/src/fftw3/rdft/scalar/r2cb/hb2_20.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:43 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 276 FP additions, 198 FP multiplications, |
32 | | * (or, 136 additions, 58 multiplications, 140 fused multiply/add), |
33 | | * 129 stack variables, 4 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hb.h" |
36 | | |
37 | | static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { |
46 | | E TD, TH, TE, T1L, T1N, T1X, TG, T29, TI, T2b, T1V, T1O, T24, T36, T5b; |
47 | | E T1S, T1Y, T3b, T3e, T2o, T2Y, T2U, T31, T2s, T4y, T4u, T2f, T2c, T2g, T5g; |
48 | | E T2k, T1s, T48, T4c, T5q, T5m, T4k, T4f; |
49 | | { |
50 | | E T1r, T1M, T2T, T1R, T2X, T23, T2r, T1W, T2n, T2a, TF, T4x; |
51 | | TD = W[0]; |
52 | | TH = W[3]; |
53 | | TE = W[2]; |
54 | | TF = TD * TE; |
55 | | T1r = TD * TH; |
56 | | T1L = W[6]; |
57 | | T1M = TD * T1L; |
58 | | T2T = TE * T1L; |
59 | | T1N = W[7]; |
60 | | T1R = TD * T1N; |
61 | | T2X = TE * T1N; |
62 | | T1X = W[5]; |
63 | | T23 = TE * T1X; |
64 | | T2r = TD * T1X; |
65 | | TG = W[1]; |
66 | | T29 = FNMS(TG, TH, TF); |
67 | | TI = FMA(TG, TH, TF); |
68 | | T2b = FMA(TG, TE, T1r); |
69 | | T1V = W[4]; |
70 | | T1W = TE * T1V; |
71 | | T2n = TD * T1V; |
72 | | T2a = T29 * T1V; |
73 | | T1O = FMA(TG, T1N, T1M); |
74 | | T24 = FNMS(TH, T1V, T23); |
75 | | T36 = FNMS(TG, T1V, T2r); |
76 | | T5b = FNMS(T2b, T1X, T2a); |
77 | | T1S = FNMS(TG, T1L, T1R); |
78 | | T1Y = FMA(TH, T1X, T1W); |
79 | | T3b = FNMS(TH, T1X, T1W); |
80 | | T3e = FMA(TH, T1V, T23); |
81 | | T2o = FNMS(TG, T1X, T2n); |
82 | | T2Y = FNMS(TH, T1L, T2X); |
83 | | T2U = FMA(TH, T1N, T2T); |
84 | | T31 = FMA(TG, T1X, T2n); |
85 | | T2s = FMA(TG, T1V, T2r); |
86 | | T4x = T29 * T1N; |
87 | | T4y = FNMS(T2b, T1L, T4x); |
88 | | { |
89 | | E T4t, T2e, T2d, T2j; |
90 | | T4t = T29 * T1L; |
91 | | T4u = FMA(T2b, T1N, T4t); |
92 | | T2e = T29 * T1X; |
93 | | T2f = FNMS(T2b, T1V, T2e); |
94 | | T2c = FMA(T2b, T1X, T2a); |
95 | | T2d = T2c * T1L; |
96 | | T2j = T2c * T1N; |
97 | | T2g = FMA(T2f, T1N, T2d); |
98 | | T5g = FMA(T2b, T1V, T2e); |
99 | | T2k = FNMS(T2f, T1L, T2j); |
100 | | { |
101 | | E T47, T5p, T4b, T5l; |
102 | | T47 = TI * T1V; |
103 | | T5p = TI * T1N; |
104 | | T4b = TI * T1X; |
105 | | T5l = TI * T1L; |
106 | | T1s = FNMS(TG, TE, T1r); |
107 | | T48 = FMA(T1s, T1X, T47); |
108 | | T4c = FNMS(T1s, T1V, T4b); |
109 | | T5q = FNMS(T1s, T1L, T5p); |
110 | | T5m = FMA(T1s, T1N, T5l); |
111 | | T4k = FMA(T1s, T1V, T4b); |
112 | | T4f = FNMS(T1s, T1X, T47); |
113 | | } |
114 | | } |
115 | | } |
116 | | { |
117 | | E T7, T4B, T4V, TJ, T1z, T3j, T3V, T2H, T18, T42, T43, T1n, T2D, T53, T52; |
118 | | E T2A, T1H, T4R, T4O, T1G, T2O, T3I, T2P, T3P, T2I, T2J, T2K, T1A, T1B, T1C; |
119 | | E TC, T2w, T3Y, T40, T4I, T4K, TQ, TS, T3y, T3A, T4Y, T50; |
120 | | { |
121 | | E T3, T3h, T1y, T3i, T6, T3U, T1v, T3T; |
122 | | { |
123 | | E T1, T2, T1w, T1x; |
124 | | T1 = cr[0]; |
125 | | T2 = ci[WS(rs, 9)]; |
126 | | T3 = T1 + T2; |
127 | | T3h = T1 - T2; |
128 | | T1w = ci[WS(rs, 14)]; |
129 | | T1x = cr[WS(rs, 15)]; |
130 | | T1y = T1w - T1x; |
131 | | T3i = T1w + T1x; |
132 | | } |
133 | | { |
134 | | E T4, T5, T1t, T1u; |
135 | | T4 = cr[WS(rs, 5)]; |
136 | | T5 = ci[WS(rs, 4)]; |
137 | | T6 = T4 + T5; |
138 | | T3U = T4 - T5; |
139 | | T1t = ci[WS(rs, 19)]; |
140 | | T1u = cr[WS(rs, 10)]; |
141 | | T1v = T1t - T1u; |
142 | | T3T = T1t + T1u; |
143 | | } |
144 | | T7 = T3 + T6; |
145 | | T4B = T3h - T3i; |
146 | | T4V = T3U + T3T; |
147 | | TJ = T3 - T6; |
148 | | T1z = T1v - T1y; |
149 | | T3j = T3h + T3i; |
150 | | T3V = T3T - T3U; |
151 | | T2H = T1v + T1y; |
152 | | } |
153 | | { |
154 | | E Te, T4C, T4M, TK, T1f, T3m, T3L, T2y, TA, T4G, T4Q, TO, T17, T3w, T3H; |
155 | | E T2C, Tl, T4D, T4N, TL, T1m, T3p, T3O, T2z, Tt, T4F, T4P, TN, T10, T3t; |
156 | | E T3E, T2B; |
157 | | { |
158 | | E Ta, T3k, T1e, T3l, Td, T3K, T1b, T3J; |
159 | | { |
160 | | E T8, T9, T1c, T1d; |
161 | | T8 = cr[WS(rs, 4)]; |
162 | | T9 = ci[WS(rs, 5)]; |
163 | | Ta = T8 + T9; |
164 | | T3k = T8 - T9; |
165 | | T1c = ci[WS(rs, 10)]; |
166 | | T1d = cr[WS(rs, 19)]; |
167 | | T1e = T1c - T1d; |
168 | | T3l = T1c + T1d; |
169 | | } |
170 | | { |
171 | | E Tb, Tc, T19, T1a; |
172 | | Tb = cr[WS(rs, 9)]; |
173 | | Tc = ci[0]; |
174 | | Td = Tb + Tc; |
175 | | T3K = Tb - Tc; |
176 | | T19 = ci[WS(rs, 15)]; |
177 | | T1a = cr[WS(rs, 14)]; |
178 | | T1b = T19 - T1a; |
179 | | T3J = T19 + T1a; |
180 | | } |
181 | | Te = Ta + Td; |
182 | | T4C = T3k - T3l; |
183 | | T4M = T3K + T3J; |
184 | | TK = Ta - Td; |
185 | | T1f = T1b - T1e; |
186 | | T3m = T3k + T3l; |
187 | | T3L = T3J - T3K; |
188 | | T2y = T1b + T1e; |
189 | | } |
190 | | { |
191 | | E Tw, T3u, Tz, T3F, T13, T3G, T16, T3v; |
192 | | { |
193 | | E Tu, Tv, Tx, Ty; |
194 | | Tu = ci[WS(rs, 7)]; |
195 | | Tv = cr[WS(rs, 2)]; |
196 | | Tw = Tu + Tv; |
197 | | T3u = Tu - Tv; |
198 | | Tx = ci[WS(rs, 2)]; |
199 | | Ty = cr[WS(rs, 7)]; |
200 | | Tz = Tx + Ty; |
201 | | T3F = Tx - Ty; |
202 | | } |
203 | | { |
204 | | E T11, T12, T14, T15; |
205 | | T11 = ci[WS(rs, 17)]; |
206 | | T12 = cr[WS(rs, 12)]; |
207 | | T13 = T11 - T12; |
208 | | T3G = T11 + T12; |
209 | | T14 = ci[WS(rs, 12)]; |
210 | | T15 = cr[WS(rs, 17)]; |
211 | | T16 = T14 - T15; |
212 | | T3v = T14 + T15; |
213 | | } |
214 | | TA = Tw + Tz; |
215 | | T4G = T3u + T3v; |
216 | | T4Q = T3F - T3G; |
217 | | TO = Tw - Tz; |
218 | | T17 = T13 - T16; |
219 | | T3w = T3u - T3v; |
220 | | T3H = T3F + T3G; |
221 | | T2C = T13 + T16; |
222 | | } |
223 | | { |
224 | | E Th, T3n, T1l, T3o, Tk, T3M, T1i, T3N; |
225 | | { |
226 | | E Tf, Tg, T1j, T1k; |
227 | | Tf = ci[WS(rs, 3)]; |
228 | | Tg = cr[WS(rs, 6)]; |
229 | | Th = Tf + Tg; |
230 | | T3n = Tf - Tg; |
231 | | T1j = ci[WS(rs, 18)]; |
232 | | T1k = cr[WS(rs, 11)]; |
233 | | T1l = T1j - T1k; |
234 | | T3o = T1j + T1k; |
235 | | } |
236 | | { |
237 | | E Ti, Tj, T1g, T1h; |
238 | | Ti = cr[WS(rs, 1)]; |
239 | | Tj = ci[WS(rs, 8)]; |
240 | | Tk = Ti + Tj; |
241 | | T3M = Ti - Tj; |
242 | | T1g = ci[WS(rs, 13)]; |
243 | | T1h = cr[WS(rs, 16)]; |
244 | | T1i = T1g - T1h; |
245 | | T3N = T1g + T1h; |
246 | | } |
247 | | Tl = Th + Tk; |
248 | | T4D = T3n - T3o; |
249 | | T4N = T3M - T3N; |
250 | | TL = Th - Tk; |
251 | | T1m = T1i - T1l; |
252 | | T3p = T3n + T3o; |
253 | | T3O = T3M + T3N; |
254 | | T2z = T1i + T1l; |
255 | | } |
256 | | { |
257 | | E Tp, T3r, TZ, T3s, Ts, T3D, TW, T3C; |
258 | | { |
259 | | E Tn, To, TX, TY; |
260 | | Tn = cr[WS(rs, 8)]; |
261 | | To = ci[WS(rs, 1)]; |
262 | | Tp = Tn + To; |
263 | | T3r = Tn - To; |
264 | | TX = ci[WS(rs, 16)]; |
265 | | TY = cr[WS(rs, 13)]; |
266 | | TZ = TX - TY; |
267 | | T3s = TX + TY; |
268 | | } |
269 | | { |
270 | | E Tq, Tr, TU, TV; |
271 | | Tq = ci[WS(rs, 6)]; |
272 | | Tr = cr[WS(rs, 3)]; |
273 | | Ts = Tq + Tr; |
274 | | T3D = Tq - Tr; |
275 | | TU = ci[WS(rs, 11)]; |
276 | | TV = cr[WS(rs, 18)]; |
277 | | TW = TU - TV; |
278 | | T3C = TU + TV; |
279 | | } |
280 | | Tt = Tp + Ts; |
281 | | T4F = T3r + T3s; |
282 | | T4P = T3D + T3C; |
283 | | TN = Tp - Ts; |
284 | | T10 = TW - TZ; |
285 | | T3t = T3r - T3s; |
286 | | T3E = T3C - T3D; |
287 | | T2B = TW + TZ; |
288 | | } |
289 | | T18 = T10 - T17; |
290 | | T42 = T3t - T3w; |
291 | | T43 = T3m - T3p; |
292 | | T1n = T1f - T1m; |
293 | | T2D = T2B - T2C; |
294 | | T53 = T4F - T4G; |
295 | | T52 = T4C - T4D; |
296 | | T2A = T2y - T2z; |
297 | | T1H = TK - TL; |
298 | | T4R = T4P - T4Q; |
299 | | T4O = T4M - T4N; |
300 | | T1G = TN - TO; |
301 | | T2O = Te - Tl; |
302 | | T3I = T3E + T3H; |
303 | | T2P = Tt - TA; |
304 | | T3P = T3L + T3O; |
305 | | T2I = T2y + T2z; |
306 | | T2J = T2B + T2C; |
307 | | T2K = T2I + T2J; |
308 | | T1A = T1f + T1m; |
309 | | T1B = T10 + T17; |
310 | | T1C = T1A + T1B; |
311 | | { |
312 | | E Tm, TB, TM, TP; |
313 | | Tm = Te + Tl; |
314 | | TB = Tt + TA; |
315 | | TC = Tm + TB; |
316 | | T2w = Tm - TB; |
317 | | { |
318 | | E T3W, T3X, T4E, T4H; |
319 | | T3W = T3L - T3O; |
320 | | T3X = T3E - T3H; |
321 | | T3Y = T3W + T3X; |
322 | | T40 = T3W - T3X; |
323 | | T4E = T4C + T4D; |
324 | | T4H = T4F + T4G; |
325 | | T4I = T4E + T4H; |
326 | | T4K = T4E - T4H; |
327 | | } |
328 | | TM = TK + TL; |
329 | | TP = TN + TO; |
330 | | TQ = TM + TP; |
331 | | TS = TM - TP; |
332 | | { |
333 | | E T3q, T3x, T4W, T4X; |
334 | | T3q = T3m + T3p; |
335 | | T3x = T3t + T3w; |
336 | | T3y = T3q + T3x; |
337 | | T3A = T3q - T3x; |
338 | | T4W = T4M + T4N; |
339 | | T4X = T4P + T4Q; |
340 | | T4Y = T4W + T4X; |
341 | | T50 = T4W - T4X; |
342 | | } |
343 | | } |
344 | | } |
345 | | cr[0] = T7 + TC; |
346 | | ci[0] = T2H + T2K; |
347 | | { |
348 | | E T2t, T2q, T2u, T2p; |
349 | | T2t = T1z + T1C; |
350 | | T2p = TJ + TQ; |
351 | | T2q = T2o * T2p; |
352 | | T2u = T2s * T2p; |
353 | | cr[WS(rs, 10)] = FNMS(T2s, T2t, T2q); |
354 | | ci[WS(rs, 10)] = FMA(T2o, T2t, T2u); |
355 | | } |
356 | | { |
357 | | E T5t, T5u, T5v, T5w; |
358 | | T5t = T4B + T4I; |
359 | | T5u = T2c * T5t; |
360 | | T5v = T4V + T4Y; |
361 | | T5w = T2c * T5v; |
362 | | cr[WS(rs, 5)] = FNMS(T2f, T5v, T5u); |
363 | | ci[WS(rs, 5)] = FMA(T2f, T5t, T5w); |
364 | | } |
365 | | { |
366 | | E T4v, T4w, T4z, T4A; |
367 | | T4v = T3j + T3y; |
368 | | T4w = T4u * T4v; |
369 | | T4z = T3V + T3Y; |
370 | | T4A = T4u * T4z; |
371 | | cr[WS(rs, 15)] = FNMS(T4y, T4z, T4w); |
372 | | ci[WS(rs, 15)] = FMA(T4y, T4v, T4A); |
373 | | } |
374 | | { |
375 | | E T3R, T4p, T49, T4i, T45, T4r, T4d, T4n; |
376 | | { |
377 | | E T3Q, T4h, T3B, T4g, T3z; |
378 | | T3Q = FNMS(KP618033988, T3P, T3I); |
379 | | T4h = FMA(KP618033988, T3I, T3P); |
380 | | T3z = FNMS(KP250000000, T3y, T3j); |
381 | | T3B = FNMS(KP559016994, T3A, T3z); |
382 | | T4g = FMA(KP559016994, T3A, T3z); |
383 | | T3R = FNMS(KP951056516, T3Q, T3B); |
384 | | T4p = FMA(KP951056516, T4h, T4g); |
385 | | T49 = FMA(KP951056516, T3Q, T3B); |
386 | | T4i = FNMS(KP951056516, T4h, T4g); |
387 | | } |
388 | | { |
389 | | E T44, T4m, T41, T4l, T3Z; |
390 | | T44 = FNMS(KP618033988, T43, T42); |
391 | | T4m = FMA(KP618033988, T42, T43); |
392 | | T3Z = FNMS(KP250000000, T3Y, T3V); |
393 | | T41 = FNMS(KP559016994, T40, T3Z); |
394 | | T4l = FMA(KP559016994, T40, T3Z); |
395 | | T45 = FMA(KP951056516, T44, T41); |
396 | | T4r = FNMS(KP951056516, T4m, T4l); |
397 | | T4d = FNMS(KP951056516, T44, T41); |
398 | | T4n = FMA(KP951056516, T4m, T4l); |
399 | | } |
400 | | { |
401 | | E T3S, T46, T4a, T4e; |
402 | | T3S = TE * T3R; |
403 | | cr[WS(rs, 3)] = FNMS(TH, T45, T3S); |
404 | | T46 = TE * T45; |
405 | | ci[WS(rs, 3)] = FMA(TH, T3R, T46); |
406 | | T4a = T48 * T49; |
407 | | cr[WS(rs, 7)] = FNMS(T4c, T4d, T4a); |
408 | | T4e = T48 * T4d; |
409 | | ci[WS(rs, 7)] = FMA(T4c, T49, T4e); |
410 | | } |
411 | | { |
412 | | E T4j, T4o, T4q, T4s; |
413 | | T4j = T4f * T4i; |
414 | | cr[WS(rs, 11)] = FNMS(T4k, T4n, T4j); |
415 | | T4o = T4f * T4n; |
416 | | ci[WS(rs, 11)] = FMA(T4k, T4i, T4o); |
417 | | T4q = T1L * T4p; |
418 | | cr[WS(rs, 19)] = FNMS(T1N, T4r, T4q); |
419 | | T4s = T1L * T4r; |
420 | | ci[WS(rs, 19)] = FMA(T1N, T4p, T4s); |
421 | | } |
422 | | } |
423 | | { |
424 | | E T4T, T5n, T57, T5e, T55, T5r, T59, T5j; |
425 | | { |
426 | | E T4S, T5d, T4L, T5c, T4J; |
427 | | T4S = FMA(KP618033988, T4R, T4O); |
428 | | T5d = FNMS(KP618033988, T4O, T4R); |
429 | | T4J = FNMS(KP250000000, T4I, T4B); |
430 | | T4L = FMA(KP559016994, T4K, T4J); |
431 | | T5c = FNMS(KP559016994, T4K, T4J); |
432 | | T4T = FNMS(KP951056516, T4S, T4L); |
433 | | T5n = FMA(KP951056516, T5d, T5c); |
434 | | T57 = FMA(KP951056516, T4S, T4L); |
435 | | T5e = FNMS(KP951056516, T5d, T5c); |
436 | | } |
437 | | { |
438 | | E T54, T5i, T51, T5h, T4Z; |
439 | | T54 = FMA(KP618033988, T53, T52); |
440 | | T5i = FNMS(KP618033988, T52, T53); |
441 | | T4Z = FNMS(KP250000000, T4Y, T4V); |
442 | | T51 = FMA(KP559016994, T50, T4Z); |
443 | | T5h = FNMS(KP559016994, T50, T4Z); |
444 | | T55 = FMA(KP951056516, T54, T51); |
445 | | T5r = FNMS(KP951056516, T5i, T5h); |
446 | | T59 = FNMS(KP951056516, T54, T51); |
447 | | T5j = FMA(KP951056516, T5i, T5h); |
448 | | } |
449 | | { |
450 | | E T4U, T56, T58, T5a; |
451 | | T4U = TD * T4T; |
452 | | cr[WS(rs, 1)] = FNMS(TG, T55, T4U); |
453 | | T56 = TD * T55; |
454 | | ci[WS(rs, 1)] = FMA(TG, T4T, T56); |
455 | | T58 = T1V * T57; |
456 | | cr[WS(rs, 9)] = FNMS(T1X, T59, T58); |
457 | | T5a = T1V * T59; |
458 | | ci[WS(rs, 9)] = FMA(T1X, T57, T5a); |
459 | | } |
460 | | { |
461 | | E T5f, T5k, T5o, T5s; |
462 | | T5f = T5b * T5e; |
463 | | cr[WS(rs, 13)] = FNMS(T5g, T5j, T5f); |
464 | | T5k = T5b * T5j; |
465 | | ci[WS(rs, 13)] = FMA(T5g, T5e, T5k); |
466 | | T5o = T5m * T5n; |
467 | | cr[WS(rs, 17)] = FNMS(T5q, T5r, T5o); |
468 | | T5s = T5m * T5r; |
469 | | ci[WS(rs, 17)] = FMA(T5q, T5n, T5s); |
470 | | } |
471 | | } |
472 | | { |
473 | | E T2Q, T38, T2N, T37, T2F, T3c, T2V, T34, T2L, T2M; |
474 | | T2Q = FMA(KP618033988, T2P, T2O); |
475 | | T38 = FNMS(KP618033988, T2O, T2P); |
476 | | T2L = FNMS(KP250000000, T2K, T2H); |
477 | | T2M = T2I - T2J; |
478 | | T2N = FMA(KP559016994, T2M, T2L); |
479 | | T37 = FNMS(KP559016994, T2M, T2L); |
480 | | { |
481 | | E T2E, T33, T2x, T32, T2v; |
482 | | T2E = FMA(KP618033988, T2D, T2A); |
483 | | T33 = FNMS(KP618033988, T2A, T2D); |
484 | | T2v = FNMS(KP250000000, TC, T7); |
485 | | T2x = FMA(KP559016994, T2w, T2v); |
486 | | T32 = FNMS(KP559016994, T2w, T2v); |
487 | | T2F = FMA(KP951056516, T2E, T2x); |
488 | | T3c = FMA(KP951056516, T33, T32); |
489 | | T2V = FNMS(KP951056516, T2E, T2x); |
490 | | T34 = FNMS(KP951056516, T33, T32); |
491 | | } |
492 | | { |
493 | | E T2G, T2S, T2R, T3d, T3g, T3f; |
494 | | T2G = T29 * T2F; |
495 | | T2S = T2b * T2F; |
496 | | T2R = FNMS(KP951056516, T2Q, T2N); |
497 | | cr[WS(rs, 4)] = FNMS(T2b, T2R, T2G); |
498 | | ci[WS(rs, 4)] = FMA(T29, T2R, T2S); |
499 | | T3d = T3b * T3c; |
500 | | T3g = T3e * T3c; |
501 | | T3f = FNMS(KP951056516, T38, T37); |
502 | | cr[WS(rs, 12)] = FNMS(T3e, T3f, T3d); |
503 | | ci[WS(rs, 12)] = FMA(T3b, T3f, T3g); |
504 | | } |
505 | | { |
506 | | E T2W, T30, T2Z, T35, T3a, T39; |
507 | | T2W = T2U * T2V; |
508 | | T30 = T2Y * T2V; |
509 | | T2Z = FMA(KP951056516, T2Q, T2N); |
510 | | cr[WS(rs, 16)] = FNMS(T2Y, T2Z, T2W); |
511 | | ci[WS(rs, 16)] = FMA(T2U, T2Z, T30); |
512 | | T35 = T31 * T34; |
513 | | T3a = T36 * T34; |
514 | | T39 = FMA(KP951056516, T38, T37); |
515 | | cr[WS(rs, 8)] = FNMS(T36, T39, T35); |
516 | | ci[WS(rs, 8)] = FMA(T31, T39, T3a); |
517 | | } |
518 | | } |
519 | | { |
520 | | E T1I, T26, T1F, T25, T1p, T2h, T1P, T21, T1D, T1E; |
521 | | T1I = FNMS(KP618033988, T1H, T1G); |
522 | | T26 = FMA(KP618033988, T1G, T1H); |
523 | | T1D = FNMS(KP250000000, T1C, T1z); |
524 | | T1E = T1A - T1B; |
525 | | T1F = FNMS(KP559016994, T1E, T1D); |
526 | | T25 = FMA(KP559016994, T1E, T1D); |
527 | | { |
528 | | E T1o, T20, TT, T1Z, TR; |
529 | | T1o = FNMS(KP618033988, T1n, T18); |
530 | | T20 = FMA(KP618033988, T18, T1n); |
531 | | TR = FNMS(KP250000000, TQ, TJ); |
532 | | TT = FNMS(KP559016994, TS, TR); |
533 | | T1Z = FMA(KP559016994, TS, TR); |
534 | | T1p = FMA(KP951056516, T1o, TT); |
535 | | T2h = FMA(KP951056516, T20, T1Z); |
536 | | T1P = FNMS(KP951056516, T1o, TT); |
537 | | T21 = FNMS(KP951056516, T20, T1Z); |
538 | | } |
539 | | { |
540 | | E T1q, T1K, T1J, T2i, T2m, T2l; |
541 | | T1q = TI * T1p; |
542 | | T1K = T1s * T1p; |
543 | | T1J = FNMS(KP951056516, T1I, T1F); |
544 | | cr[WS(rs, 2)] = FNMS(T1s, T1J, T1q); |
545 | | ci[WS(rs, 2)] = FMA(TI, T1J, T1K); |
546 | | T2i = T2g * T2h; |
547 | | T2m = T2k * T2h; |
548 | | T2l = FNMS(KP951056516, T26, T25); |
549 | | cr[WS(rs, 14)] = FNMS(T2k, T2l, T2i); |
550 | | ci[WS(rs, 14)] = FMA(T2g, T2l, T2m); |
551 | | } |
552 | | { |
553 | | E T1Q, T1U, T1T, T22, T28, T27; |
554 | | T1Q = T1O * T1P; |
555 | | T1U = T1S * T1P; |
556 | | T1T = FMA(KP951056516, T1I, T1F); |
557 | | cr[WS(rs, 18)] = FNMS(T1S, T1T, T1Q); |
558 | | ci[WS(rs, 18)] = FMA(T1O, T1T, T1U); |
559 | | T22 = T1Y * T21; |
560 | | T28 = T24 * T21; |
561 | | T27 = FMA(KP951056516, T26, T25); |
562 | | cr[WS(rs, 6)] = FNMS(T24, T27, T22); |
563 | | ci[WS(rs, 6)] = FMA(T1Y, T27, T28); |
564 | | } |
565 | | } |
566 | | } |
567 | | } |
568 | | } |
569 | | } |
570 | | |
571 | | static const tw_instr twinstr[] = { |
572 | | { TW_CEXP, 1, 1 }, |
573 | | { TW_CEXP, 1, 3 }, |
574 | | { TW_CEXP, 1, 9 }, |
575 | | { TW_CEXP, 1, 19 }, |
576 | | { TW_NEXT, 1, 0 } |
577 | | }; |
578 | | |
579 | | static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, { 136, 58, 140, 0 } }; |
580 | | |
581 | | void X(codelet_hb2_20) (planner *p) { |
582 | | X(khc2hc_register) (p, hb2_20, &desc); |
583 | | } |
584 | | #else |
585 | | |
586 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -sign 1 -twiddle-log3 -precompute-twiddles -n 20 -dif -name hb2_20 -include rdft/scalar/hb.h */ |
587 | | |
588 | | /* |
589 | | * This function contains 276 FP additions, 164 FP multiplications, |
590 | | * (or, 204 additions, 92 multiplications, 72 fused multiply/add), |
591 | | * 137 stack variables, 4 constants, and 80 memory accesses |
592 | | */ |
593 | | #include "rdft/scalar/hb.h" |
594 | | |
595 | | static void hb2_20(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
596 | 0 | { |
597 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
598 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
599 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
600 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
601 | 0 | { |
602 | 0 | INT m; |
603 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 8, MAKE_VOLATILE_STRIDE(40, rs)) { |
604 | 0 | E TD, TG, TE, TH, TJ, T1t, T27, T25, T1T, T1R, T1V, T2j, T2Z, T21, T2X; |
605 | 0 | E T2T, T2n, T2P, T3V, T41, T3R, T3X, T29, T2c, T4H, T4L, T1L, T1M, T1N, T2d; |
606 | 0 | E T4R, T1P, T4P, T49, T2N, T2f, T47, T2L; |
607 | 0 | { |
608 | 0 | E T1U, T2l, T1Z, T2i, T1S, T2m, T20, T2h; |
609 | 0 | { |
610 | 0 | E TF, T1s, TI, T1r; |
611 | 0 | TD = W[0]; |
612 | 0 | TG = W[1]; |
613 | 0 | TE = W[2]; |
614 | 0 | TH = W[3]; |
615 | 0 | TF = TD * TE; |
616 | 0 | T1s = TG * TE; |
617 | 0 | TI = TG * TH; |
618 | 0 | T1r = TD * TH; |
619 | 0 | TJ = TF + TI; |
620 | 0 | T1t = T1r - T1s; |
621 | 0 | T27 = T1r + T1s; |
622 | 0 | T25 = TF - TI; |
623 | 0 | T1T = W[5]; |
624 | 0 | T1U = TH * T1T; |
625 | 0 | T2l = TD * T1T; |
626 | 0 | T1Z = TE * T1T; |
627 | 0 | T2i = TG * T1T; |
628 | 0 | T1R = W[4]; |
629 | 0 | T1S = TE * T1R; |
630 | 0 | T2m = TG * T1R; |
631 | 0 | T20 = TH * T1R; |
632 | 0 | T2h = TD * T1R; |
633 | 0 | } |
634 | 0 | T1V = T1S + T1U; |
635 | 0 | T2j = T2h - T2i; |
636 | 0 | T2Z = T1Z + T20; |
637 | 0 | T21 = T1Z - T20; |
638 | 0 | T2X = T1S - T1U; |
639 | 0 | T2T = T2l - T2m; |
640 | 0 | T2n = T2l + T2m; |
641 | 0 | T2P = T2h + T2i; |
642 | 0 | { |
643 | 0 | E T3T, T3U, T3P, T3Q; |
644 | 0 | T3T = TJ * T1T; |
645 | 0 | T3U = T1t * T1R; |
646 | 0 | T3V = T3T - T3U; |
647 | 0 | T41 = T3T + T3U; |
648 | 0 | T3P = TJ * T1R; |
649 | 0 | T3Q = T1t * T1T; |
650 | 0 | T3R = T3P + T3Q; |
651 | 0 | T3X = T3P - T3Q; |
652 | 0 | { |
653 | 0 | E T26, T28, T2a, T2b; |
654 | 0 | T26 = T25 * T1R; |
655 | 0 | T28 = T27 * T1T; |
656 | 0 | T29 = T26 + T28; |
657 | 0 | T2a = T25 * T1T; |
658 | 0 | T2b = T27 * T1R; |
659 | 0 | T2c = T2a - T2b; |
660 | 0 | T4H = T26 - T28; |
661 | 0 | T4L = T2a + T2b; |
662 | 0 | T1L = W[6]; |
663 | 0 | T1M = W[7]; |
664 | 0 | T1N = FMA(TD, T1L, TG * T1M); |
665 | 0 | T2d = FMA(T29, T1L, T2c * T1M); |
666 | 0 | T4R = FNMS(T1t, T1L, TJ * T1M); |
667 | 0 | T1P = FNMS(TG, T1L, TD * T1M); |
668 | 0 | T4P = FMA(TJ, T1L, T1t * T1M); |
669 | 0 | T49 = FNMS(T27, T1L, T25 * T1M); |
670 | 0 | T2N = FNMS(TH, T1L, TE * T1M); |
671 | 0 | T2f = FNMS(T2c, T1L, T29 * T1M); |
672 | 0 | T47 = FMA(T25, T1L, T27 * T1M); |
673 | 0 | T2L = FMA(TE, T1L, TH * T1M); |
674 | 0 | } |
675 | 0 | } |
676 | 0 | } |
677 | 0 | { |
678 | 0 | E T7, T4i, T4x, TK, T1D, T3i, T3E, T2D, T19, T3L, T3M, T1o, T2x, T4C, T4B; |
679 | 0 | E T2u, T1v, T4r, T4o, T1u, T2H, T37, T2I, T3e, T3p, T3w, T3x, Tm, TB, TC; |
680 | 0 | E T4u, T4v, T4y, T2A, T2B, T2E, T1E, T1F, T1G, T4d, T4g, T4j, T3F, T3G, T3H; |
681 | 0 | E TN, TQ, TR, T48, T4a; |
682 | 0 | { |
683 | 0 | E T3, T3g, T1C, T3h, T6, T3D, T1z, T3C; |
684 | 0 | { |
685 | 0 | E T1, T2, T1A, T1B; |
686 | 0 | T1 = cr[0]; |
687 | 0 | T2 = ci[WS(rs, 9)]; |
688 | 0 | T3 = T1 + T2; |
689 | 0 | T3g = T1 - T2; |
690 | 0 | T1A = ci[WS(rs, 14)]; |
691 | 0 | T1B = cr[WS(rs, 15)]; |
692 | 0 | T1C = T1A - T1B; |
693 | 0 | T3h = T1A + T1B; |
694 | 0 | } |
695 | 0 | { |
696 | 0 | E T4, T5, T1x, T1y; |
697 | 0 | T4 = cr[WS(rs, 5)]; |
698 | 0 | T5 = ci[WS(rs, 4)]; |
699 | 0 | T6 = T4 + T5; |
700 | 0 | T3D = T4 - T5; |
701 | 0 | T1x = ci[WS(rs, 19)]; |
702 | 0 | T1y = cr[WS(rs, 10)]; |
703 | 0 | T1z = T1x - T1y; |
704 | 0 | T3C = T1x + T1y; |
705 | 0 | } |
706 | 0 | T7 = T3 + T6; |
707 | 0 | T4i = T3g - T3h; |
708 | 0 | T4x = T3D + T3C; |
709 | 0 | TK = T3 - T6; |
710 | 0 | T1D = T1z - T1C; |
711 | 0 | T3i = T3g + T3h; |
712 | 0 | T3E = T3C - T3D; |
713 | 0 | T2D = T1z + T1C; |
714 | 0 | } |
715 | 0 | { |
716 | 0 | E Te, T4b, T4m, TL, T11, T33, T3l, T2s, TA, T4f, T4q, TP, T1n, T3d, T3v; |
717 | 0 | E T2w, Tl, T4c, T4n, TM, T18, T36, T3o, T2t, Tt, T4e, T4p, TO, T1g, T3a; |
718 | 0 | E T3s, T2v; |
719 | 0 | { |
720 | 0 | E Ta, T3j, T10, T3k, Td, T32, TX, T31; |
721 | 0 | { |
722 | 0 | E T8, T9, TY, TZ; |
723 | 0 | T8 = cr[WS(rs, 4)]; |
724 | 0 | T9 = ci[WS(rs, 5)]; |
725 | 0 | Ta = T8 + T9; |
726 | 0 | T3j = T8 - T9; |
727 | 0 | TY = ci[WS(rs, 10)]; |
728 | 0 | TZ = cr[WS(rs, 19)]; |
729 | 0 | T10 = TY - TZ; |
730 | 0 | T3k = TY + TZ; |
731 | 0 | } |
732 | 0 | { |
733 | 0 | E Tb, Tc, TV, TW; |
734 | 0 | Tb = cr[WS(rs, 9)]; |
735 | 0 | Tc = ci[0]; |
736 | 0 | Td = Tb + Tc; |
737 | 0 | T32 = Tb - Tc; |
738 | 0 | TV = ci[WS(rs, 15)]; |
739 | 0 | TW = cr[WS(rs, 14)]; |
740 | 0 | TX = TV - TW; |
741 | 0 | T31 = TV + TW; |
742 | 0 | } |
743 | 0 | Te = Ta + Td; |
744 | 0 | T4b = T3j - T3k; |
745 | 0 | T4m = T32 + T31; |
746 | 0 | TL = Ta - Td; |
747 | 0 | T11 = TX - T10; |
748 | 0 | T33 = T31 - T32; |
749 | 0 | T3l = T3j + T3k; |
750 | 0 | T2s = TX + T10; |
751 | 0 | } |
752 | 0 | { |
753 | 0 | E Tw, T3t, Tz, T3b, T1j, T3c, T1m, T3u; |
754 | 0 | { |
755 | 0 | E Tu, Tv, Tx, Ty; |
756 | 0 | Tu = ci[WS(rs, 7)]; |
757 | 0 | Tv = cr[WS(rs, 2)]; |
758 | 0 | Tw = Tu + Tv; |
759 | 0 | T3t = Tu - Tv; |
760 | 0 | Tx = ci[WS(rs, 2)]; |
761 | 0 | Ty = cr[WS(rs, 7)]; |
762 | 0 | Tz = Tx + Ty; |
763 | 0 | T3b = Tx - Ty; |
764 | 0 | } |
765 | 0 | { |
766 | 0 | E T1h, T1i, T1k, T1l; |
767 | 0 | T1h = ci[WS(rs, 17)]; |
768 | 0 | T1i = cr[WS(rs, 12)]; |
769 | 0 | T1j = T1h - T1i; |
770 | 0 | T3c = T1h + T1i; |
771 | 0 | T1k = ci[WS(rs, 12)]; |
772 | 0 | T1l = cr[WS(rs, 17)]; |
773 | 0 | T1m = T1k - T1l; |
774 | 0 | T3u = T1k + T1l; |
775 | 0 | } |
776 | 0 | TA = Tw + Tz; |
777 | 0 | T4f = T3t + T3u; |
778 | 0 | T4q = T3b - T3c; |
779 | 0 | TP = Tw - Tz; |
780 | 0 | T1n = T1j - T1m; |
781 | 0 | T3d = T3b + T3c; |
782 | 0 | T3v = T3t - T3u; |
783 | 0 | T2w = T1j + T1m; |
784 | 0 | } |
785 | 0 | { |
786 | 0 | E Th, T3m, T17, T3n, Tk, T34, T14, T35; |
787 | 0 | { |
788 | 0 | E Tf, Tg, T15, T16; |
789 | 0 | Tf = ci[WS(rs, 3)]; |
790 | 0 | Tg = cr[WS(rs, 6)]; |
791 | 0 | Th = Tf + Tg; |
792 | 0 | T3m = Tf - Tg; |
793 | 0 | T15 = ci[WS(rs, 18)]; |
794 | 0 | T16 = cr[WS(rs, 11)]; |
795 | 0 | T17 = T15 - T16; |
796 | 0 | T3n = T15 + T16; |
797 | 0 | } |
798 | 0 | { |
799 | 0 | E Ti, Tj, T12, T13; |
800 | 0 | Ti = cr[WS(rs, 1)]; |
801 | 0 | Tj = ci[WS(rs, 8)]; |
802 | 0 | Tk = Ti + Tj; |
803 | 0 | T34 = Ti - Tj; |
804 | 0 | T12 = ci[WS(rs, 13)]; |
805 | 0 | T13 = cr[WS(rs, 16)]; |
806 | 0 | T14 = T12 - T13; |
807 | 0 | T35 = T12 + T13; |
808 | 0 | } |
809 | 0 | Tl = Th + Tk; |
810 | 0 | T4c = T3m - T3n; |
811 | 0 | T4n = T34 - T35; |
812 | 0 | TM = Th - Tk; |
813 | 0 | T18 = T14 - T17; |
814 | 0 | T36 = T34 + T35; |
815 | 0 | T3o = T3m + T3n; |
816 | 0 | T2t = T14 + T17; |
817 | 0 | } |
818 | 0 | { |
819 | 0 | E Tp, T3q, T1f, T3r, Ts, T39, T1c, T38; |
820 | 0 | { |
821 | 0 | E Tn, To, T1d, T1e; |
822 | 0 | Tn = cr[WS(rs, 8)]; |
823 | 0 | To = ci[WS(rs, 1)]; |
824 | 0 | Tp = Tn + To; |
825 | 0 | T3q = Tn - To; |
826 | 0 | T1d = ci[WS(rs, 16)]; |
827 | 0 | T1e = cr[WS(rs, 13)]; |
828 | 0 | T1f = T1d - T1e; |
829 | 0 | T3r = T1d + T1e; |
830 | 0 | } |
831 | 0 | { |
832 | 0 | E Tq, Tr, T1a, T1b; |
833 | 0 | Tq = ci[WS(rs, 6)]; |
834 | 0 | Tr = cr[WS(rs, 3)]; |
835 | 0 | Ts = Tq + Tr; |
836 | 0 | T39 = Tq - Tr; |
837 | 0 | T1a = ci[WS(rs, 11)]; |
838 | 0 | T1b = cr[WS(rs, 18)]; |
839 | 0 | T1c = T1a - T1b; |
840 | 0 | T38 = T1a + T1b; |
841 | 0 | } |
842 | 0 | Tt = Tp + Ts; |
843 | 0 | T4e = T3q + T3r; |
844 | 0 | T4p = T39 + T38; |
845 | 0 | TO = Tp - Ts; |
846 | 0 | T1g = T1c - T1f; |
847 | 0 | T3a = T38 - T39; |
848 | 0 | T3s = T3q - T3r; |
849 | 0 | T2v = T1c + T1f; |
850 | 0 | } |
851 | 0 | T19 = T11 - T18; |
852 | 0 | T3L = T3l - T3o; |
853 | 0 | T3M = T3s - T3v; |
854 | 0 | T1o = T1g - T1n; |
855 | 0 | T2x = T2v - T2w; |
856 | 0 | T4C = T4e - T4f; |
857 | 0 | T4B = T4b - T4c; |
858 | 0 | T2u = T2s - T2t; |
859 | 0 | T1v = TO - TP; |
860 | 0 | T4r = T4p - T4q; |
861 | 0 | T4o = T4m - T4n; |
862 | 0 | T1u = TL - TM; |
863 | 0 | T2H = Te - Tl; |
864 | 0 | T37 = T33 + T36; |
865 | 0 | T2I = Tt - TA; |
866 | 0 | T3e = T3a + T3d; |
867 | 0 | T3p = T3l + T3o; |
868 | 0 | T3w = T3s + T3v; |
869 | 0 | T3x = T3p + T3w; |
870 | 0 | Tm = Te + Tl; |
871 | 0 | TB = Tt + TA; |
872 | 0 | TC = Tm + TB; |
873 | 0 | T4u = T4m + T4n; |
874 | 0 | T4v = T4p + T4q; |
875 | 0 | T4y = T4u + T4v; |
876 | 0 | T2A = T2s + T2t; |
877 | 0 | T2B = T2v + T2w; |
878 | 0 | T2E = T2A + T2B; |
879 | 0 | T1E = T11 + T18; |
880 | 0 | T1F = T1g + T1n; |
881 | 0 | T1G = T1E + T1F; |
882 | 0 | T4d = T4b + T4c; |
883 | 0 | T4g = T4e + T4f; |
884 | 0 | T4j = T4d + T4g; |
885 | 0 | T3F = T33 - T36; |
886 | 0 | T3G = T3a - T3d; |
887 | 0 | T3H = T3F + T3G; |
888 | 0 | TN = TL + TM; |
889 | 0 | TQ = TO + TP; |
890 | 0 | TR = TN + TQ; |
891 | 0 | } |
892 | 0 | cr[0] = T7 + TC; |
893 | 0 | ci[0] = T2D + T2E; |
894 | 0 | { |
895 | 0 | E T2k, T2o, T4T, T4U; |
896 | 0 | T2k = TK + TR; |
897 | 0 | T2o = T1D + T1G; |
898 | 0 | cr[WS(rs, 10)] = FNMS(T2n, T2o, T2j * T2k); |
899 | 0 | ci[WS(rs, 10)] = FMA(T2n, T2k, T2j * T2o); |
900 | 0 | T4T = T4i + T4j; |
901 | 0 | T4U = T4x + T4y; |
902 | 0 | cr[WS(rs, 5)] = FNMS(T2c, T4U, T29 * T4T); |
903 | 0 | ci[WS(rs, 5)] = FMA(T29, T4U, T2c * T4T); |
904 | 0 | } |
905 | 0 | T48 = T3i + T3x; |
906 | 0 | T4a = T3E + T3H; |
907 | 0 | cr[WS(rs, 15)] = FNMS(T49, T4a, T47 * T48); |
908 | 0 | ci[WS(rs, 15)] = FMA(T47, T4a, T49 * T48); |
909 | 0 | { |
910 | 0 | E T2y, T2J, T2V, T2R, T2G, T2U, T2r, T2Q; |
911 | 0 | T2y = FMA(KP951056516, T2u, KP587785252 * T2x); |
912 | 0 | T2J = FMA(KP951056516, T2H, KP587785252 * T2I); |
913 | 0 | T2V = FNMS(KP951056516, T2I, KP587785252 * T2H); |
914 | 0 | T2R = FNMS(KP951056516, T2x, KP587785252 * T2u); |
915 | 0 | { |
916 | 0 | E T2C, T2F, T2p, T2q; |
917 | 0 | T2C = KP559016994 * (T2A - T2B); |
918 | 0 | T2F = FNMS(KP250000000, T2E, T2D); |
919 | 0 | T2G = T2C + T2F; |
920 | 0 | T2U = T2F - T2C; |
921 | 0 | T2p = KP559016994 * (Tm - TB); |
922 | 0 | T2q = FNMS(KP250000000, TC, T7); |
923 | 0 | T2r = T2p + T2q; |
924 | 0 | T2Q = T2q - T2p; |
925 | 0 | } |
926 | 0 | { |
927 | 0 | E T2z, T2K, T2Y, T30; |
928 | 0 | T2z = T2r + T2y; |
929 | 0 | T2K = T2G - T2J; |
930 | 0 | cr[WS(rs, 4)] = FNMS(T27, T2K, T25 * T2z); |
931 | 0 | ci[WS(rs, 4)] = FMA(T27, T2z, T25 * T2K); |
932 | 0 | T2Y = T2Q - T2R; |
933 | 0 | T30 = T2V + T2U; |
934 | 0 | cr[WS(rs, 12)] = FNMS(T2Z, T30, T2X * T2Y); |
935 | 0 | ci[WS(rs, 12)] = FMA(T2Z, T2Y, T2X * T30); |
936 | 0 | } |
937 | 0 | { |
938 | 0 | E T2M, T2O, T2S, T2W; |
939 | 0 | T2M = T2r - T2y; |
940 | 0 | T2O = T2J + T2G; |
941 | 0 | cr[WS(rs, 16)] = FNMS(T2N, T2O, T2L * T2M); |
942 | 0 | ci[WS(rs, 16)] = FMA(T2N, T2M, T2L * T2O); |
943 | 0 | T2S = T2Q + T2R; |
944 | 0 | T2W = T2U - T2V; |
945 | 0 | cr[WS(rs, 8)] = FNMS(T2T, T2W, T2P * T2S); |
946 | 0 | ci[WS(rs, 8)] = FMA(T2T, T2S, T2P * T2W); |
947 | 0 | } |
948 | 0 | } |
949 | 0 | { |
950 | 0 | E T4s, T4D, T4N, T4I, T4A, T4M, T4l, T4J; |
951 | 0 | T4s = FMA(KP951056516, T4o, KP587785252 * T4r); |
952 | 0 | T4D = FMA(KP951056516, T4B, KP587785252 * T4C); |
953 | 0 | T4N = FNMS(KP951056516, T4C, KP587785252 * T4B); |
954 | 0 | T4I = FNMS(KP951056516, T4r, KP587785252 * T4o); |
955 | 0 | { |
956 | 0 | E T4w, T4z, T4h, T4k; |
957 | 0 | T4w = KP559016994 * (T4u - T4v); |
958 | 0 | T4z = FNMS(KP250000000, T4y, T4x); |
959 | 0 | T4A = T4w + T4z; |
960 | 0 | T4M = T4z - T4w; |
961 | 0 | T4h = KP559016994 * (T4d - T4g); |
962 | 0 | T4k = FNMS(KP250000000, T4j, T4i); |
963 | 0 | T4l = T4h + T4k; |
964 | 0 | T4J = T4k - T4h; |
965 | 0 | } |
966 | 0 | { |
967 | 0 | E T4t, T4E, T4Q, T4S; |
968 | 0 | T4t = T4l - T4s; |
969 | 0 | T4E = T4A + T4D; |
970 | 0 | cr[WS(rs, 1)] = FNMS(TG, T4E, TD * T4t); |
971 | 0 | ci[WS(rs, 1)] = FMA(TD, T4E, TG * T4t); |
972 | 0 | T4Q = T4J - T4I; |
973 | 0 | T4S = T4M + T4N; |
974 | 0 | cr[WS(rs, 17)] = FNMS(T4R, T4S, T4P * T4Q); |
975 | 0 | ci[WS(rs, 17)] = FMA(T4P, T4S, T4R * T4Q); |
976 | 0 | } |
977 | 0 | { |
978 | 0 | E T4F, T4G, T4K, T4O; |
979 | 0 | T4F = T4s + T4l; |
980 | 0 | T4G = T4A - T4D; |
981 | 0 | cr[WS(rs, 9)] = FNMS(T1T, T4G, T1R * T4F); |
982 | 0 | ci[WS(rs, 9)] = FMA(T1R, T4G, T1T * T4F); |
983 | 0 | T4K = T4I + T4J; |
984 | 0 | T4O = T4M - T4N; |
985 | 0 | cr[WS(rs, 13)] = FNMS(T4L, T4O, T4H * T4K); |
986 | 0 | ci[WS(rs, 13)] = FMA(T4H, T4O, T4L * T4K); |
987 | 0 | } |
988 | 0 | } |
989 | 0 | { |
990 | 0 | E T1p, T1w, T22, T1X, T1J, T23, TU, T1W; |
991 | 0 | T1p = FNMS(KP951056516, T1o, KP587785252 * T19); |
992 | 0 | T1w = FNMS(KP951056516, T1v, KP587785252 * T1u); |
993 | 0 | T22 = FMA(KP951056516, T1u, KP587785252 * T1v); |
994 | 0 | T1X = FMA(KP951056516, T19, KP587785252 * T1o); |
995 | 0 | { |
996 | 0 | E T1H, T1I, TS, TT; |
997 | 0 | T1H = FNMS(KP250000000, T1G, T1D); |
998 | 0 | T1I = KP559016994 * (T1E - T1F); |
999 | 0 | T1J = T1H - T1I; |
1000 | 0 | T23 = T1I + T1H; |
1001 | 0 | TS = FNMS(KP250000000, TR, TK); |
1002 | 0 | TT = KP559016994 * (TN - TQ); |
1003 | 0 | TU = TS - TT; |
1004 | 0 | T1W = TT + TS; |
1005 | 0 | } |
1006 | 0 | { |
1007 | 0 | E T1q, T1K, T2e, T2g; |
1008 | 0 | T1q = TU - T1p; |
1009 | 0 | T1K = T1w + T1J; |
1010 | 0 | cr[WS(rs, 2)] = FNMS(T1t, T1K, TJ * T1q); |
1011 | 0 | ci[WS(rs, 2)] = FMA(T1t, T1q, TJ * T1K); |
1012 | 0 | T2e = T1W + T1X; |
1013 | 0 | T2g = T23 - T22; |
1014 | 0 | cr[WS(rs, 14)] = FNMS(T2f, T2g, T2d * T2e); |
1015 | 0 | ci[WS(rs, 14)] = FMA(T2f, T2e, T2d * T2g); |
1016 | 0 | } |
1017 | 0 | { |
1018 | 0 | E T1O, T1Q, T1Y, T24; |
1019 | 0 | T1O = TU + T1p; |
1020 | 0 | T1Q = T1J - T1w; |
1021 | 0 | cr[WS(rs, 18)] = FNMS(T1P, T1Q, T1N * T1O); |
1022 | 0 | ci[WS(rs, 18)] = FMA(T1P, T1O, T1N * T1Q); |
1023 | 0 | T1Y = T1W - T1X; |
1024 | 0 | T24 = T22 + T23; |
1025 | 0 | cr[WS(rs, 6)] = FNMS(T21, T24, T1V * T1Y); |
1026 | 0 | ci[WS(rs, 6)] = FMA(T21, T1Y, T1V * T24); |
1027 | 0 | } |
1028 | 0 | } |
1029 | 0 | { |
1030 | 0 | E T3f, T3N, T43, T3Z, T3K, T42, T3A, T3Y; |
1031 | 0 | T3f = FNMS(KP951056516, T3e, KP587785252 * T37); |
1032 | 0 | T3N = FNMS(KP951056516, T3M, KP587785252 * T3L); |
1033 | 0 | T43 = FMA(KP951056516, T3L, KP587785252 * T3M); |
1034 | 0 | T3Z = FMA(KP951056516, T37, KP587785252 * T3e); |
1035 | 0 | { |
1036 | 0 | E T3I, T3J, T3y, T3z; |
1037 | 0 | T3I = FNMS(KP250000000, T3H, T3E); |
1038 | 0 | T3J = KP559016994 * (T3F - T3G); |
1039 | 0 | T3K = T3I - T3J; |
1040 | 0 | T42 = T3J + T3I; |
1041 | 0 | T3y = FNMS(KP250000000, T3x, T3i); |
1042 | 0 | T3z = KP559016994 * (T3p - T3w); |
1043 | 0 | T3A = T3y - T3z; |
1044 | 0 | T3Y = T3z + T3y; |
1045 | 0 | } |
1046 | 0 | { |
1047 | 0 | E T3B, T3O, T45, T46; |
1048 | 0 | T3B = T3f + T3A; |
1049 | 0 | T3O = T3K - T3N; |
1050 | 0 | cr[WS(rs, 3)] = FNMS(TH, T3O, TE * T3B); |
1051 | 0 | ci[WS(rs, 3)] = FMA(TE, T3O, TH * T3B); |
1052 | 0 | T45 = T3Z + T3Y; |
1053 | 0 | T46 = T42 - T43; |
1054 | 0 | cr[WS(rs, 19)] = FNMS(T1M, T46, T1L * T45); |
1055 | 0 | ci[WS(rs, 19)] = FMA(T1L, T46, T1M * T45); |
1056 | 0 | } |
1057 | 0 | { |
1058 | 0 | E T3S, T3W, T40, T44; |
1059 | 0 | T3S = T3A - T3f; |
1060 | 0 | T3W = T3K + T3N; |
1061 | 0 | cr[WS(rs, 7)] = FNMS(T3V, T3W, T3R * T3S); |
1062 | 0 | ci[WS(rs, 7)] = FMA(T3R, T3W, T3V * T3S); |
1063 | 0 | T40 = T3Y - T3Z; |
1064 | 0 | T44 = T42 + T43; |
1065 | 0 | cr[WS(rs, 11)] = FNMS(T41, T44, T3X * T40); |
1066 | 0 | ci[WS(rs, 11)] = FMA(T3X, T44, T41 * T40); |
1067 | 0 | } |
1068 | 0 | } |
1069 | 0 | } |
1070 | 0 | } |
1071 | 0 | } |
1072 | 0 | } |
1073 | | |
1074 | | static const tw_instr twinstr[] = { |
1075 | | { TW_CEXP, 1, 1 }, |
1076 | | { TW_CEXP, 1, 3 }, |
1077 | | { TW_CEXP, 1, 9 }, |
1078 | | { TW_CEXP, 1, 19 }, |
1079 | | { TW_NEXT, 1, 0 } |
1080 | | }; |
1081 | | |
1082 | | static const hc2hc_desc desc = { 20, "hb2_20", twinstr, &GENUS, { 204, 92, 72, 0 } }; |
1083 | | |
1084 | 1 | void X(codelet_hb2_20) (planner *p) { |
1085 | 1 | X(khc2hc_register) (p, hb2_20, &desc); |
1086 | 1 | } |
1087 | | #endif |