Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cb/r2cb_14.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:33 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 62 FP additions, 44 FP multiplications,
32
 * (or, 18 additions, 0 multiplications, 44 fused multiply/add),
33
 * 46 stack variables, 7 constants, and 28 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
40
     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
41
     DK(KP692021471, +0.692021471630095869627814897002069140197260599);
42
     DK(KP801937735, +0.801937735804838252472204639014890102331838324);
43
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
44
     DK(KP356895867, +0.356895867892209443894399510021300583399127187);
45
     DK(KP554958132, +0.554958132087371191422194871006410481067288862);
46
     {
47
    INT i;
48
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
49
         E T3, Te, To, TK, Tu, TM, Tr, TL, Tv, TA, TX, TS, TN, TF, T6;
50
         E Tf, Tc, Th, T9, Tg, Tj, Tx, TU, TP, TH, TC, T1, T2, Td, Ti;
51
         T1 = Cr[0];
52
         T2 = Cr[WS(csr, 7)];
53
         T3 = T1 - T2;
54
         Te = T1 + T2;
55
         {
56
        E Tm, Tn, T4, T5;
57
        Tm = Ci[WS(csi, 4)];
58
        Tn = Ci[WS(csi, 3)];
59
        To = Tm - Tn;
60
        TK = Tm + Tn;
61
        {
62
       E Ts, Tt, Tp, Tq;
63
       Ts = Ci[WS(csi, 6)];
64
       Tt = Ci[WS(csi, 1)];
65
       Tu = Ts - Tt;
66
       TM = Ts + Tt;
67
       Tp = Ci[WS(csi, 2)];
68
       Tq = Ci[WS(csi, 5)];
69
       Tr = Tp - Tq;
70
       TL = Tp + Tq;
71
        }
72
        Tv = FMA(KP554958132, Tu, Tr);
73
        TA = FMA(KP554958132, To, Tu);
74
        TX = FNMS(KP554958132, TL, TK);
75
        TS = FMA(KP554958132, TK, TM);
76
        TN = FMA(KP554958132, TM, TL);
77
        TF = FNMS(KP554958132, Tr, To);
78
        T4 = Cr[WS(csr, 2)];
79
        T5 = Cr[WS(csr, 5)];
80
        T6 = T4 - T5;
81
        Tf = T4 + T5;
82
        {
83
       E Ta, Tb, T7, T8;
84
       Ta = Cr[WS(csr, 6)];
85
       Tb = Cr[WS(csr, 1)];
86
       Tc = Ta - Tb;
87
       Th = Ta + Tb;
88
       T7 = Cr[WS(csr, 4)];
89
       T8 = Cr[WS(csr, 3)];
90
       T9 = T7 - T8;
91
       Tg = T7 + T8;
92
        }
93
        Tj = FNMS(KP356895867, Tg, Tf);
94
        Tx = FNMS(KP356895867, Tf, Th);
95
        TU = FNMS(KP356895867, Tc, T9);
96
        TP = FNMS(KP356895867, T6, Tc);
97
        TH = FNMS(KP356895867, T9, T6);
98
        TC = FNMS(KP356895867, Th, Tg);
99
         }
100
         Td = T6 + T9 + Tc;
101
         R1[WS(rs, 3)] = FMA(KP2_000000000, Td, T3);
102
         Ti = Tf + Tg + Th;
103
         R0[0] = FMA(KP2_000000000, Ti, Te);
104
         {
105
        E Tw, Tl, Tk, TY, TW, TV;
106
        Tw = FMA(KP801937735, Tv, To);
107
        Tk = FNMS(KP692021471, Tj, Th);
108
        Tl = FNMS(KP1_801937735, Tk, Te);
109
        R0[WS(rs, 4)] = FNMS(KP1_949855824, Tw, Tl);
110
        R0[WS(rs, 3)] = FMA(KP1_949855824, Tw, Tl);
111
        TY = FNMS(KP801937735, TX, TM);
112
        TV = FNMS(KP692021471, TU, T6);
113
        TW = FNMS(KP1_801937735, TV, T3);
114
        R1[WS(rs, 1)] = FNMS(KP1_949855824, TY, TW);
115
        R1[WS(rs, 5)] = FMA(KP1_949855824, TY, TW);
116
         }
117
         {
118
        E TB, Tz, Ty, TO, TJ, TI;
119
        TB = FNMS(KP801937735, TA, Tr);
120
        Ty = FNMS(KP692021471, Tx, Tg);
121
        Tz = FNMS(KP1_801937735, Ty, Te);
122
        R0[WS(rs, 1)] = FNMS(KP1_949855824, TB, Tz);
123
        R0[WS(rs, 6)] = FMA(KP1_949855824, TB, Tz);
124
        TO = FMA(KP801937735, TN, TK);
125
        TI = FNMS(KP692021471, TH, Tc);
126
        TJ = FNMS(KP1_801937735, TI, T3);
127
        R1[0] = FNMS(KP1_949855824, TO, TJ);
128
        R1[WS(rs, 6)] = FMA(KP1_949855824, TO, TJ);
129
         }
130
         {
131
        E TT, TR, TQ, TG, TE, TD;
132
        TT = FNMS(KP801937735, TS, TL);
133
        TQ = FNMS(KP692021471, TP, T9);
134
        TR = FNMS(KP1_801937735, TQ, T3);
135
        R1[WS(rs, 4)] = FNMS(KP1_949855824, TT, TR);
136
        R1[WS(rs, 2)] = FMA(KP1_949855824, TT, TR);
137
        TG = FNMS(KP801937735, TF, Tu);
138
        TD = FNMS(KP692021471, TC, Tf);
139
        TE = FNMS(KP1_801937735, TD, Te);
140
        R0[WS(rs, 5)] = FNMS(KP1_949855824, TG, TE);
141
        R0[WS(rs, 2)] = FMA(KP1_949855824, TG, TE);
142
         }
143
    }
144
     }
145
}
146
147
static const kr2c_desc desc = { 14, "r2cb_14", { 18, 0, 44, 0 }, &GENUS };
148
149
void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc);
150
}
151
152
#else
153
154
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 14 -name r2cb_14 -include rdft/scalar/r2cb.h */
155
156
/*
157
 * This function contains 62 FP additions, 38 FP multiplications,
158
 * (or, 36 additions, 12 multiplications, 26 fused multiply/add),
159
 * 28 stack variables, 7 constants, and 28 memory accesses
160
 */
161
#include "rdft/scalar/r2cb.h"
162
163
static void r2cb_14(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
164
0
{
165
0
     DK(KP1_801937735, +1.801937735804838252472204639014890102331838324);
166
0
     DK(KP445041867, +0.445041867912628808577805128993589518932711138);
167
0
     DK(KP1_246979603, +1.246979603717467061050009768008479621264549462);
168
0
     DK(KP867767478, +0.867767478235116240951536665696717509219981456);
169
0
     DK(KP1_949855824, +1.949855824363647214036263365987862434465571601);
170
0
     DK(KP1_563662964, +1.563662964936059617416889053348115500464669037);
171
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
172
0
     {
173
0
    INT i;
174
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(56, rs), MAKE_VOLATILE_STRIDE(56, csr), MAKE_VOLATILE_STRIDE(56, csi)) {
175
0
         E T3, Td, T6, Te, Tq, Tz, Tn, Ty, Tc, Tg, Tk, Tx, T9, Tf, T1;
176
0
         E T2;
177
0
         T1 = Cr[0];
178
0
         T2 = Cr[WS(csr, 7)];
179
0
         T3 = T1 - T2;
180
0
         Td = T1 + T2;
181
0
         {
182
0
        E T4, T5, To, Tp;
183
0
        T4 = Cr[WS(csr, 2)];
184
0
        T5 = Cr[WS(csr, 5)];
185
0
        T6 = T4 - T5;
186
0
        Te = T4 + T5;
187
0
        To = Ci[WS(csi, 2)];
188
0
        Tp = Ci[WS(csi, 5)];
189
0
        Tq = To - Tp;
190
0
        Tz = To + Tp;
191
0
         }
192
0
         {
193
0
        E Tl, Tm, Ta, Tb;
194
0
        Tl = Ci[WS(csi, 6)];
195
0
        Tm = Ci[WS(csi, 1)];
196
0
        Tn = Tl - Tm;
197
0
        Ty = Tl + Tm;
198
0
        Ta = Cr[WS(csr, 6)];
199
0
        Tb = Cr[WS(csr, 1)];
200
0
        Tc = Ta - Tb;
201
0
        Tg = Ta + Tb;
202
0
         }
203
0
         {
204
0
        E Ti, Tj, T7, T8;
205
0
        Ti = Ci[WS(csi, 4)];
206
0
        Tj = Ci[WS(csi, 3)];
207
0
        Tk = Ti - Tj;
208
0
        Tx = Ti + Tj;
209
0
        T7 = Cr[WS(csr, 4)];
210
0
        T8 = Cr[WS(csr, 3)];
211
0
        T9 = T7 - T8;
212
0
        Tf = T7 + T8;
213
0
         }
214
0
         R1[WS(rs, 3)] = FMA(KP2_000000000, T6 + T9 + Tc, T3);
215
0
         R0[0] = FMA(KP2_000000000, Te + Tf + Tg, Td);
216
0
         {
217
0
        E Tr, Th, TE, TD;
218
0
        Tr = FNMS(KP1_949855824, Tn, KP1_563662964 * Tk) - (KP867767478 * Tq);
219
0
        Th = FMA(KP1_246979603, Tf, Td) + FNMA(KP445041867, Tg, KP1_801937735 * Te);
220
0
        R0[WS(rs, 2)] = Th - Tr;
221
0
        R0[WS(rs, 5)] = Th + Tr;
222
0
        TE = FMA(KP867767478, Tx, KP1_563662964 * Ty) - (KP1_949855824 * Tz);
223
0
        TD = FMA(KP1_246979603, Tc, T3) + FNMA(KP1_801937735, T9, KP445041867 * T6);
224
0
        R1[WS(rs, 2)] = TD - TE;
225
0
        R1[WS(rs, 4)] = TD + TE;
226
0
         }
227
0
         {
228
0
        E Tt, Ts, TA, Tw;
229
0
        Tt = FMA(KP867767478, Tk, KP1_563662964 * Tn) - (KP1_949855824 * Tq);
230
0
        Ts = FMA(KP1_246979603, Tg, Td) + FNMA(KP1_801937735, Tf, KP445041867 * Te);
231
0
        R0[WS(rs, 6)] = Ts - Tt;
232
0
        R0[WS(rs, 1)] = Ts + Tt;
233
0
        TA = FNMS(KP1_949855824, Ty, KP1_563662964 * Tx) - (KP867767478 * Tz);
234
0
        Tw = FMA(KP1_246979603, T9, T3) + FNMA(KP445041867, Tc, KP1_801937735 * T6);
235
0
        R1[WS(rs, 5)] = Tw - TA;
236
0
        R1[WS(rs, 1)] = Tw + TA;
237
0
         }
238
0
         {
239
0
        E TC, TB, Tv, Tu;
240
0
        TC = FMA(KP1_563662964, Tz, KP1_949855824 * Tx) + (KP867767478 * Ty);
241
0
        TB = FMA(KP1_246979603, T6, T3) + FNMA(KP1_801937735, Tc, KP445041867 * T9);
242
0
        R1[0] = TB - TC;
243
0
        R1[WS(rs, 6)] = TB + TC;
244
0
        Tv = FMA(KP1_563662964, Tq, KP1_949855824 * Tk) + (KP867767478 * Tn);
245
0
        Tu = FMA(KP1_246979603, Te, Td) + FNMA(KP1_801937735, Tg, KP445041867 * Tf);
246
0
        R0[WS(rs, 4)] = Tu - Tv;
247
0
        R0[WS(rs, 3)] = Tu + Tv;
248
0
         }
249
0
    }
250
0
     }
251
0
}
252
253
static const kr2c_desc desc = { 14, "r2cb_14", { 36, 12, 26, 0 }, &GENUS };
254
255
1
void X(codelet_r2cb_14) (planner *p) { X(kr2c_register) (p, r2cb_14, &desc);
256
1
}
257
258
#endif