/src/fftw3/rdft/scalar/r2cb/r2cbIII_7.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:46 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include rdft/scalar/r2cbIII.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 24 FP additions, 22 FP multiplications, |
32 | | * (or, 2 additions, 0 multiplications, 22 fused multiply/add), |
33 | | * 27 stack variables, 7 constants, and 14 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cbIII.h" |
36 | | |
37 | | static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); |
40 | | DK(KP801937735, +0.801937735804838252472204639014890102331838324); |
41 | | DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); |
42 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
43 | | DK(KP692021471, +0.692021471630095869627814897002069140197260599); |
44 | | DK(KP356895867, +0.356895867892209443894399510021300583399127187); |
45 | | DK(KP554958132, +0.554958132087371191422194871006410481067288862); |
46 | | { |
47 | | INT i; |
48 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) { |
49 | | E T1, T9, Tb, Ta, Tc, Tm, Th, T7, Tk, Tf, T5, Tl, Tn; |
50 | | T1 = Cr[WS(csr, 3)]; |
51 | | T9 = Ci[WS(csi, 1)]; |
52 | | Tb = Ci[0]; |
53 | | Ta = Ci[WS(csi, 2)]; |
54 | | Tc = FMA(KP554958132, Tb, Ta); |
55 | | Tm = FNMS(KP554958132, Ta, T9); |
56 | | Th = FMA(KP554958132, T9, Tb); |
57 | | { |
58 | | E T2, T4, T3, T6, Tj, Te; |
59 | | T2 = Cr[WS(csr, 2)]; |
60 | | T4 = Cr[0]; |
61 | | T3 = Cr[WS(csr, 1)]; |
62 | | T6 = FNMS(KP356895867, T3, T2); |
63 | | Tj = FNMS(KP356895867, T4, T3); |
64 | | Te = FNMS(KP356895867, T2, T4); |
65 | | T7 = FNMS(KP692021471, T6, T4); |
66 | | Tk = FNMS(KP692021471, Tj, T2); |
67 | | Tf = FNMS(KP692021471, Te, T3); |
68 | | T5 = T2 + T3 + T4; |
69 | | } |
70 | | R0[0] = FMA(KP2_000000000, T5, T1); |
71 | | Tl = FNMS(KP1_801937735, Tk, T1); |
72 | | Tn = FNMS(KP801937735, Tm, Tb); |
73 | | R1[WS(rs, 1)] = -(FMA(KP1_949855824, Tn, Tl)); |
74 | | R0[WS(rs, 2)] = FNMS(KP1_949855824, Tn, Tl); |
75 | | { |
76 | | E T8, Td, Tg, Ti; |
77 | | T8 = FNMS(KP1_801937735, T7, T1); |
78 | | Td = FMA(KP801937735, Tc, T9); |
79 | | R1[0] = -(FMA(KP1_949855824, Td, T8)); |
80 | | R0[WS(rs, 3)] = FNMS(KP1_949855824, Td, T8); |
81 | | Tg = FNMS(KP1_801937735, Tf, T1); |
82 | | Ti = FNMS(KP801937735, Th, Ta); |
83 | | R0[WS(rs, 1)] = FMA(KP1_949855824, Ti, Tg); |
84 | | R1[WS(rs, 2)] = FMS(KP1_949855824, Ti, Tg); |
85 | | } |
86 | | } |
87 | | } |
88 | | } |
89 | | |
90 | | static const kr2c_desc desc = { 7, "r2cbIII_7", { 2, 0, 22, 0 }, &GENUS }; |
91 | | |
92 | | void X(codelet_r2cbIII_7) (planner *p) { X(kr2c_register) (p, r2cbIII_7, &desc); |
93 | | } |
94 | | |
95 | | #else |
96 | | |
97 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 7 -name r2cbIII_7 -dft-III -include rdft/scalar/r2cbIII.h */ |
98 | | |
99 | | /* |
100 | | * This function contains 24 FP additions, 19 FP multiplications, |
101 | | * (or, 9 additions, 4 multiplications, 15 fused multiply/add), |
102 | | * 21 stack variables, 7 constants, and 14 memory accesses |
103 | | */ |
104 | | #include "rdft/scalar/r2cbIII.h" |
105 | | |
106 | | static void r2cbIII_7(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
107 | 0 | { |
108 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
109 | 0 | DK(KP1_246979603, +1.246979603717467061050009768008479621264549462); |
110 | 0 | DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); |
111 | 0 | DK(KP445041867, +0.445041867912628808577805128993589518932711138); |
112 | 0 | DK(KP867767478, +0.867767478235116240951536665696717509219981456); |
113 | 0 | DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); |
114 | 0 | DK(KP1_563662964, +1.563662964936059617416889053348115500464669037); |
115 | 0 | { |
116 | 0 | INT i; |
117 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(28, rs), MAKE_VOLATILE_STRIDE(28, csr), MAKE_VOLATILE_STRIDE(28, csi)) { |
118 | 0 | E T9, Td, Tb, T1, T4, T2, T3, T5, Tc, Ta, T6, T8, T7; |
119 | 0 | T6 = Ci[WS(csi, 2)]; |
120 | 0 | T8 = Ci[0]; |
121 | 0 | T7 = Ci[WS(csi, 1)]; |
122 | 0 | T9 = FMA(KP1_563662964, T6, KP1_949855824 * T7) + (KP867767478 * T8); |
123 | 0 | Td = FNMS(KP1_949855824, T8, KP1_563662964 * T7) - (KP867767478 * T6); |
124 | 0 | Tb = FNMS(KP1_563662964, T8, KP1_949855824 * T6) - (KP867767478 * T7); |
125 | 0 | T1 = Cr[WS(csr, 3)]; |
126 | 0 | T4 = Cr[0]; |
127 | 0 | T2 = Cr[WS(csr, 2)]; |
128 | 0 | T3 = Cr[WS(csr, 1)]; |
129 | 0 | T5 = FMA(KP445041867, T3, KP1_801937735 * T4) + FNMA(KP1_246979603, T2, T1); |
130 | 0 | Tc = FMA(KP1_801937735, T2, KP445041867 * T4) + FNMA(KP1_246979603, T3, T1); |
131 | 0 | Ta = FMA(KP1_246979603, T4, T1) + FNMA(KP1_801937735, T3, KP445041867 * T2); |
132 | 0 | R1[0] = T5 - T9; |
133 | 0 | R0[WS(rs, 3)] = -(T5 + T9); |
134 | 0 | R0[WS(rs, 2)] = Td - Tc; |
135 | 0 | R1[WS(rs, 1)] = Tc + Td; |
136 | 0 | R1[WS(rs, 2)] = Tb - Ta; |
137 | 0 | R0[WS(rs, 1)] = Ta + Tb; |
138 | 0 | R0[0] = FMA(KP2_000000000, T2 + T3 + T4, T1); |
139 | 0 | } |
140 | 0 | } |
141 | 0 | } |
142 | | |
143 | | static const kr2c_desc desc = { 7, "r2cbIII_7", { 9, 4, 15, 0 }, &GENUS }; |
144 | | |
145 | 1 | void X(codelet_r2cbIII_7) (planner *p) { X(kr2c_register) (p, r2cbIII_7, &desc); |
146 | 1 | } |
147 | | |
148 | | #endif |