458
            ci[WS(rs, 9)] = FMA(T1X, T57, T5a);
459
       }
460
       {
461
            E T5f, T5k, T5o, T5s;
462
            T5f = T5b * T5e;
463
            cr[WS(rs, 13)] = FNMS(T5g, T5j, T5f);
464
            T5k = T5b * T5j;
465
            ci[WS(rs, 13)] = FMA(T5g, T5e, T5k);
466
            T5o = T5m * T5n;
467
            cr[WS(rs, 17)] = FNMS(T5q, T5r, T5o);
468
            T5s = T5m * T5r;
469
            ci[WS(rs, 17)] = FMA(T5q, T5n, T5s);
470
       }
471
        }
472
        {
473
       E T2Q, T38, T2N, T37, T2F, T3c, T2V, T34, T2L, T2M;
474
       T2Q = FMA(KP618033988, T2P, T2O);
475
       T38 = FNMS(KP618033988, T2O, T2P);
476
       T2L = FNMS(KP250000000, T2K, T2H);
477
       T2M = T2I - T2J;
478
       T2N = FMA(KP559016994, T2M, T2L);
479
       T37 = FNMS(KP559016994, T2M, T2L);
480
       {
481
            E T2E, T33, T2x, T32, T2v;
482
            T2E = FMA(KP618033988, T2D, T2A);
483
            T33 = FNMS(KP618033988, T2A, T2D);
484
            T2v = FNMS(KP250000000, TC, T7);
485
            T2x = FMA(KP559016994, T2w, T2v);
486
            T32 = FNMS(KP559016994, T2w, T2v);
487
            T2F = FMA(KP951056516, T2E, T2x);
488
            T3c = FMA(KP951056516, T33, T32);
489
            T2V = FNMS(KP951056516, T2E, T2x);
490
            T34 = FNMS(KP951056516, T33, T32);
491
       }
492
       {
493
            E T2G, T2S, T2R, T3d, T3g, T3f;
494
            T2G = T29 * T2F;
495
            T2S = T2b * T2F;
496
            T2R = FNMS(KP951056516, T2Q, T2N);
497
            cr[WS(rs, 4)] = FNMS(T2b, T2R, T2G);
498
            ci[WS(rs, 4)] = FMA(T29, T2R, T2S);
499
            T3d = T3b * T3c;
500
            T3g = T3e * T3c;
501
            T3f = FNMS(KP951056516, T38, T37);
502
            cr[WS(rs, 12)] = FNMS(T3e, T3f, T3d);
503
            ci[WS(rs, 12)] = FMA(T3b, T3f, T3g);
504
       }
505
       {
506
            E T2W, T30, T2Z, T35, T3a, T39;
507
            T2W = T2U * T2V;
508
            T30 = T2Y * T2V;
509
            T2Z = FMA(KP951056516, T2Q, T2N);
510
            cr[WS(rs, 16)] = FNMS(T2Y, T2Z, T2W);
511
            ci[WS(rs, 16)] = FMA(T2U, T2Z, T30);
512
            T35 = T31 * T34;
513
            T3a = T36 * T34;
514
            T39 = FMA(KP951056516, T38, T37);
515
            cr[WS(rs, 8)] = FNMS(T36, T39, T35);
516
            ci[WS(rs, 8)] = FMA(T31, T39, T3a);
517
       }
518
        }
519
        {
520
       E T1I, T26, T1F, T25, T1p, T2h, T1P, T21, T1D, T1E;
521
       T1I = FNMS(KP618033988, T1H, T1G);
522
       T26 = FMA(KP618033988, T1G, T1H);
523
       T1D = FNMS(KP250000000, T1C, T1z);
524
       T1E = T1A - T1B;
525
       T1F = FNMS(KP559016994, T1E, T1D);
526
       T25 = FMA(KP559016994, T1E, T1D);
527
       {
528
            E T1o, T20, TT, T1Z, TR;
529
            T1o = FNMS(KP618033988, T1n, T18);
530
            T20 = FMA(KP618033988, T18, T1n);
531
            TR = FNMS(KP250000000, TQ, TJ);
532
            TT = FNMS(KP559016994, TS, TR);
533
            T1Z = FMA(KP559016994, TS, TR);
534
            T1p = FMA(KP951056516, T1o, TT);
535
            T2h = FMA(KP951056516, T20, T1Z);
536
            T1P = FNMS(KP951056516, T1o, TT);
537
            T21 = FNMS(KP951056516, T20, T1Z);
538
       }
539
       {
540
            E T1q, T1K, T1J, T2i, T2m, T2l;
541
            T1q = TI * T1p;
542
            T1K = T1s * T1p;
543
            T1J = FNMS(KP951056516, T1I, T1F);
544
            cr[WS(rs, 2)] = FNMS(T1s, T1J, T1q);
545
            ci[WS(rs, 2)] = FMA(TI, T1J, T1K);
546
            T2i = T2g * T2h;
547
            T2m = T2k * T2h;
548
            T2l = FNMS(KP951056516, T26, T25);
549
            cr[WS(rs, 14)] = FNMS(T2k, T2l, T2i);
550
            ci[WS(rs, 14)] = FMA(T2g, T2l, T2m);
551
       }
552
       {
553
            E T1Q, T1U, T1T, T22, T28, T27;
554
            T1Q = T1O * T1P;
555
            T1U = T1S * T1P;
556
            T1T = FMA(KP951056516, T1I, T1F);
557
            cr[WS(rs, 18)] = FNMS(T1S, T1T, T1Q);
558
            ci[WS(rs, 18)] = FMA(T1O, T1T, T1U);
559
            T22 = T1Y * T21;
560
            T28 = T24 * T21;
561
            T27 = FMA(KP951056516, T26, T25);
562
            cr[WS(rs, 6)] = FNMS(T24, T27, T22);
563
            ci[WS(rs, 6)] = FMA(T1Y, T27, T28);
564
       }
565
        }
566
         }
567
    }
568
     }
569
}
570
571
static const tw_instr twinstr[] = {
572
     { TW_CEXP, 1, 1 },
573
     { TW_CEXP, 1, 3 },
574
     { TW_CEXP, 1, 9 },
575
     { TW_CEXP, 1, 19 },
576
     { TW_NEXT, 1, 0 }
577
};
578
579
static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, { 136, 58, 140, 0 } };
580
581
void X(codelet_hb2_20) (planner *p) {
582
     X(khc2hc_register) (p, hb2_20, &desc);
583
}
584
#else
585
586
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */
587
588
/*
589
 * This function contains 276 FP additions, 164 FP multiplications,
590
 * (or, 204 additions, 92 multiplications, 72 fused multiply/add),
591
 * 137 stack variables, 4 constants, and 80 memory accesses
592
 */
593
#include "rdft/scalar/hb.h"
594
595
static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
596
0
{
597
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
598
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
599
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
600
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
601
0
     {
602
0
    INT m;
603
0
    for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) {
604
0
         E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X;
605
0
         E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d;
606
0
         E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L;
607
0
         {
608
0
        E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h;
609
0
        {
610
0
       E TF, T1s, TI, T1r;
611
0
       TD = W[0];
612
0
       TG = W[1];
613
0
       TE = W[2];
614
0
       TH = W[3];
615
0
       TF = TD * TE;
616
0
       T1s = TG * TE;
617
0
       TI = TG * TH;
618
0
       T1r = TD * TH;
619
0
       TJ = TF + TI;
620
0
       T1t = T1r - T1s;
621
0
       T27 = T1r + T1s;
622
0
       T25 = TF - TI;
623
0
       T1T = W[5];
624
0
       T1U = TH * T1T;
625
0
       T2l = TD * T1T;
626
0
       T1Z = TE * T1T;
627
0
       T2i = TG * T1T;
628
0
       T1R = W[4];
629
0
       T1S = TE * T1R;
630
0
       T2m = TG * T1R;
631
0
       T20 = TH * T1R;
632
0
       T2h = TD * T1R;
633
0
        }
634
0
        T1V = T1S + T1U;
635
0
        T2j = T2h - T2i;
636
0
        T2Z = T1Z + T20;
637
0
        T21 = T1Z - T20;
638
0
        T2X = T1S - T1U;
639
0
        T2T = T2l - T2m;
640
0
        T2n = T2l + T2m;
641
0
        T2P = T2h + T2i;
642
0
        {
643
0
       E T3T, T3U, T3P, T3Q;
644
0
       T3T = TJ * T1T;
645
0
       T3U = T1t * T1R;
646
0
       T3V = T3T - T3U;
647
0
       T41 = T3T + T3U;
648
0
       T3P = TJ * T1R;
649
0
       T3Q = T1t * T1T;
650
0
       T3R = T3P + T3Q;
651
0
       T3X = T3P - T3Q;
652
0
       {
653
0
            E T26, T28, T2a, T2b;
654
0
            T26 = T25 * T1R;
655
0
            T28 = T27 * T1T;
656
0
            T29 = T26 + T28;
657
0
            T2a = T25 * T1T;
658
0
            T2b = T27 * T1R;
659
0
            T2c = T2a - T2b;
660
0
            T4H = T26 - T28;
661
0
            T4L = T2a + T2b;
662
0
            T1L = W[6];
663
0
            T1M = W[7];
664
0
            T1N = FMA(TD, T1L, TG * T1M);
665
0
            T2d = FMA(T29, T1L, T2c * T1M);
666
0
            T4R = FNMS(T1t, T1L, TJ * T1M);
667
0
            T1P = FNMS(TG, T1L, TD * T1M);
668
0
            T4P = FMA(TJ, T1L, T1t * T1M);
669
0
            T49 = FNMS(T27, T1L, T25 * T1M);
670
0
            T2N = FNMS(TH, T1L, TE * T1M);
671
0
            T2f = FNMS(T2c, T1L, T29 * T1M);
672
0
            T47 = FMA(T25, T1L, T27 * T1M);
673
0
            T2L = FMA(TE, T1L, TH * T1M);
674
0
       }
675
0
        }
676
0
         }
677
0
         {
678
0
        E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B;
679
0
        E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC;
680
0
        E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H;
681
0
        E TN, TQ, TR, T48, T4a;
682
0
        {
683
0
       E T3, T3g, T1C, T3h, T6, T3D, T1z, T3C;
684
0
       {
685
0
            E T1, T2, T1A, T1B;
686
0
            T1 = cr[0];
687
0
            T2 = ci[WS(rs, 9)];
688
0
            T3 = T1 + T2;
689
0
            T3g = T1 - T2;
690
0
            T1A = ci[WS(rs, 14)];
691
0
            T1B = cr[WS(rs, 15)];
692
0
            T1C = T1A - T1B;
693
0
            T3h = T1A + T1B;
694
0
       }
695
0
       {
696
0
            E T4, T5, T1x, T1y;
697
0
            T4 = cr[WS(rs, 5)];
698
0
            T5 = ci[WS(rs, 4)];
699
0
            T6 = T4 + T5;
700
0
            T3D = T4 - T5;
701
0
            T1x = ci[WS(rs, 19)];
702
0
            T1y = cr[WS(rs, 10)];
703
0
            T1z = T1x - T1y;
704
0
            T3C = T1x + T1y;
705
0
       }
706
0
       T7 = T3 + T6;
707
0
       T4i = T3g - T3h;
708
0
       T4x = T3D + T3C;
709
0
       TK = T3 - T6;
710
0
       T1D = T1z - T1C;
711
0
       T3i = T3g + T3h;
712
0
       T3E = T3C - T3D;
713
0
       T2D = T1z + T1C;
714
0
        }
715
0
        {
716
0
       E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v;
717
0
       E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a;
718
0
       E T3s, T2v;
719
0
       {
720
0
            E Ta, T3j, T10, T3k, Td, T32, TX, T31;
721
0
            {
722
0
           E T8, T9, TY, TZ;
723
0
           T8 = cr[WS(rs, 4)];
724
0
           T9 = ci[WS(rs, 5)];
725
0
           Ta = T8 + T9;
726
0
           T3j = T8 - T9;
727
0
           TY = ci[WS(rs, 10)];
728
0
           TZ = cr[WS(rs, 19)];
729
0
           T10 = TY - TZ;
730
0
           T3k = TY + TZ;
731
0
            }
732
0
            {
733
0
           E Tb, Tc, TV, TW;
734
0
           Tb = cr[WS(rs, 9)];
735
0
           Tc = ci[0];
736
0
           Td = Tb + Tc;
737
0
           T32 = Tb - Tc;
738
0
           TV = ci[WS(rs, 15)];
739
0
           TW = cr[WS(rs, 14)];
740
0
           TX = TV - TW;
741
0
           T31 = TV + TW;
742
0
            }
743
0
            Te = Ta + Td;
744
0
            T4b = T3j - T3k;
745
0
            T4m = T32 + T31;
746
0
            TL = Ta - Td;
747
0
            T11 = TX - T10;
748
0
            T33 = T31 - T32;
749
0
            T3l = T3j + T3k;
750
0
            T2s = TX + T10;
751
0
       }
752
0
       {
753
0
            E Tw, T3t, Tz, T3b, T1j, T3c, T1m, T3u;
754
0
            {
755
0
           E Tu, Tv, Tx, Ty;
756
0
           Tu = ci[WS(rs, 7)];
757
0
           Tv = cr[WS(rs, 2)];
758
0
           Tw = Tu + Tv;
759
0
           T3t = Tu - Tv;
760
0
           Tx = ci[WS(rs, 2)];
761
0
           Ty = cr[WS(rs, 7)];
762
0
           Tz = Tx + Ty;
763
0
           T3b = Tx - Ty;
764
0
            }
765
0
            {
766
0
           E T1h, T1i, T1k, T1l;
767
0
           T1h = ci[WS(rs, 17)];
768
0
           T1i = cr[WS(rs, 12)];
769
0
           T1j = T1h - T1i;
770
0
           T3c = T1h + T1i;
771
0
           T1k = ci[WS(rs, 12)];
772
0
           T1l = cr[WS(rs, 17)];
773
0
           T1m = T1k - T1l;
774
0
           T3u = T1k + T1l;
775
0
            }
776
0
            TA = Tw + Tz;
777
0
            T4f = T3t + T3u;
778
0
            T4q = T3b - T3c;
779
0
            TP = Tw - Tz;
780
0
            T1n = T1j - T1m;
781
0
            T3d = T3b + T3c;
782
0
            T3v = T3t - T3u;
783
0
            T2w = T1j + T1m;
784
0
       }
785
0
       {
786
0
            E Th, T3m, T17, T3n, Tk, T34, T14, T35;
787
0
            {
788
0
           E Tf, Tg, T15, T16;
789
0
           Tf = ci[WS(rs, 3)];
790
0
           Tg = cr[WS(rs, 6)];
791
0
           Th = Tf + Tg;
792
0
           T3m = Tf - Tg;
793
0
           T15 = ci[WS(rs, 18)];
794
0
           T16 = cr[WS(rs, 11)];
795
0
           T17 = T15 - T16;
796
0
           T3n = T15 + T16;
797
0
            }
798
0
            {
799
0
           E Ti, Tj, T12, T13;
800
0
           Ti = cr[WS(rs, 1)];
801
0
           Tj = ci[WS(rs, 8)];
802
0
           Tk = Ti + Tj;
803
0
           T34 = Ti - Tj;
804
0
           T12 = ci[WS(rs, 13)];
805
0
           T13 = cr[WS(rs, 16)];
806
0
           T14 = T12 - T13;
807
0
           T35 = T12 + T13;
808
0
            }
809
0
            Tl = Th + Tk;
810
0
            T4c = T3m - T3n;
811
0
            T4n = T34 - T35;
812
0
            TM = Th - Tk;
813
0
            T18 = T14 - T17;
814
0
            T36 = T34 + T35;
815
0
            T3o = T3m + T3n;
816
0
            T2t = T14 + T17;
817
0
       }
818
0
       {
819
0
            E Tp, T3q, T1f, T3r, Ts, T39, T1c, T38;
820
0
            {
821
0
           E Tn, To, T1d, T1e;
822
0
           Tn = cr[WS(rs, 8)];
823
0
           To = ci[WS(rs, 1)];
824
0
           Tp = Tn + To;
825
0
           T3q = Tn - To;
826
0
           T1d = ci[WS(rs, 16)];
827
0
           T1e = cr[WS(rs, 13)];
828
0
           T1f = T1d - T1e;
829
0
           T3r = T1d + T1e;
830
0
            }
831
0
            {
832
0
           E Tq, Tr, T1a, T1b;
833
0
           Tq = ci[WS(rs, 6)];
834
0
           Tr = cr[WS(rs, 3)];
835
0
           Ts = Tq + Tr;
836
0
           T39 = Tq - Tr;
837
0
           T1a = ci[WS(rs, 11)];
838
0
           T1b = cr[WS(rs, 18)];
839
0
           T1c = T1a - T1b;
840
0
           T38 = T1a + T1b;
841
0
            }
842
0
            Tt = Tp + Ts;
843
0
            T4e = T3q + T3r;
844
0
            T4p = T39 + T38;
845
0
            TO = Tp - Ts;
846
0
            T1g = T1c - T1f;
847
0
            T3a = T38 - T39;
848
0
            T3s = T3q - T3r;
849
0
            T2v = T1c + T1f;
850
0
       }
851
0
       T19 = T11 - T18;
852
0
       T3L = T3l - T3o;
853
0
       T3M = T3s - T3v;
854
0
       T1o = T1g - T1n;
855
0
       T2x = T2v - T2w;
856
0
       T4C = T4e - T4f;
857
0
       T4B = T4b - T4c;
858
0
       T2u = T2s - T2t;
859
0
       T1v = TO - TP;
860
0
       T4r = T4p - T4q;
861
0
       T4o = T4m - T4n;
862
0
       T1u = TL - TM;
863
0
       T2H = Te - Tl;
864
0
       T37 = T33 + T36;
865
0
       T2I = Tt - TA;
866
0
       T3e = T3a + T3d;
867
0
       T3p = T3l + T3o;
868
0
       T3w = T3s + T3v;
869
0
       T3x = T3p + T3w;
870
0
       Tm = Te + Tl;
871
0
       TB = Tt + TA;
872
0
       TC = Tm + TB;
873
0
       T4u = T4m + T4n;
874
0
       T4v = T4p + T4q;
875
0
       T4y = T4u + T4v;
876
0
       T2A = T2s + T2t;
877
0
       T2B = T2v + T2w;
878
0
       T2E = T2A + T2B;
879
0
       T1E = T11 + T18;
880
0
       T1F = T1g + T1n;
881
0
       T1G = T1E + T1F;
882
0
       T4d = T4b + T4c;
883
0
       T4g = T4e + T4f;
884
0
       T4j = T4d + T4g;
885
0
       T3F = T33 - T36;
886
0
       T3G = T3a - T3d;
887
0
       T3H = T3F + T3G;
888
0
       TN = TL + TM;
889
0
       TQ = TO + TP;
890
0
       TR = TN + TQ;
891
0
        }
892
0
        cr[0] = T7 + TC;
893
0
        ci[0] = T2D + T2E;
894
0
        {
895
0
       E T2k, T2o, T4T, T4U;
896
0
       T2k = TK + TR;
897
0
       T2o = T1D + T1G;
898
0
       cr[WS(rs, 10)] = FNMS(T2n, T2o, T2j * T2k);
899
0
       ci[WS(rs, 10)] = FMA(T2n, T2k, T2j * T2o);
900
0
       T4T = T4i + T4j;
901
0
       T4U = T4x + T4y;
902
0
       cr[WS(rs, 5)] = FNMS(T2c, T4U, T29 * T4T);
903
0
       ci[WS(rs, 5)] = FMA(T29, T4U, T2c * T4T);
904
0
        }
905
0
        T48 = T3i + T3x;
906
0
        T4a = T3E + T3H;
907
0
        cr[WS(rs, 15)] = FNMS(T49, T4a, T47 * T48);
908
0
        ci[WS(rs, 15)] = FMA(T47, T4a, T49 * T48);
909
0
        {
910
0
       E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q;
911
0
       T2y = FMA(KP951056516, T2u, KP587785252 * T2x);
912
0
       T2J = FMA(KP951056516, T2H, KP587785252 * T2I);
913
0
       T2V = FNMS(KP951056516, T2I, KP587785252 * T2H);
914
0
       T2R = FNMS(KP951056516, T2x, KP587785252 * T2u);
915
0
       {
916
0
            E T2C, T2F, T2p, T2q;
917
0
            T2C = KP559016994 * (T2A - T2B);
918
0
            T2F = FNMS(KP250000000, T2E, T2D);
919
0
            T2G = T2C + T2F;
920
0
            T2U = T2F - T2C;
921
0
            T2p = KP559016994 * (Tm - TB);
922
0
            T2q = FNMS(KP250000000, TC, T7);
923
0
            T2r = T2p + T2q;
924
0
            T2Q = T2q - T2p;
925
0
       }
926
0
       {
927
0
            E T2z, T2K, T2Y, T30;
928
0
            T2z = T2r + T2y;
929
0
            T2K = T2G - T2J;
930
0
            cr[WS(rs, 4)] = FNMS(T27, T2K, T25 * T2z);
931
0
            ci[WS(rs, 4)] = FMA(T27, T2z, T25 * T2K);
932
0
            T2Y = T2Q - T2R;
933
0
            T30 = T2V + T2U;
934
0
            cr[WS(rs, 12)] = FNMS(T2Z, T30, T2X * T2Y);
935
0
            ci[WS(rs, 12)] = FMA(T2Z, T2Y, T2X * T30);
936
0
       }
937
0
       {
938
0
            E T2M, T2O, T2S, T2W;
939
0
            T2M = T2r - T2y;
940
0
            T2O = T2J + T2G;
941
0
            cr[WS(rs, 16)] = FNMS(T2N, T2O, T2L * T2M);
942
0
            ci[WS(rs, 16)] = FMA(T2N, T2M, T2L * T2O);
943
0
            T2S = T2Q + T2R;
944
0
            T2W = T2U - T2V;
945
0
            cr[WS(rs, 8)] = FNMS(T2T, T2W, T2P * T2S);
946
0
            ci[WS(rs, 8)] = FMA(T2T, T2S, T2P * T2W);
947
0
       }
948
0
        }
949
0
        {
950
0
       E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J;
951
0
       T4s = FMA(KP951056516, T4o, KP587785252 * T4r);
952
0
       T4D = FMA(KP951056516, T4B, KP587785252 * T4C);
953
0
       T4N = FNMS(KP951056516, T4C, KP587785252 * T4B);
954
0
       T4I = FNMS(KP951056516, T4r, KP587785252 * T4o);
955
0
       {
956
0
            E T4w, T4z, T4h, T4k;
957
0
            T4w = KP559016994 * (T4u - T4v);
958
0
            T4z = FNMS(KP250000000, T4y, T4x);
959
0
            T4A = T4w + T4z;
960
0
            T4M = T4z - T4w;
961
0
            T4h = KP559016994 * (T4d - T4g);
962
0
            T4k = FNMS(KP250000000, T4j, T4i);
963
0
            T4l = T4h + T4k;
964
0
            T4J = T4k - T4h;
965
0
       }
966
0
       {
967
0
            E T4t, T4E, T4Q, T4S;
968
0
            T4t = T4l - T4s;
969
0
            T4E = T4A + T4D;
970
0
            cr[WS(rs, 1)] = FNMS(TG, T4E, TD * T4t);
971
0
            ci[WS(rs, 1)] = FMA(TD, T4E, TG * T4t);
972
0
            T4Q = T4J - T4I;
973
0
            T4S = T4M + T4N;
974
0
            cr[WS(rs, 17)] = FNMS(T4R, T4S, T4P * T4Q);
975
0
            ci[WS(rs, 17)] = FMA(T4P, T4S, T4R * T4Q);
976
0
       }
977
0
       {
978
0
            E T4F, T4G, T4K, T4O;
979
0
            T4F = T4s + T4l;
980
0
            T4G = T4A - T4D;
981
0
            cr[WS(rs, 9)] = FNMS(T1T, T4G, T1R * T4F);
982
0
            ci[WS(rs, 9)] = FMA(T1R, T4G, T1T * T4F);
983
0
            T4K = T4I + T4J;
984
0
            T4O = T4M - T4N;
985
0
            cr[WS(rs, 13)] = FNMS(T4L, T4O, T4H * T4K);
986
0
            ci[WS(rs, 13)] = FMA(T4H, T4O, T4L * T4K);
987
0
       }
988
0
        }
989
0
        {
990
0
       E T1p, T1w, T22, T1X, T1J, T23, TU, T1W;
991
0
       T1p = FNMS(KP951056516, T1o, KP587785252 * T19);
992
0
       T1w = FNMS(KP951056516, T1v, KP587785252 * T1u);
993
0
       T22 = FMA(KP951056516, T1u, KP587785252 * T1v);
994
0
       T1X = FMA(KP951056516, T19, KP587785252 * T1o);
995
0
       {
996
0
            E T1H, T1I, TS, TT;
997
0
            T1H = FNMS(KP250000000, T1G, T1D);
998
0
            T1I = KP559016994 * (T1E - T1F);
999
0
            T1J = T1H - T1I;
1000
0
            T23 = T1I + T1H;
1001
0
            TS = FNMS(KP250000000, TR, TK);
1002
0
            TT = KP559016994 * (TN - TQ);
1003
0
            TU = TS - TT;
1004
0
            T1W = TT + TS;
1005
0
       }
1006
0
       {
1007
0
            E T1q, T1K, T2e, T2g;
1008
0
            T1q = TU - T1p;
1009
0
            T1K = T1w + T1J;
1010
0
            cr[WS(rs, 2)] = FNMS(T1t, T1K, TJ * T1q);
1011
0
            ci[WS(rs, 2)] = FMA(T1t, T1q, TJ * T1K);
1012
0
            T2e = T1W + T1X;
1013
0
            T2g = T23 - T22;
1014
0
            cr[WS(rs, 14)] = FNMS(T2f, T2g, T2d * T2e);
1015
0
            ci[WS(rs, 14)] = FMA(T2f, T2e, T2d * T2g);
1016
0
       }
1017
0
       {
1018
0
            E T1O, T1Q, T1Y, T24;
1019
0
            T1O = TU + T1p;
1020
0
            T1Q = T1J - T1w;
1021
0
            cr[WS(rs, 18)] = FNMS(T1P, T1Q, T1N * T1O);
1022
0
            ci[WS(rs, 18)] = FMA(T1P, T1O, T1N * T1Q);
1023
0
            T1Y = T1W - T1X;
1024
0
            T24 = T22 + T23;
1025
0
            cr[WS(rs, 6)] = FNMS(T21, T24, T1V * T1Y);
1026
0
            ci[WS(rs, 6)] = FMA(T21, T1Y, T1V * T24);
1027
0
       }
1028
0
        }
1029
0
        {
1030
0
       E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y;
1031
0
       T3f = FNMS(KP951056516, T3e, KP587785252 * T37);
1032
0
       T3N = FNMS(KP951056516, T3M, KP587785252 * T3L);
1033
0
       T43 = FMA(KP951056516, T3L, KP587785252 * T3M);
1034
0
       T3Z = FMA(KP951056516, T37, KP587785252 * T3e);
1035
0
       {
1036
0
            E T3I, T3J, T3y, T3z;
1037
0
            T3I = FNMS(KP250000000, T3H, T3E);
1038
0
            T3J = KP559016994 * (T3F - T3G);
1039
0
            T3K = T3I - T3J;
1040
0
            T42 = T3J + T3I;
1041
0
            T3y = FNMS(KP250000000, T3x, T3i);
1042
0
            T3z = KP559016994 * (T3p - T3w);
1043
0
            T3A = T3y - T3z;
1044
0
            T3Y = T3z + T3y;
1045
0
       }
1046
0
       {
1047
0
            E T3B, T3O, T45, T46;
1048
0
            T3B = T3f + T3A;
1049
0
            T3O = T3K - T3N;
1050
0
            cr[WS(rs, 3)] = FNMS(TH, T3O, TE * T3B);
1051
0
            ci[WS(rs, 3)] = FMA(TE, T3O, TH * T3B);
1052
0
            T45 = T3Z + T3Y;
1053
0
            T46 = T42 - T43;
1054
0
            cr[WS(rs, 19)] = FNMS(T1M, T46, T1L * T45);
1055
0
            ci[WS(rs, 19)] = FMA(T1L, T46, T1M * T45);
1056
0
       }
1057
0
       {
1058
0
            E T3S, T3W, T40, T44;
1059
0
            T3S = T3A - T3f;
1060
0
            T3W = T3K + T3N;
1061
0
            cr[WS(rs, 7)] = FNMS(T3V, T3W, T3R * T3S);
1062
0
            ci[WS(rs, 7)] = FMA(T3R, T3W, T3V * T3S);
1063
0
            T40 = T3Y - T3Z;
1064
0
            T44 = T42 + T43;
1065
0
            cr[WS(rs, 11)] = FNMS(T41, T44, T3X * T40);
1066
0
            ci[WS(rs, 11)] = FMA(T3X, T44, T41 * T40);
1067
0
       }
1068
0
        }
1069
0
         }
1070
0
    }
1071
0
     }
1072
0
}
1073
1074
static const tw_instr twinstr[] = {
1075
     { TW_CEXP, 1, 1 },
1076
     { TW_CEXP, 1, 3 },
1077
     { TW_CEXP, 1, 9 },
1078
     { TW_CEXP, 1, 19 },
1079
     { TW_NEXT, 1, 0 }
1080
};
1081
1082
static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, { 204, 92, 72, 0 } };
1083
1084
1
void X(codelet_hb2_20) (planner *p) {
1085
1
     X(khc2hc_register) (p, hb2_20, &desc);
1086
1
}
1087
#endif