Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cb/r2cbIII_7.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:46 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include rdft/scalar/r2cbIII.h */
29
30
/*
31
 * This function contains 24 FP additions, 22 FP multiplications,
32
 * (or, 2 additions, 0 multiplications, 22 fused multiply/add),
33
 * 27 stack variables, 7 constants, and 14 memory accesses
34
 */
35
#include "rdft/scalar/r2cbIII.h"
36
37
static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
40
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
41
     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
42
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
43
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
44
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
45
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
46
     {
47
    INT i;
48
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
49
         E T1, T9, Tb, Ta, Tc, Tm, Th, T7, Tk, Tf, T5, Tl, Tn;
50
         T1 = Cr[WS(csr, 3)];
51
         T9 = Ci[WS(csi, 1)];
52
         Tb = Ci[0];
53
         Ta = Ci[WS(csi, 2)];
54
         Tc = FMA(KP554958132, Tb, Ta);
55
         Tm = FNMS(KP554958132, Ta, T9);
56
         Th = FMA(KP554958132, T9, Tb);
57
         {
58
        E T2, T4, T3, T6, Tj, Te;
59
        T2 = Cr[WS(csr, 2)];
60
        T4 = Cr[0];
61
        T3 = Cr[WS(csr, 1)];
62
        T6 = FNMS(KP356895867, T3, T2);
63
        Tj = FNMS(KP356895867, T4, T3);
64
        Te = FNMS(KP356895867, T2, T4);
65
        T7 = FNMS(KP692021471, T6, T4);
66
        Tk = FNMS(KP692021471, Tj, T2);
67
        Tf = FNMS(KP692021471, Te, T3);
68
        T5 = T2 + T3 + T4;
69
         }
70
         R0[0] = FMA(KP2_000000000, T5, T1);
71
         Tl = FNMS(KP1_801937735, Tk, T1);
72
         Tn = FNMS(KP801937735, Tm, Tb);
73
         R1[WS(rs, 1)] = -(FMA(KP1_949855824, Tn, Tl));
74
         R0[WS(rs, 2)] = FNMS(KP1_949855824, Tn, Tl);
75
         {
76
        E T8, Td, Tg, Ti;
77
        T8 = FNMS(KP1_801937735, T7, T1);
78
        Td = FMA(KP801937735, Tc, T9);
79
        R1[0] = -(FMA(KP1_949855824, Td, T8));
80
        R0[WS(rs, 3)] = FNMS(KP1_949855824, Td, T8);
81
        Tg = FNMS(KP1_801937735, Tf, T1);
82
        Ti = FNMS(KP801937735, Th, Ta);
83
        R0[WS(rs, 1)] = FMA(KP1_949855824, Ti, Tg);
84
        R1[WS(rs, 2)] = FMS(KP1_949855824, Ti, Tg);
85
         }
86
    }
87
     }
88
}
89
90
static const kr2c_desc desc = { 7, "r2cbIII_7", { 2, 0, 22, 0 }, &GENUS };
91
92
void X(codelet_r2cbIII_7) (planner *p) { X(kr2c_register) (p, r2cbIII_7, &desc);
93
}
94
95
#else
96
97
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include rdft/scalar/r2cbIII.h */
98
99
/*
100
 * This function contains 24 FP additions, 19 FP multiplications,
101
 * (or, 9 additions, 4 multiplications, 15 fused multiply/add),
102
 * 21 stack variables, 7 constants, and 14 memory accesses
103
 */
104
#include "rdft/scalar/r2cbIII.h"
105
106
static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
107
0
{
108
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
109
0
     DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
110
0
     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
111
0
     DK(KP445041867, +0.445041867912628808577805128993589518932711138);
112
0
     DK(KP867767478, +0.867767478235116240951536665696717509219981456);
113
0
     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
114
0
     DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
115
0
     {
116
0
    INT i;
117
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) {
118
0
         E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7;
119
0
         T6 = Ci[WS(csi, 2)];
120
0
         T8 = Ci[0];
121
0
         T7 = Ci[WS(csi, 1)];
122
0
         T9 = FMA(KP1_563662964, T6, KP1_949855824 * T7) + (KP867767478 * T8);
123
0
         Td = FNMS(KP1_949855824, T8, KP1_563662964 * T7) - (KP867767478 * T6);
124
0
         Tb = FNMS(KP1_563662964, T8, KP1_949855824 * T6) - (KP867767478 * T7);
125
0
         T1 = Cr[WS(csr, 3)];
126
0
         T4 = Cr[0];
127
0
         T2 = Cr[WS(csr, 2)];
128
0
         T3 = Cr[WS(csr, 1)];
129
0
         T5 = FMA(KP445041867, T3, KP1_801937735 * T4) + FNMA(KP1_246979603, T2, T1);
130
0
         Tc = FMA(KP1_801937735, T2, KP445041867 * T4) + FNMA(KP1_246979603, T3, T1);
131
0
         Ta = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2);
132
0
         R1[0] = T5 - T9;
133
0
         R0[WS(rs, 3)] = -(T5 + T9);
134
0
         R0[WS(rs, 2)] = Td - Tc;
135
0
         R1[WS(rs, 1)] = Tc + Td;
136
0
         R1[WS(rs, 2)] = Tb - Ta;
137
0
         R0[WS(rs, 1)] = Ta + Tb;
138
0
         R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1);
139
0
    }
140
0
     }
141
0
}
142
143
static const kr2c_desc desc = { 7, "r2cbIII_7", { 9, 4, 15, 0 }, &GENUS };
144
145
1
void X(codelet_r2cbIII_7) (planner *p) { X(kr2c_register) (p, r2cbIII_7, &desc);
146
1
}
147
148
#endif