/src/fftw3/rdft/scalar/r2cb/r2cb_14.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:33 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 62 FP additions, 44 FP multiplications, |
32 | | * (or, 18 additions, 0 multiplications, 44 fused multiply/add), |
33 | | * 46 stack variables, 7 constants, and 28 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); |
40 | | DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); |
41 | | DK(KP692021471, +0.692021471630095869627814897002069140197260599); |
42 | | DK(KP801937735, +0.801937735804838252472204639014890102331838324); |
43 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
44 | | DK(KP356895867, +0.356895867892209443894399510021300583399127187); |
45 | | DK(KP554958132, +0.554958132087371191422194871006410481067288862); |
46 | | { |
47 | | INT i; |
48 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { |
49 | | E T3, Te, To, TK, Tu, TM, Tr, TL, Tv, TA, TX, TS, TN, TF, T6; |
50 | | E Tf, Tc, Th, T9, Tg, Tj, Tx, TU, TP, TH, TC, T1, T2, Td, Ti; |
51 | | T1 = Cr[0]; |
52 | | T2 = Cr[WS(csr, 7)]; |
53 | | T3 = T1 - T2; |
54 | | Te = T1 + T2; |
55 | | { |
56 | | E Tm, Tn, T4, T5; |
57 | | Tm = Ci[WS(csi, 4)]; |
58 | | Tn = Ci[WS(csi, 3)]; |
59 | | To = Tm - Tn; |
60 | | TK = Tm + Tn; |
61 | | { |
62 | | E Ts, Tt, Tp, Tq; |
63 | | Ts = Ci[WS(csi, 6)]; |
64 | | Tt = Ci[WS(csi, 1)]; |
65 | | Tu = Ts - Tt; |
66 | | TM = Ts + Tt; |
67 | | Tp = Ci[WS(csi, 2)]; |
68 | | Tq = Ci[WS(csi, 5)]; |
69 | | Tr = Tp - Tq; |
70 | | TL = Tp + Tq; |
71 | | } |
72 | | Tv = FMA(KP554958132, Tu, Tr); |
73 | | TA = FMA(KP554958132, To, Tu); |
74 | | TX = FNMS(KP554958132, TL, TK); |
75 | | TS = FMA(KP554958132, TK, TM); |
76 | | TN = FMA(KP554958132, TM, TL); |
77 | | TF = FNMS(KP554958132, Tr, To); |
78 | | T4 = Cr[WS(csr, 2)]; |
79 | | T5 = Cr[WS(csr, 5)]; |
80 | | T6 = T4 - T5; |
81 | | Tf = T4 + T5; |
82 | | { |
83 | | E Ta, Tb, T7, T8; |
84 | | Ta = Cr[WS(csr, 6)]; |
85 | | Tb = Cr[WS(csr, 1)]; |
86 | | Tc = Ta - Tb; |
87 | | Th = Ta + Tb; |
88 | | T7 = Cr[WS(csr, 4)]; |
89 | | T8 = Cr[WS(csr, 3)]; |
90 | | T9 = T7 - T8; |
91 | | Tg = T7 + T8; |
92 | | } |
93 | | Tj = FNMS(KP356895867, Tg, Tf); |
94 | | Tx = FNMS(KP356895867, Tf, Th); |
95 | | TU = FNMS(KP356895867, Tc, T9); |
96 | | TP = FNMS(KP356895867, T6, Tc); |
97 | | TH = FNMS(KP356895867, T9, T6); |
98 | | TC = FNMS(KP356895867, Th, Tg); |
99 | | } |
100 | | Td = T6 + T9 + Tc; |
101 | | R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3); |
102 | | Ti = Tf + Tg + Th; |
103 | | R0[0] = FMA(KP2_000000000, Ti, Te); |
104 | | { |
105 | | E Tw, Tl, Tk, TY, TW, TV; |
106 | | Tw = FMA(KP801937735, Tv, To); |
107 | | Tk = FNMS(KP692021471, Tj, Th); |
108 | | Tl = FNMS(KP1_801937735, Tk, Te); |
109 | | R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl); |
110 | | R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl); |
111 | | TY = FNMS(KP801937735, TX, TM); |
112 | | TV = FNMS(KP692021471, TU, T6); |
113 | | TW = FNMS(KP1_801937735, TV, T3); |
114 | | R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW); |
115 | | R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW); |
116 | | } |
117 | | { |
118 | | E TB, Tz, Ty, TO, TJ, TI; |
119 | | TB = FNMS(KP801937735, TA, Tr); |
120 | | Ty = FNMS(KP692021471, Tx, Tg); |
121 | | Tz = FNMS(KP1_801937735, Ty, Te); |
122 | | R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz); |
123 | | R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz); |
124 | | TO = FMA(KP801937735, TN, TK); |
125 | | TI = FNMS(KP692021471, TH, Tc); |
126 | | TJ = FNMS(KP1_801937735, TI, T3); |
127 | | R1[0] = FNMS(KP1_949855824, TO, TJ); |
128 | | R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ); |
129 | | } |
130 | | { |
131 | | E TT, TR, TQ, TG, TE, TD; |
132 | | TT = FNMS(KP801937735, TS, TL); |
133 | | TQ = FNMS(KP692021471, TP, T9); |
134 | | TR = FNMS(KP1_801937735, TQ, T3); |
135 | | R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR); |
136 | | R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR); |
137 | | TG = FNMS(KP801937735, TF, Tu); |
138 | | TD = FNMS(KP692021471, TC, Tf); |
139 | | TE = FNMS(KP1_801937735, TD, Te); |
140 | | R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE); |
141 | | R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE); |
142 | | } |
143 | | } |
144 | | } |
145 | | } |
146 | | |
147 | | static const kr2c_desc desc = { 14, "r2cb_14", { 18, 0, 44, 0 }, &GENUS }; |
148 | | |
149 | | void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc); |
150 | | } |
151 | | |
152 | | #else |
153 | | |
154 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */ |
155 | | |
156 | | /* |
157 | | * This function contains 62 FP additions, 38 FP multiplications, |
158 | | * (or, 36 additions, 12 multiplications, 26 fused multiply/add), |
159 | | * 28 stack variables, 7 constants, and 28 memory accesses |
160 | | */ |
161 | | #include "rdft/scalar/r2cb.h" |
162 | | |
163 | | static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
164 | 0 | { |
165 | 0 | DK(KP1_801937735, +1.801937735804838252472204639014890102331838324); |
166 | 0 | DK(KP445041867, +0.445041867912628808577805128993589518932711138); |
167 | 0 | DK(KP1_246979603, +1.246979603717467061050009768008479621264549462); |
168 | 0 | DK(KP867767478, +0.867767478235116240951536665696717509219981456); |
169 | 0 | DK(KP1_949855824, +1.949855824363647214036263365987862434465571601); |
170 | 0 | DK(KP1_563662964, +1.563662964936059617416889053348115500464669037); |
171 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
172 | 0 | { |
173 | 0 | INT i; |
174 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) { |
175 | 0 | E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1; |
176 | 0 | E T2; |
177 | 0 | T1 = Cr[0]; |
178 | 0 | T2 = Cr[WS(csr, 7)]; |
179 | 0 | T3 = T1 - T2; |
180 | 0 | Td = T1 + T2; |
181 | 0 | { |
182 | 0 | E T4, T5, To, Tp; |
183 | 0 | T4 = Cr[WS(csr, 2)]; |
184 | 0 | T5 = Cr[WS(csr, 5)]; |
185 | 0 | T6 = T4 - T5; |
186 | 0 | Te = T4 + T5; |
187 | 0 | To = Ci[WS(csi, 2)]; |
188 | 0 | Tp = Ci[WS(csi, 5)]; |
189 | 0 | Tq = To - Tp; |
190 | 0 | Tz = To + Tp; |
191 | 0 | } |
192 | 0 | { |
193 | 0 | E Tl, Tm, Ta, Tb; |
194 | 0 | Tl = Ci[WS(csi, 6)]; |
195 | 0 | Tm = Ci[WS(csi, 1)]; |
196 | 0 | Tn = Tl - Tm; |
197 | 0 | Ty = Tl + Tm; |
198 | 0 | Ta = Cr[WS(csr, 6)]; |
199 | 0 | Tb = Cr[WS(csr, 1)]; |
200 | 0 | Tc = Ta - Tb; |
201 | 0 | Tg = Ta + Tb; |
202 | 0 | } |
203 | 0 | { |
204 | 0 | E Ti, Tj, T7, T8; |
205 | 0 | Ti = Ci[WS(csi, 4)]; |
206 | 0 | Tj = Ci[WS(csi, 3)]; |
207 | 0 | Tk = Ti - Tj; |
208 | 0 | Tx = Ti + Tj; |
209 | 0 | T7 = Cr[WS(csr, 4)]; |
210 | 0 | T8 = Cr[WS(csr, 3)]; |
211 | 0 | T9 = T7 - T8; |
212 | 0 | Tf = T7 + T8; |
213 | 0 | } |
214 | 0 | R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3); |
215 | 0 | R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td); |
216 | 0 | { |
217 | 0 | E Tr, Th, TE, TD; |
218 | 0 | Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq); |
219 | 0 | Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te); |
220 | 0 | R0[WS(rs, 2)] = Th - Tr; |
221 | 0 | R0[WS(rs, 5)] = Th + Tr; |
222 | 0 | TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz); |
223 | 0 | TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6); |
224 | 0 | R1[WS(rs, 2)] = TD - TE; |
225 | 0 | R1[WS(rs, 4)] = TD + TE; |
226 | 0 | } |
227 | 0 | { |
228 | 0 | E Tt, Ts, TA, Tw; |
229 | 0 | Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq); |
230 | 0 | Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te); |
231 | 0 | R0[WS(rs, 6)] = Ts - Tt; |
232 | 0 | R0[WS(rs, 1)] = Ts + Tt; |
233 | 0 | TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz); |
234 | 0 | Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6); |
235 | 0 | R1[WS(rs, 5)] = Tw - TA; |
236 | 0 | R1[WS(rs, 1)] = Tw + TA; |
237 | 0 | } |
238 | 0 | { |
239 | 0 | E TC, TB, Tv, Tu; |
240 | 0 | TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty); |
241 | 0 | TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9); |
242 | 0 | R1[0] = TB - TC; |
243 | 0 | R1[WS(rs, 6)] = TB + TC; |
244 | 0 | Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn); |
245 | 0 | Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf); |
246 | 0 | R0[WS(rs, 4)] = Tu - Tv; |
247 | 0 | R0[WS(rs, 3)] = Tu + Tv; |
248 | 0 | } |
249 | 0 | } |
250 | 0 | } |
251 | 0 | } |
252 | | |
253 | | static const kr2c_desc desc = { 14, "r2cb_14", { 36, 12, 26, 0 }, &GENUS }; |
254 | | |
255 | 1 | void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc); |
256 | 1 | } |
257 | | |
258 | | #endif |