Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cb/r2cbIII_10.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:46 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
29
30
/*
31
 * This function contains 32 FP additions, 28 FP multiplications,
32
 * (or, 14 additions, 10 multiplications, 18 fused multiply/add),
33
 * 22 stack variables, 5 constants, and 20 memory accesses
34
 */
35
#include "rdft/scalar/r2cbIII.h"
36
37
static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44
     {
45
    INT i;
46
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
47
         E T1, To, T8, Tt, Ta, Ts, Te, Tq, Th, Tn;
48
         T1 = Cr[WS(csr, 2)];
49
         To = Ci[WS(csi, 2)];
50
         {
51
        E T2, T3, T4, T5, T6, T7;
52
        T2 = Cr[WS(csr, 4)];
53
        T3 = Cr[0];
54
        T4 = T2 + T3;
55
        T5 = Cr[WS(csr, 3)];
56
        T6 = Cr[WS(csr, 1)];
57
        T7 = T5 + T6;
58
        T8 = T4 + T7;
59
        Tt = T5 - T6;
60
        Ta = T7 - T4;
61
        Ts = T2 - T3;
62
         }
63
         {
64
        E Tc, Td, Tl, Tf, Tg, Tm;
65
        Tc = Ci[WS(csi, 3)];
66
        Td = Ci[WS(csi, 1)];
67
        Tl = Tc + Td;
68
        Tf = Ci[WS(csi, 4)];
69
        Tg = Ci[0];
70
        Tm = Tf + Tg;
71
        Te = Tc - Td;
72
        Tq = Tl + Tm;
73
        Th = Tf - Tg;
74
        Tn = Tl - Tm;
75
         }
76
         R0[0] = KP2_000000000 * (T1 + T8);
77
         R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
78
         {
79
        E Ti, Tk, Tb, Tj, T9;
80
        Ti = FMA(KP618033988, Th, Te);
81
        Tk = FNMS(KP618033988, Te, Th);
82
        T9 = FMS(KP250000000, T8, T1);
83
        Tb = FNMS(KP559016994, Ta, T9);
84
        Tj = FMA(KP559016994, Ta, T9);
85
        R0[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Ti, Tb));
86
        R0[WS(rs, 3)] = KP2_000000000 * (FMA(KP951056516, Tk, Tj));
87
        R0[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Ti, Tb)));
88
        R0[WS(rs, 2)] = -(KP2_000000000 * (FNMS(KP951056516, Tk, Tj)));
89
         }
90
         {
91
        E Tu, Tw, Tr, Tv, Tp;
92
        Tu = FMA(KP618033988, Tt, Ts);
93
        Tw = FNMS(KP618033988, Ts, Tt);
94
        Tp = FMA(KP250000000, Tn, To);
95
        Tr = FMA(KP559016994, Tq, Tp);
96
        Tv = FNMS(KP559016994, Tq, Tp);
97
        R1[0] = -(KP2_000000000 * (FMA(KP951056516, Tu, Tr)));
98
        R1[WS(rs, 3)] = KP2_000000000 * (FNMS(KP951056516, Tw, Tv));
99
        R1[WS(rs, 4)] = -(KP2_000000000 * (FNMS(KP951056516, Tu, Tr)));
100
        R1[WS(rs, 1)] = KP2_000000000 * (FMA(KP951056516, Tw, Tv));
101
         }
102
    }
103
     }
104
}
105
106
static const kr2c_desc desc = { 10, "r2cbIII_10", { 14, 10, 18, 0 }, &GENUS };
107
108
void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc);
109
}
110
111
#else
112
113
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 10 -name r2cbIII_10 -dft-III -include rdft/scalar/r2cbIII.h */
114
115
/*
116
 * This function contains 32 FP additions, 16 FP multiplications,
117
 * (or, 26 additions, 10 multiplications, 6 fused multiply/add),
118
 * 22 stack variables, 5 constants, and 20 memory accesses
119
 */
120
#include "rdft/scalar/r2cbIII.h"
121
122
static void r2cbIII_10(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
123
0
{
124
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
125
0
     DK(KP1_902113032, +1.902113032590307144232878666758764286811397268);
126
0
     DK(KP1_175570504, +1.175570504584946258337411909278145537195304875);
127
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
128
0
     DK(KP1_118033988, +1.118033988749894848204586834365638117720309180);
129
0
     {
130
0
    INT i;
131
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(40, rs), MAKE_VOLATILE_STRIDE(40, csr), MAKE_VOLATILE_STRIDE(40, csi)) {
132
0
         E T1, To, T8, Tq, Ta, Tp, Te, Ts, Th, Tn;
133
0
         T1 = Cr[WS(csr, 2)];
134
0
         To = Ci[WS(csi, 2)];
135
0
         {
136
0
        E T2, T3, T4, T5, T6, T7;
137
0
        T2 = Cr[WS(csr, 4)];
138
0
        T3 = Cr[0];
139
0
        T4 = T2 + T3;
140
0
        T5 = Cr[WS(csr, 3)];
141
0
        T6 = Cr[WS(csr, 1)];
142
0
        T7 = T5 + T6;
143
0
        T8 = T4 + T7;
144
0
        Tq = T5 - T6;
145
0
        Ta = KP1_118033988 * (T7 - T4);
146
0
        Tp = T2 - T3;
147
0
         }
148
0
         {
149
0
        E Tc, Td, Tm, Tf, Tg, Tl;
150
0
        Tc = Ci[WS(csi, 4)];
151
0
        Td = Ci[0];
152
0
        Tm = Tc + Td;
153
0
        Tf = Ci[WS(csi, 1)];
154
0
        Tg = Ci[WS(csi, 3)];
155
0
        Tl = Tg + Tf;
156
0
        Te = Tc - Td;
157
0
        Ts = KP1_118033988 * (Tl + Tm);
158
0
        Th = Tf - Tg;
159
0
        Tn = Tl - Tm;
160
0
         }
161
0
         R0[0] = KP2_000000000 * (T1 + T8);
162
0
         R1[WS(rs, 2)] = KP2_000000000 * (Tn - To);
163
0
         {
164
0
        E Ti, Tj, Tb, Tk, T9;
165
0
        Ti = FNMS(KP1_902113032, Th, KP1_175570504 * Te);
166
0
        Tj = FMA(KP1_175570504, Th, KP1_902113032 * Te);
167
0
        T9 = FNMS(KP2_000000000, T1, KP500000000 * T8);
168
0
        Tb = T9 - Ta;
169
0
        Tk = T9 + Ta;
170
0
        R0[WS(rs, 1)] = Tb + Ti;
171
0
        R0[WS(rs, 3)] = Tk + Tj;
172
0
        R0[WS(rs, 4)] = Ti - Tb;
173
0
        R0[WS(rs, 2)] = Tj - Tk;
174
0
         }
175
0
         {
176
0
        E Tr, Tv, Tu, Tw, Tt;
177
0
        Tr = FMA(KP1_902113032, Tp, KP1_175570504 * Tq);
178
0
        Tv = FNMS(KP1_175570504, Tp, KP1_902113032 * Tq);
179
0
        Tt = FMA(KP500000000, Tn, KP2_000000000 * To);
180
0
        Tu = Ts + Tt;
181
0
        Tw = Tt - Ts;
182
0
        R1[0] = -(Tr + Tu);
183
0
        R1[WS(rs, 3)] = Tw - Tv;
184
0
        R1[WS(rs, 4)] = Tr - Tu;
185
0
        R1[WS(rs, 1)] = Tv + Tw;
186
0
         }
187
0
    }
188
0
     }
189
0
}
190
191
static const kr2c_desc desc = { 10, "r2cbIII_10", { 26, 10, 6, 0 }, &GENUS };
192
193
1
void X(codelet_r2cbIII_10) (planner *p) { X(kr2c_register) (p, r2cbIII_10, &desc);
194
1
}
195
196
#endif