/src/fftw3/rdft/scalar/r2cb/r2cbIII_10.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:46 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 32 FP additions, 28 FP multiplications, |
32 | | * (or, 14 additions, 10 multiplications, 18 fused multiply/add), |
33 | | * 22 stack variables, 5 constants, and 20 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cbIII.h" |
36 | | |
37 | | static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
44 | | { |
45 | | INT i; |
46 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { |
47 | | E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn; |
48 | | T1 = Cr[WS(csr, 2)]; |
49 | | To = Ci[WS(csi, 2)]; |
50 | | { |
51 | | E T2, T3, T4, T5, T6, T7; |
52 | | T2 = Cr[WS(csr, 4)]; |
53 | | T3 = Cr[0]; |
54 | | T4 = T2 + T3; |
55 | | T5 = Cr[WS(csr, 3)]; |
56 | | T6 = Cr[WS(csr, 1)]; |
57 | | T7 = T5 + T6; |
58 | | T8 = T4 + T7; |
59 | | Tt = T5 - T6; |
60 | | Ta = T7 - T4; |
61 | | Ts = T2 - T3; |
62 | | } |
63 | | { |
64 | | E Tc, Td, Tl, Tf, Tg, Tm; |
65 | | Tc = Ci[WS(csi, 3)]; |
66 | | Td = Ci[WS(csi, 1)]; |
67 | | Tl = Tc + Td; |
68 | | Tf = Ci[WS(csi, 4)]; |
69 | | Tg = Ci[0]; |
70 | | Tm = Tf + Tg; |
71 | | Te = Tc - Td; |
72 | | Tq = Tl + Tm; |
73 | | Th = Tf - Tg; |
74 | | Tn = Tl - Tm; |
75 | | } |
76 | | R0[0] = KP2_000000000 * (T1 + T8); |
77 | | R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); |
78 | | { |
79 | | E Ti, Tk, Tb, Tj, T9; |
80 | | Ti = FMA(KP618033988, Th, Te); |
81 | | Tk = FNMS(KP618033988, Te, Th); |
82 | | T9 = FMS(KP250000000, T8, T1); |
83 | | Tb = FNMS(KP559016994, Ta, T9); |
84 | | Tj = FMA(KP559016994, Ta, T9); |
85 | | R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb)); |
86 | | R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj)); |
87 | | R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb))); |
88 | | R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj))); |
89 | | } |
90 | | { |
91 | | E Tu, Tw, Tr, Tv, Tp; |
92 | | Tu = FMA(KP618033988, Tt, Ts); |
93 | | Tw = FNMS(KP618033988, Ts, Tt); |
94 | | Tp = FMA(KP250000000, Tn, To); |
95 | | Tr = FMA(KP559016994, Tq, Tp); |
96 | | Tv = FNMS(KP559016994, Tq, Tp); |
97 | | R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr))); |
98 | | R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv)); |
99 | | R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr))); |
100 | | R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv)); |
101 | | } |
102 | | } |
103 | | } |
104 | | } |
105 | | |
106 | | static const kr2c_desc desc = { 10, "r2cbIII_10", { 14, 10, 18, 0 }, &GENUS }; |
107 | | |
108 | | void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc); |
109 | | } |
110 | | |
111 | | #else |
112 | | |
113 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */ |
114 | | |
115 | | /* |
116 | | * This function contains 32 FP additions, 16 FP multiplications, |
117 | | * (or, 26 additions, 10 multiplications, 6 fused multiply/add), |
118 | | * 22 stack variables, 5 constants, and 20 memory accesses |
119 | | */ |
120 | | #include "rdft/scalar/r2cbIII.h" |
121 | | |
122 | | static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
123 | 0 | { |
124 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
125 | 0 | DK(KP1_902113032, +1.902113032590307144232878666758764286811397268); |
126 | 0 | DK(KP1_175570504, +1.175570504584946258337411909278145537195304875); |
127 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
128 | 0 | DK(KP1_118033988, +1.118033988749894848204586834365638117720309180); |
129 | 0 | { |
130 | 0 | INT i; |
131 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) { |
132 | 0 | E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn; |
133 | 0 | T1 = Cr[WS(csr, 2)]; |
134 | 0 | To = Ci[WS(csi, 2)]; |
135 | 0 | { |
136 | 0 | E T2, T3, T4, T5, T6, T7; |
137 | 0 | T2 = Cr[WS(csr, 4)]; |
138 | 0 | T3 = Cr[0]; |
139 | 0 | T4 = T2 + T3; |
140 | 0 | T5 = Cr[WS(csr, 3)]; |
141 | 0 | T6 = Cr[WS(csr, 1)]; |
142 | 0 | T7 = T5 + T6; |
143 | 0 | T8 = T4 + T7; |
144 | 0 | Tq = T5 - T6; |
145 | 0 | Ta = KP1_118033988 * (T7 - T4); |
146 | 0 | Tp = T2 - T3; |
147 | 0 | } |
148 | 0 | { |
149 | 0 | E Tc, Td, Tm, Tf, Tg, Tl; |
150 | 0 | Tc = Ci[WS(csi, 4)]; |
151 | 0 | Td = Ci[0]; |
152 | 0 | Tm = Tc + Td; |
153 | 0 | Tf = Ci[WS(csi, 1)]; |
154 | 0 | Tg = Ci[WS(csi, 3)]; |
155 | 0 | Tl = Tg + Tf; |
156 | 0 | Te = Tc - Td; |
157 | 0 | Ts = KP1_118033988 * (Tl + Tm); |
158 | 0 | Th = Tf - Tg; |
159 | 0 | Tn = Tl - Tm; |
160 | 0 | } |
161 | 0 | R0[0] = KP2_000000000 * (T1 + T8); |
162 | 0 | R1[WS(rs, 2)] = KP2_000000000 * (Tn - To); |
163 | 0 | { |
164 | 0 | E Ti, Tj, Tb, Tk, T9; |
165 | 0 | Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te); |
166 | 0 | Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te); |
167 | 0 | T9 = FNMS(KP2_000000000, T1, KP500000000 * T8); |
168 | 0 | Tb = T9 - Ta; |
169 | 0 | Tk = T9 + Ta; |
170 | 0 | R0[WS(rs, 1)] = Tb + Ti; |
171 | 0 | R0[WS(rs, 3)] = Tk + Tj; |
172 | 0 | R0[WS(rs, 4)] = Ti - Tb; |
173 | 0 | R0[WS(rs, 2)] = Tj - Tk; |
174 | 0 | } |
175 | 0 | { |
176 | 0 | E Tr, Tv, Tu, Tw, Tt; |
177 | 0 | Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq); |
178 | 0 | Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq); |
179 | 0 | Tt = FMA(KP500000000, Tn, KP2_000000000 * To); |
180 | 0 | Tu = Ts + Tt; |
181 | 0 | Tw = Tt - Ts; |
182 | 0 | R1[0] = -(Tr + Tu); |
183 | 0 | R1[WS(rs, 3)] = Tw - Tv; |
184 | 0 | R1[WS(rs, 4)] = Tr - Tu; |
185 | 0 | R1[WS(rs, 1)] = Tv + Tw; |
186 | 0 | } |
187 | 0 | } |
188 | 0 | } |
189 | 0 | } |
190 | | |
191 | | static const kr2c_desc desc = { 10, "r2cbIII_10", { 26, 10, 6, 0 }, &GENUS }; |
192 | | |
193 | 1 | void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc); |
194 | 1 | } |
195 | | |
196 | | #endif |