Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cf/hc2cf_20.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:19 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cf_20 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 246 FP additions, 148 FP multiplications,
32
 * (or, 136 additions, 38 multiplications, 110 fused multiply/add),
33
 * 61 stack variables, 4 constants, and 80 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cf_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43
     {
44
    INT m;
45
    for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
46
         E T8, T4N, T2i, T4r, Tl, T4O, T2n, T4n, TN, T2b, T3T, T4f, T2v, T3v, T3p;
47
         E T3F, T27, T2f, T43, T4b, T2R, T3z, T33, T3J, T1G, T2e, T40, T4c, T2K, T3y;
48
         E T3a, T3I, T1e, T2c, T3W, T4e, T2C, T3w, T3i, T3G;
49
         {
50
        E T1, T4q, T3, T6, T4, T4o, T2, T7, T4p, T5;
51
        T1 = Rp[0];
52
        T4q = Rm[0];
53
        T3 = Rp[WS(rs, 5)];
54
        T6 = Rm[WS(rs, 5)];
55
        T2 = W[18];
56
        T4 = T2 * T3;
57
        T4o = T2 * T6;
58
        T5 = W[19];
59
        T7 = FMA(T5, T6, T4);
60
        T4p = FNMS(T5, T3, T4o);
61
        T8 = T1 + T7;
62
        T4N = T4q - T4p;
63
        T2i = T1 - T7;
64
        T4r = T4p + T4q;
65
         }
66
         {
67
        E Ta, Td, Tb, T2j, Tg, Tj, Th, T2l, T9, Tf;
68
        Ta = Ip[WS(rs, 2)];
69
        Td = Im[WS(rs, 2)];
70
        T9 = W[8];
71
        Tb = T9 * Ta;
72
        T2j = T9 * Td;
73
        Tg = Ip[WS(rs, 7)];
74
        Tj = Im[WS(rs, 7)];
75
        Tf = W[28];
76
        Th = Tf * Tg;
77
        T2l = Tf * Tj;
78
        {
79
       E Te, T2k, Tk, T2m, Tc, Ti;
80
       Tc = W[9];
81
       Te = FMA(Tc, Td, Tb);
82
       T2k = FNMS(Tc, Ta, T2j);
83
       Ti = W[29];
84
       Tk = FMA(Ti, Tj, Th);
85
       T2m = FNMS(Ti, Tg, T2l);
86
       Tl = Te + Tk;
87
       T4O = Te - Tk;
88
       T2n = T2k - T2m;
89
       T4n = T2k + T2m;
90
        }
91
         }
92
         {
93
        E Ts, T3l, TL, T2t, Ty, T3n, TF, T2r;
94
        {
95
       E To, Tr, Tp, T3k, Tn, Tq;
96
       To = Rp[WS(rs, 2)];
97
       Tr = Rm[WS(rs, 2)];
98
       Tn = W[6];
99
       Tp = Tn * To;
100
       T3k = Tn * Tr;
101
       Tq = W[7];
102
       Ts = FMA(Tq, Tr, Tp);
103
       T3l = FNMS(Tq, To, T3k);
104
        }
105
        {
106
       E TH, TK, TI, T2s, TG, TJ;
107
       TH = Ip[WS(rs, 9)];
108
       TK = Im[WS(rs, 9)];
109
       TG = W[36];
110
       TI = TG * TH;
111
       T2s = TG * TK;
112
       TJ = W[37];
113
       TL = FMA(TJ, TK, TI);
114
       T2t = FNMS(TJ, TH, T2s);
115
        }
116
        {
117
       E Tu, Tx, Tv, T3m, Tt, Tw;
118
       Tu = Rp[WS(rs, 7)];
119
       Tx = Rm[WS(rs, 7)];
120
       Tt = W[26];
121
       Tv = Tt * Tu;
122
       T3m = Tt * Tx;
123
       Tw = W[27];
124
       Ty = FMA(Tw, Tx, Tv);
125
       T3n = FNMS(Tw, Tu, T3m);
126
        }
127
        {
128
       E TB, TE, TC, T2q, TA, TD;
129
       TB = Ip[WS(rs, 4)];
130
       TE = Im[WS(rs, 4)];
131
       TA = W[16];
132
       TC = TA * TB;
133
       T2q = TA * TE;
134
       TD = W[17];
135
       TF = FMA(TD, TE, TC);
136
       T2r = FNMS(TD, TB, T2q);
137
        }
138
        {
139
       E Tz, TM, T3R, T3S;
140
       Tz = Ts + Ty;
141
       TM = TF + TL;
142
       TN = Tz - TM;
143
       T2b = Tz + TM;
144
       T3R = T3l + T3n;
145
       T3S = T2r + T2t;
146
       T3T = T3R + T3S;
147
       T4f = T3S - T3R;
148
        }
149
        {
150
       E T2p, T2u, T3j, T3o;
151
       T2p = Ts - Ty;
152
       T2u = T2r - T2t;
153
       T2v = T2p - T2u;
154
       T3v = T2p + T2u;
155
       T3j = TL - TF;
156
       T3o = T3l - T3n;
157
       T3p = T3j - T3o;
158
       T3F = T3o + T3j;
159
        }
160
         }
161
         {
162
        E T1M, T2Z, T25, T2P, T1S, T31, T1Z, T2N;
163
        {
164
       E T1I, T1L, T1J, T2Y, T1H, T1K;
165
       T1I = Rp[WS(rs, 6)];
166
       T1L = Rm[WS(rs, 6)];
167
       T1H = W[22];
168
       T1J = T1H * T1I;
169
       T2Y = T1H * T1L;
170
       T1K = W[23];
171
       T1M = FMA(T1K, T1L, T1J);
172
       T2Z = FNMS(T1K, T1I, T2Y);
173
        }
174
        {
175
       E T21, T24, T22, T2O, T20, T23;
176
       T21 = Ip[WS(rs, 3)];
177
       T24 = Im[WS(rs, 3)];
178
       T20 = W[12];
179
       T22 = T20 * T21;
180
       T2O = T20 * T24;
181
       T23 = W[13];
182
       T25 = FMA(T23, T24, T22);
183
       T2P = FNMS(T23, T21, T2O);
184
        }
185
        {
186
       E T1O, T1R, T1P, T30, T1N, T1Q;
187
       T1O = Rp[WS(rs, 1)];
188
       T1R = Rm[WS(rs, 1)];
189
       T1N = W[2];
190
       T1P = T1N * T1O;
191
       T30 = T1N * T1R;
192
       T1Q = W[3];
193
       T1S = FMA(T1Q, T1R, T1P);
194
       T31 = FNMS(T1Q, T1O, T30);
195
        }
196
        {
197
       E T1V, T1Y, T1W, T2M, T1U, T1X;
198
       T1V = Ip[WS(rs, 8)];
199
       T1Y = Im[WS(rs, 8)];
200
       T1U = W[32];
201
       T1W = T1U * T1V;
202
       T2M = T1U * T1Y;
203
       T1X = W[33];
204
       T1Z = FMA(T1X, T1Y, T1W);
205
       T2N = FNMS(T1X, T1V, T2M);
206
        }
207
        {
208
       E T1T, T26, T41, T42;
209
       T1T = T1M + T1S;
210
       T26 = T1Z + T25;
211
       T27 = T1T - T26;
212
       T2f = T1T + T26;
213
       T41 = T2Z + T31;
214
       T42 = T2N + T2P;
215
       T43 = T41 + T42;
216
       T4b = T42 - T41;
217
        }
218
        {
219
       E T2L, T2Q, T2X, T32;
220
       T2L = T1M - T1S;
221
       T2Q = T2N - T2P;
222
       T2R = T2L - T2Q;
223
       T3z = T2L + T2Q;
224
       T2X = T25 - T1Z;
225
       T32 = T2Z - T31;
226
       T33 = T2X - T32;
227
       T3J = T32 + T2X;
228
        }
229
         }
230
         {
231
        E T1l, T36, T1E, T2I, T1r, T38, T1y, T2G;
232
        {
233
       E T1h, T1k, T1i, T35, T1g, T1j;
234
       T1h = Rp[WS(rs, 4)];
235
       T1k = Rm[WS(rs, 4)];
236
       T1g = W[14];
237
       T1i = T1g * T1h;
238
       T35 = T1g * T1k;
239
       T1j = W[15];
240
       T1l = FMA(T1j, T1k, T1i);
241
       T36 = FNMS(T1j, T1h, T35);
242
        }
243
        {
244
       E T1A, T1D, T1B, T2H, T1z, T1C;
245
       T1A = Ip[WS(rs, 1)];
246
       T1D = Im[WS(rs, 1)];
247
       T1z = W[4];
248
       T1B = T1z * T1A;
249
       T2H = T1z * T1D;
250
       T1C = W[5];
251
       T1E = FMA(T1C, T1D, T1B);
252
       T2I = FNMS(T1C, T1A, T2H);
253
        }
254
        {
255
       E T1n, T1q, T1o, T37, T1m, T1p;
256
       T1n = Rp[WS(rs, 9)];
257
       T1q = Rm[WS(rs, 9)];
258
       T1m = W[34];
259
       T1o = T1m * T1n;
260
       T37 = T1m * T1q;
261
       T1p = W[35];
262
       T1r = FMA(T1p, T1q, T1o);
263
       T38 = FNMS(T1p, T1n, T37);
264
        }
265
        {
266
       E T1u, T1x, T1v, T2F, T1t, T1w;
267
       T1u = Ip[WS(rs, 6)];
268
       T1x = Im[WS(rs, 6)];
269
       T1t = W[24];
270
       T1v = T1t * T1u;
271
       T2F = T1t * T1x;
272
       T1w = W[25];
273
       T1y = FMA(T1w, T1x, T1v);
274
       T2G = FNMS(T1w, T1u, T2F);
275
        }
276
        {
277
       E T1s, T1F, T3Y, T3Z;
278
       T1s = T1l + T1r;
279
       T1F = T1y + T1E;
280
       T1G = T1s - T1F;
281
       T2e = T1s + T1F;
282
       T3Y = T36 + T38;
283
       T3Z = T2G + T2I;
284
       T40 = T3Y + T3Z;
285
       T4c = T3Z - T3Y;
286
        }
287
        {
288
       E T2E, T2J, T34, T39;
289
       T2E = T1l - T1r;
290
       T2J = T2G - T2I;
291
       T2K = T2E - T2J;
292
       T3y = T2E + T2J;
293
       T34 = T1E - T1y;
294
       T39 = T36 - T38;
295
       T3a = T34 - T39;
296
       T3I = T39 + T34;
297
        }
298
         }
299
         {
300
        E TT, T3e, T1c, T2A, TZ, T3g, T16, T2y;
301
        {
302
       E TP, TS, TQ, T3d, TO, TR;
303
       TP = Rp[WS(rs, 8)];
304
       TS = Rm[WS(rs, 8)];
305
       TO = W[30];
306
       TQ = TO * TP;
307
       T3d = TO * TS;
308
       TR = W[31];
309
       TT = FMA(TR, TS, TQ);
310
       T3e = FNMS(TR, TP, T3d);
311
        }
312
        {
313
       E T18, T1b, T19, T2z, T17, T1a;
314
       T18 = Ip[WS(rs, 5)];
315
       T1b = Im[WS(rs, 5)];
316
       T17 = W[20];
317
       T19 = T17 * T18;
318
       T2z = T17 * T1b;
319
       T1a = W[21];
320
       T1c = FMA(T1a, T1b, T19);
321
       T2A = FNMS(T1a, T18, T2z);
322
        }
323
        {
324
       E TV, TY, TW, T3f, TU, TX;
325
       TV = Rp[WS(rs, 3)];
326
       TY = Rm[WS(rs, 3)];
327
       TU = W[10];
328
       TW = TU * TV;
329
       T3f = TU * TY;
330
       TX = W[11];
331
       TZ = FMA(TX, TY, TW);
332
       T3g = FNMS(TX, TV, T3f);
333
        }
334
        {
335
       E T12, T15, T13, T2x, T11, T14;
336
       T12 = Ip[0];
337
       T15 = Im[0];
338
       T11 = W[0];
339
       T13 = T11 * T12;
340
       T2x = T11 * T15;
341
       T14 = W[1];
342
       T16 = FMA(T14, T15, T13);
343
       T2y = FNMS(T14, T12, T2x);
344
        }
345
        {
346
       E T10, T1d, T3U, T3V;
347
       T10 = TT + TZ;
348
       T1d = T16 + T1c;
349
       T1e = T10 - T1d;
350
       T2c = T10 + T1d;
351
       T3U = T3e + T3g;
352
       T3V = T2y + T2A;
353
       T3W = T3U + T3V;
354
       T4e = T3V - T3U;
355
        }
356
        {
357
       E T2w, T2B, T3c, T3h;
358
       T2w = TT - TZ;
359
       T2B = T2y - T2A;
360
       T2C = T2w - T2B;
361
       T3w = T2w + T2B;
362
       T3c = T1c - T16;
363
       T3h = T3e - T3g;
364
       T3i = T3c - T3h;
365
       T3G = T3h + T3c;
366
        }
367
         }
368
         {
369
        E T4h, T4j, Tm, T29, T48, T49, T4i, T4a;
370
        {
371
       E T4d, T4g, T1f, T28;
372
       T4d = T4b - T4c;
373
       T4g = T4e - T4f;
374
       T4h = FNMS(KP618033988, T4g, T4d);
375
       T4j = FMA(KP618033988, T4d, T4g);
376
       Tm = T8 - Tl;
377
       T1f = TN + T1e;
378
       T28 = T1G + T27;
379
       T29 = T1f + T28;
380
       T48 = FNMS(KP250000000, T29, Tm);
381
       T49 = T1f - T28;
382
        }
383
        Rm[WS(rs, 9)] = Tm + T29;
384
        T4i = FMA(KP559016994, T49, T48);
385
        Rm[WS(rs, 5)] = FNMS(KP951056516, T4j, T4i);
386
        Rp[WS(rs, 6)] = FMA(KP951056516, T4j, T4i);
387
        T4a = FNMS(KP559016994, T49, T48);
388
        Rp[WS(rs, 2)] = FNMS(KP951056516, T4h, T4a);
389
        Rm[WS(rs, 1)] = FMA(KP951056516, T4h, T4a);
390
         }
391
         {
392
        E T4K, T4M, T4E, T4D, T4F, T4G, T4L, T4H;
393
        {
394
       E T4I, T4J, T4B, T4C;
395
       T4I = T1G - T27;
396
       T4J = T1e - TN;
397
       T4K = FMA(KP618033988, T4J, T4I);
398
       T4M = FNMS(KP618033988, T4I, T4J);
399
       T4E = T4r - T4n;
400
       T4B = T4f + T4e;
401
       T4C = T4c + T4b;
402
       T4D = T4B + T4C;
403
       T4F = FMA(KP250000000, T4D, T4E);
404
       T4G = T4C - T4B;
405
        }
406
        Im[WS(rs, 9)] = T4D - T4E;
407
        T4L = FMA(KP559016994, T4G, T4F);
408
        Im[WS(rs, 5)] = FMS(KP951056516, T4M, T4L);
409
        Ip[WS(rs, 6)] = FMA(KP951056516, T4M, T4L);
410
        T4H = FNMS(KP559016994, T4G, T4F);
411
        Im[WS(rs, 1)] = FMS(KP951056516, T4K, T4H);
412
        Ip[WS(rs, 2)] = FMA(KP951056516, T4K, T4H);
413
         }
414
         {
415
        E T45, T47, T2a, T2h, T3O, T3P, T46, T3Q;
416
        {
417
       E T3X, T44, T2d, T2g;
418
       T3X = T3T - T3W;
419
       T44 = T40 - T43;
420
       T45 = FMA(KP618033988, T44, T3X);
421
       T47 = FNMS(KP618033988, T3X, T44);
422
       T2a = T8 + Tl;
423
       T2d = T2b + T2c;
424
       T2g = T2e + T2f;
425
       T2h = T2d + T2g;
426
       T3O = FNMS(KP250000000, T2h, T2a);
427
       T3P = T2d - T2g;
428
        }
429
        Rp[0] = T2a + T2h;
430
        T46 = FNMS(KP559016994, T3P, T3O);
431
        Rm[WS(rs, 7)] = FNMS(KP951056516, T47, T46);
432
        Rp[WS(rs, 8)] = FMA(KP951056516, T47, T46);
433
        T3Q = FMA(KP559016994, T3P, T3O);
434
        Rp[WS(rs, 4)] = FNMS(KP951056516, T45, T3Q);
435
        Rm[WS(rs, 3)] = FMA(KP951056516, T45, T3Q);
436
         }
437
         {
438
        E T4y, T4A, T4s, T4m, T4t, T4u, T4z, T4v;
439
        {
440
       E T4w, T4x, T4k, T4l;
441
       T4w = T2b - T2c;
442
       T4x = T2f - T2e;
443
       T4y = FNMS(KP618033988, T4x, T4w);
444
       T4A = FMA(KP618033988, T4w, T4x);
445
       T4s = T4n + T4r;
446
       T4k = T3T + T3W;
447
       T4l = T40 + T43;
448
       T4m = T4k + T4l;
449
       T4t = FNMS(KP250000000, T4m, T4s);
450
       T4u = T4k - T4l;
451
        }
452
        Ip[0] = T4m + T4s;
453
        T4z = FNMS(KP559016994, T4u, T4t);
454
        Im[WS(rs, 7)] = FMS(KP951056516, T4A, T4z);
455
        Ip[WS(rs, 8)] = FMA(KP951056516, T4A, T4z);
456
        T4v = FMA(KP559016994, T4u, T4t);
457
        Im[WS(rs, 3)] = FMS(KP951056516, T4y, T4v);
458
        Ip[WS(rs, 4)] = FMA(KP951056516, T4y, T4v);
459
         }
460
         {
461
        E T3r, T3t, T2o, T2T, T2U, T2V, T3s, T2W;
462
        {
463
       E T3b, T3q, T2D, T2S;
464
       T3b = T33 - T3a;
465
       T3q = T3i - T3p;
466
       T3r = FNMS(KP618033988, T3q, T3b);
467
       T3t = FMA(KP618033988, T3b, T3q);
468
       T2o = T2i - T2n;
469
       T2D = T2v + T2C;
470
       T2S = T2K + T2R;
471
       T2T = T2D + T2S;
472
       T2U = FNMS(KP250000000, T2T, T2o);
473
       T2V = T2D - T2S;
474
        }
475
        Rm[WS(rs, 4)] = T2o + T2T;
476
        T3s = FMA(KP559016994, T2V, T2U);
477
        Rm[WS(rs, 8)] = FMA(KP951056516, T3t, T3s);
478
        Rm[0] = FNMS(KP951056516, T3t, T3s);
479
        T2W = FNMS(KP559016994, T2V, T2U);
480
        Rp[WS(rs, 3)] = FMA(KP951056516, T3r, T2W);
481
        Rp[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W);
482
         }
483
         {
484
        E T5a, T5c, T54, T53, T55, T56, T5b, T57;
485
        {
486
       E T58, T59, T51, T52;
487
       T58 = T2v - T2C;
488
       T59 = T2K - T2R;
489
       T5a = FMA(KP618033988, T59, T58);
490
       T5c = FNMS(KP618033988, T58, T59);
491
       T54 = T4O + T4N;
492
       T51 = T3p + T3i;
493
       T52 = T3a + T33;
494
       T53 = T51 + T52;
495
       T55 = FMA(KP250000000, T53, T54);
496
       T56 = T51 - T52;
497
        }
498
        Im[WS(rs, 4)] = T53 - T54;
499
        T5b = FMA(KP559016994, T56, T55);
500
        Ip[WS(rs, 3)] = FNMS(KP951056516, T5c, T5b);
501
        Ip[WS(rs, 7)] = FMA(KP951056516, T5c, T5b);
502
        T57 = FNMS(KP559016994, T56, T55);
503
        Im[WS(rs, 8)] = FMS(KP951056516, T5a, T57);
504
        Im[0] = -(FMA(KP951056516, T5a, T57));
505
         }
506
         {
507
        E T3L, T3N, T3u, T3B, T3C, T3D, T3M, T3E;
508
        {
509
       E T3H, T3K, T3x, T3A;
510
       T3H = T3F - T3G;
511
       T3K = T3I - T3J;
512
       T3L = FMA(KP618033988, T3K, T3H);
513
       T3N = FNMS(KP618033988, T3H, T3K);
514
       T3u = T2i + T2n;
515
       T3x = T3v + T3w;
516
       T3A = T3y + T3z;
517
       T3B = T3x + T3A;
518
       T3C = FNMS(KP250000000, T3B, T3u);
519
       T3D = T3x - T3A;
520
        }
521
        Rp[WS(rs, 5)] = T3u + T3B;
522
        T3M = FNMS(KP559016994, T3D, T3C);
523
        Rm[WS(rs, 6)] = FMA(KP951056516, T3N, T3M);
524
        Rm[WS(rs, 2)] = FNMS(KP951056516, T3N, T3M);
525
        T3E = FMA(KP559016994, T3D, T3C);
526
        Rp[WS(rs, 1)] = FMA(KP951056516, T3L, T3E);
527
        Rp[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E);
528
         }
529
         {
530
        E T4Y, T50, T4P, T4S, T4T, T4U, T4Z, T4V;
531
        {
532
       E T4W, T4X, T4Q, T4R;
533
       T4W = T3y - T3z;
534
       T4X = T3v - T3w;
535
       T4Y = FNMS(KP618033988, T4X, T4W);
536
       T50 = FMA(KP618033988, T4W, T4X);
537
       T4P = T4N - T4O;
538
       T4Q = T3F + T3G;
539
       T4R = T3I + T3J;
540
       T4S = T4Q + T4R;
541
       T4T = FNMS(KP250000000, T4S, T4P);
542
       T4U = T4Q - T4R;
543
        }
544
        Ip[WS(rs, 5)] = T4S + T4P;
545
        T4Z = FMA(KP559016994, T4U, T4T);
546
        Ip[WS(rs, 1)] = FNMS(KP951056516, T50, T4Z);
547
        Ip[WS(rs, 9)] = FMA(KP951056516, T50, T4Z);
548
        T4V = FNMS(KP559016994, T4U, T4T);
549
        Im[WS(rs, 6)] = FMS(KP951056516, T4Y, T4V);
550
        Im[WS(rs, 2)] = -(FMA(KP951056516, T4Y, T4V));
551
         }
552
    }
553
     }
554
}
555
556
static const tw_instr twinstr[] = {
557
     { TW_FULL, 1, 20 },
558
     { TW_NEXT, 1, 0 }
559
};
560
561
static const hc2c_desc desc = { 20, "hc2cf_20", twinstr, &GENUS, { 136, 38, 110, 0 } };
562
563
void X(codelet_hc2cf_20) (planner *p) {
564
     X(khc2c_register) (p, hc2cf_20, &desc, HC2C_VIA_RDFT);
565
}
566
#else
567
568
/* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cf_20 -include rdft/scalar/hc2cf.h */
569
570
/*
571
 * This function contains 246 FP additions, 124 FP multiplications,
572
 * (or, 184 additions, 62 multiplications, 62 fused multiply/add),
573
 * 85 stack variables, 4 constants, and 80 memory accesses
574
 */
575
#include "rdft/scalar/hc2cf.h"
576
577
static void hc2cf_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
578
0
{
579
0
     DK(KP587785252, +0.587785252292473129168705954639072768597652438);
580
0
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
581
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
582
0
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
583
0
     {
584
0
    INT m;
585
0
    for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) {
586
0
         E Tj, T1R, T4j, T4s, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3p, T3s, T3K, T3A;
587
0
         E T3B, T3Z, T1V, T1W, T1X, T23, T28, T4q, T2W, T2X, T4f, T33, T34, T35, T2G;
588
0
         E T2L, T2M, TG, T13, T14, T3i, T3l, T3J, T3D, T3E, T40, T1S, T1T, T1U, T2e;
589
0
         E T2j, T4p, T2T, T2U, T4e, T30, T31, T32, T2v, T2A, T2B;
590
0
         {
591
0
        E T1, T3O, T6, T3N, Tc, T2n, Th, T2o;
592
0
        T1 = Rp[0];
593
0
        T3O = Rm[0];
594
0
        {
595
0
       E T3, T5, T2, T4;
596
0
       T3 = Rp[WS(rs, 5)];
597
0
       T5 = Rm[WS(rs, 5)];
598
0
       T2 = W[18];
599
0
       T4 = W[19];
600
0
       T6 = FMA(T2, T3, T4 * T5);
601
0
       T3N = FNMS(T4, T3, T2 * T5);
602
0
        }
603
0
        {
604
0
       E T9, Tb, T8, Ta;
605
0
       T9 = Ip[WS(rs, 2)];
606
0
       Tb = Im[WS(rs, 2)];
607
0
       T8 = W[8];
608
0
       Ta = W[9];
609
0
       Tc = FMA(T8, T9, Ta * Tb);
610
0
       T2n = FNMS(Ta, T9, T8 * Tb);
611
0
        }
612
0
        {
613
0
       E Te, Tg, Td, Tf;
614
0
       Te = Ip[WS(rs, 7)];
615
0
       Tg = Im[WS(rs, 7)];
616
0
       Td = W[28];
617
0
       Tf = W[29];
618
0
       Th = FMA(Td, Te, Tf * Tg);
619
0
       T2o = FNMS(Tf, Te, Td * Tg);
620
0
        }
621
0
        {
622
0
       E T7, Ti, T4h, T4i;
623
0
       T7 = T1 + T6;
624
0
       Ti = Tc + Th;
625
0
       Tj = T7 - Ti;
626
0
       T1R = T7 + Ti;
627
0
       T4h = T3O - T3N;
628
0
       T4i = Tc - Th;
629
0
       T4j = T4h - T4i;
630
0
       T4s = T4i + T4h;
631
0
        }
632
0
        {
633
0
       E T2m, T2p, T3M, T3P;
634
0
       T2m = T1 - T6;
635
0
       T2p = T2n - T2o;
636
0
       T2q = T2m - T2p;
637
0
       T37 = T2m + T2p;
638
0
       T3M = T2n + T2o;
639
0
       T3P = T3N + T3O;
640
0
       T3Q = T3M + T3P;
641
0
       T42 = T3P - T3M;
642
0
        }
643
0
         }
644
0
         {
645
0
        E T1f, T3n, T21, T2C, T1N, T3r, T27, T2K, T1q, T3o, T22, T2F, T1C, T3q, T26;
646
0
        E T2H;
647
0
        {
648
0
       E T19, T1Z, T1e, T20;
649
0
       {
650
0
            E T16, T18, T15, T17;
651
0
            T16 = Rp[WS(rs, 4)];
652
0
            T18 = Rm[WS(rs, 4)];
653
0
            T15 = W[14];
654
0
            T17 = W[15];
655
0
            T19 = FMA(T15, T16, T17 * T18);
656
0
            T1Z = FNMS(T17, T16, T15 * T18);
657
0
       }
658
0
       {
659
0
            E T1b, T1d, T1a, T1c;
660
0
            T1b = Rp[WS(rs, 9)];
661
0
            T1d = Rm[WS(rs, 9)];
662
0
            T1a = W[34];
663
0
            T1c = W[35];
664
0
            T1e = FMA(T1a, T1b, T1c * T1d);
665
0
            T20 = FNMS(T1c, T1b, T1a * T1d);
666
0
       }
667
0
       T1f = T19 + T1e;
668
0
       T3n = T1Z + T20;
669
0
       T21 = T1Z - T20;
670
0
       T2C = T19 - T1e;
671
0
        }
672
0
        {
673
0
       E T1H, T2I, T1M, T2J;
674
0
       {
675
0
            E T1E, T1G, T1D, T1F;
676
0
            T1E = Ip[WS(rs, 8)];
677
0
            T1G = Im[WS(rs, 8)];
678
0
            T1D = W[32];
679
0
            T1F = W[33];
680
0
            T1H = FMA(T1D, T1E, T1F * T1G);
681
0
            T2I = FNMS(T1F, T1E, T1D * T1G);
682
0
       }
683
0
       {
684
0
            E T1J, T1L, T1I, T1K;
685
0
            T1J = Ip[WS(rs, 3)];
686
0
            T1L = Im[WS(rs, 3)];
687
0
            T1I = W[12];
688
0
            T1K = W[13];
689
0
            T1M = FMA(T1I, T1J, T1K * T1L);
690
0
            T2J = FNMS(T1K, T1J, T1I * T1L);
691
0
       }
692
0
       T1N = T1H + T1M;
693
0
       T3r = T2I + T2J;
694
0
       T27 = T1H - T1M;
695
0
       T2K = T2I - T2J;
696
0
        }
697
0
        {
698
0
       E T1k, T2D, T1p, T2E;
699
0
       {
700
0
            E T1h, T1j, T1g, T1i;
701
0
            T1h = Ip[WS(rs, 6)];
702
0
            T1j = Im[WS(rs, 6)];
703
0
            T1g = W[24];
704
0
            T1i = W[25];
705
0
            T1k = FMA(T1g, T1h, T1i * T1j);
706
0
            T2D = FNMS(T1i, T1h, T1g * T1j);
707
0
       }
708
0
       {
709
0
            E T1m, T1o, T1l, T1n;
710
0
            T1m = Ip[WS(rs, 1)];
711
0
            T1o = Im[WS(rs, 1)];
712
0
            T1l = W[4];
713
0
            T1n = W[5];
714
0
            T1p = FMA(T1l, T1m, T1n * T1o);
715
0
            T2E = FNMS(T1n, T1m, T1l * T1o);
716
0
       }
717
0
       T1q = T1k + T1p;
718
0
       T3o = T2D + T2E;
719
0
       T22 = T1k - T1p;
720
0
       T2F = T2D - T2E;
721
0
        }
722
0
        {
723
0
       E T1w, T24, T1B, T25;
724
0
       {
725
0
            E T1t, T1v, T1s, T1u;
726
0
            T1t = Rp[WS(rs, 6)];
727
0
            T1v = Rm[WS(rs, 6)];
728
0
            T1s = W[22];
729
0
            T1u = W[23];
730
0
            T1w = FMA(T1s, T1t, T1u * T1v);
731
0
            T24 = FNMS(T1u, T1t, T1s * T1v);
732
0
       }
733
0
       {
734
0
            E T1y, T1A, T1x, T1z;
735
0
            T1y = Rp[WS(rs, 1)];
736
0
            T1A = Rm[WS(rs, 1)];
737
0
            T1x = W[2];
738
0
            T1z = W[3];
739
0
            T1B = FMA(T1x, T1y, T1z * T1A);
740
0
            T25 = FNMS(T1z, T1y, T1x * T1A);
741
0
       }
742
0
       T1C = T1w + T1B;
743
0
       T3q = T24 + T25;
744
0
       T26 = T24 - T25;
745
0
       T2H = T1w - T1B;
746
0
        }
747
0
        T1r = T1f - T1q;
748
0
        T1O = T1C - T1N;
749
0
        T1P = T1r + T1O;
750
0
        T3p = T3n + T3o;
751
0
        T3s = T3q + T3r;
752
0
        T3K = T3p + T3s;
753
0
        T3A = T3n - T3o;
754
0
        T3B = T3r - T3q;
755
0
        T3Z = T3B - T3A;
756
0
        T1V = T1f + T1q;
757
0
        T1W = T1C + T1N;
758
0
        T1X = T1V + T1W;
759
0
        T23 = T21 + T22;
760
0
        T28 = T26 + T27;
761
0
        T4q = T23 + T28;
762
0
        T2W = T21 - T22;
763
0
        T2X = T26 - T27;
764
0
        T4f = T2W + T2X;
765
0
        T33 = T2C + T2F;
766
0
        T34 = T2H + T2K;
767
0
        T35 = T33 + T34;
768
0
        T2G = T2C - T2F;
769
0
        T2L = T2H - T2K;
770
0
        T2M = T2G + T2L;
771
0
         }
772
0
         {
773
0
        E Tu, T3g, T2c, T2r, T12, T3k, T2f, T2z, TF, T3h, T2d, T2u, TR, T3j, T2i;
774
0
        E T2w;
775
0
        {
776
0
       E To, T2a, Tt, T2b;
777
0
       {
778
0
            E Tl, Tn, Tk, Tm;
779
0
            Tl = Rp[WS(rs, 2)];
780
0
            Tn = Rm[WS(rs, 2)];
781
0
            Tk = W[6];
782
0
            Tm = W[7];
783
0
            To = FMA(Tk, Tl, Tm * Tn);
784
0
            T2a = FNMS(Tm, Tl, Tk * Tn);
785
0
       }
786
0
       {
787
0
            E Tq, Ts, Tp, Tr;
788
0
            Tq = Rp[WS(rs, 7)];
789
0
            Ts = Rm[WS(rs, 7)];
790
0
            Tp = W[26];
791
0
            Tr = W[27];
792
0
            Tt = FMA(Tp, Tq, Tr * Ts);
793
0
            T2b = FNMS(Tr, Tq, Tp * Ts);
794
0
       }
795
0
       Tu = To + Tt;
796
0
       T3g = T2a + T2b;
797
0
       T2c = T2a - T2b;
798
0
       T2r = To - Tt;
799
0
        }
800
0
        {
801
0
       E TW, T2x, T11, T2y;
802
0
       {
803
0
            E TT, TV, TS, TU;
804
0
            TT = Ip[0];
805
0
            TV = Im[0];
806
0
            TS = W[0];
807
0
            TU = W[1];
808
0
            TW = FMA(TS, TT, TU * TV);
809
0
            T2x = FNMS(TU, TT, TS * TV);
810
0
       }
811
0
       {
812
0
            E TY, T10, TX, TZ;
813
0
            TY = Ip[WS(rs, 5)];
814
0
            T10 = Im[WS(rs, 5)];
815
0
            TX = W[20];
816
0
            TZ = W[21];
817
0
            T11 = FMA(TX, TY, TZ * T10);
818
0
            T2y = FNMS(TZ, TY, TX * T10);
819
0
       }
820
0
       T12 = TW + T11;
821
0
       T3k = T2x + T2y;
822
0
       T2f = T11 - TW;
823
0
       T2z = T2x - T2y;
824
0
        }
825
0
        {
826
0
       E Tz, T2s, TE, T2t;
827
0
       {
828
0
            E Tw, Ty, Tv, Tx;
829
0
            Tw = Ip[WS(rs, 4)];
830
0
            Ty = Im[WS(rs, 4)];
831
0
            Tv = W[16];
832
0
            Tx = W[17];
833
0
            Tz = FMA(Tv, Tw, Tx * Ty);
834
0
            T2s = FNMS(Tx, Tw, Tv * Ty);
835
0
       }
836
0
       {
837
0
            E TB, TD, TA, TC;
838
0
            TB = Ip[WS(rs, 9)];
839
0
            TD = Im[WS(rs, 9)];
840
0
            TA = W[36];
841
0
            TC = W[37];
842
0
            TE = FMA(TA, TB, TC * TD);
843
0
            T2t = FNMS(TC, TB, TA * TD);
844
0
       }
845
0
       TF = Tz + TE;
846
0
       T3h = T2s + T2t;
847
0
       T2d = Tz - TE;
848
0
       T2u = T2s - T2t;
849
0
        }
850
0
        {
851
0
       E TL, T2g, TQ, T2h;
852
0
       {
853
0
            E TI, TK, TH, TJ;
854
0
            TI = Rp[WS(rs, 8)];
855
0
            TK = Rm[WS(rs, 8)];
856
0
            TH = W[30];
857
0
            TJ = W[31];
858
0
            TL = FMA(TH, TI, TJ * TK);
859
0
            T2g = FNMS(TJ, TI, TH * TK);
860
0
       }
861
0
       {
862
0
            E TN, TP, TM, TO;
863
0
            TN = Rp[WS(rs, 3)];
864
0
            TP = Rm[WS(rs, 3)];
865
0
            TM = W[10];
866
0
            TO = W[11];
867
0
            TQ = FMA(TM, TN, TO * TP);
868
0
            T2h = FNMS(TO, TN, TM * TP);
869
0
       }
870
0
       TR = TL + TQ;
871
0
       T3j = T2g + T2h;
872
0
       T2i = T2g - T2h;
873
0
       T2w = TL - TQ;
874
0
        }
875
0
        TG = Tu - TF;
876
0
        T13 = TR - T12;
877
0
        T14 = TG + T13;
878
0
        T3i = T3g + T3h;
879
0
        T3l = T3j + T3k;
880
0
        T3J = T3i + T3l;
881
0
        T3D = T3g - T3h;
882
0
        T3E = T3j - T3k;
883
0
        T40 = T3D + T3E;
884
0
        T1S = Tu + TF;
885
0
        T1T = TR + T12;
886
0
        T1U = T1S + T1T;
887
0
        T2e = T2c + T2d;
888
0
        T2j = T2f - T2i;
889
0
        T4p = T2j - T2e;
890
0
        T2T = T2c - T2d;
891
0
        T2U = T2i + T2f;
892
0
        T4e = T2T + T2U;
893
0
        T30 = T2r + T2u;
894
0
        T31 = T2w + T2z;
895
0
        T32 = T30 + T31;
896
0
        T2v = T2r - T2u;
897
0
        T2A = T2w - T2z;
898
0
        T2B = T2v + T2A;
899
0
         }
900
0
         {
901
0
        E T3y, T1Q, T3x, T3G, T3I, T3C, T3F, T3H, T3z;
902
0
        T3y = KP559016994 * (T14 - T1P);
903
0
        T1Q = T14 + T1P;
904
0
        T3x = FNMS(KP250000000, T1Q, Tj);
905
0
        T3C = T3A + T3B;
906
0
        T3F = T3D - T3E;
907
0
        T3G = FNMS(KP587785252, T3F, KP951056516 * T3C);
908
0
        T3I = FMA(KP951056516, T3F, KP587785252 * T3C);
909
0
        Rm[WS(rs, 9)] = Tj + T1Q;
910
0
        T3H = T3y + T3x;
911
0
        Rm[WS(rs, 5)] = T3H - T3I;
912
0
        Rp[WS(rs, 6)] = T3H + T3I;
913
0
        T3z = T3x - T3y;
914
0
        Rp[WS(rs, 2)] = T3z - T3G;
915
0
        Rm[WS(rs, 1)] = T3z + T3G;
916
0
         }
917
0
         {
918
0
        E T47, T41, T46, T45, T49, T43, T44, T4a, T48;
919
0
        T47 = KP559016994 * (T40 + T3Z);
920
0
        T41 = T3Z - T40;
921
0
        T46 = FMA(KP250000000, T41, T42);
922
0
        T43 = T13 - TG;
923
0
        T44 = T1r - T1O;
924
0
        T45 = FMA(KP587785252, T43, KP951056516 * T44);
925
0
        T49 = FNMS(KP587785252, T44, KP951056516 * T43);
926
0
        Im[WS(rs, 9)] = T41 - T42;
927
0
        T4a = T47 + T46;
928
0
        Im[WS(rs, 5)] = T49 - T4a;
929
0
        Ip[WS(rs, 6)] = T49 + T4a;
930
0
        T48 = T46 - T47;
931
0
        Im[WS(rs, 1)] = T45 - T48;
932
0
        Ip[WS(rs, 2)] = T45 + T48;
933
0
         }
934
0
         {
935
0
        E T3d, T1Y, T3e, T3u, T3w, T3m, T3t, T3v, T3f;
936
0
        T3d = KP559016994 * (T1U - T1X);
937
0
        T1Y = T1U + T1X;
938
0
        T3e = FNMS(KP250000000, T1Y, T1R);
939
0
        T3m = T3i - T3l;
940
0
        T3t = T3p - T3s;
941
0
        T3u = FMA(KP951056516, T3m, KP587785252 * T3t);
942
0
        T3w = FNMS(KP587785252, T3m, KP951056516 * T3t);
943
0
        Rp[0] = T1R + T1Y;
944
0
        T3v = T3e - T3d;
945
0
        Rm[WS(rs, 7)] = T3v - T3w;
946
0
        Rp[WS(rs, 8)] = T3v + T3w;
947
0
        T3f = T3d + T3e;
948
0
        Rp[WS(rs, 4)] = T3f - T3u;
949
0
        Rm[WS(rs, 3)] = T3f + T3u;
950
0
         }
951
0
         {
952
0
        E T3U, T3L, T3V, T3T, T3X, T3R, T3S, T3Y, T3W;
953
0
        T3U = KP559016994 * (T3J - T3K);
954
0
        T3L = T3J + T3K;
955
0
        T3V = FNMS(KP250000000, T3L, T3Q);
956
0
        T3R = T1S - T1T;
957
0
        T3S = T1V - T1W;
958
0
        T3T = FMA(KP951056516, T3R, KP587785252 * T3S);
959
0
        T3X = FNMS(KP951056516, T3S, KP587785252 * T3R);
960
0
        Ip[0] = T3L + T3Q;
961
0
        T3Y = T3V - T3U;
962
0
        Im[WS(rs, 7)] = T3X - T3Y;
963
0
        Ip[WS(rs, 8)] = T3X + T3Y;
964
0
        T3W = T3U + T3V;
965
0
        Im[WS(rs, 3)] = T3T - T3W;
966
0
        Ip[WS(rs, 4)] = T3T + T3W;
967
0
         }
968
0
         {
969
0
        E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q;
970
0
        T2P = KP559016994 * (T2B - T2M);
971
0
        T2N = T2B + T2M;
972
0
        T2O = FNMS(KP250000000, T2N, T2q);
973
0
        T29 = T23 - T28;
974
0
        T2k = T2e + T2j;
975
0
        T2l = FNMS(KP587785252, T2k, KP951056516 * T29);
976
0
        T2R = FMA(KP951056516, T2k, KP587785252 * T29);
977
0
        Rm[WS(rs, 4)] = T2q + T2N;
978
0
        T2S = T2P + T2O;
979
0
        Rm[WS(rs, 8)] = T2R + T2S;
980
0
        Rm[0] = T2S - T2R;
981
0
        T2Q = T2O - T2P;
982
0
        Rp[WS(rs, 3)] = T2l + T2Q;
983
0
        Rp[WS(rs, 7)] = T2Q - T2l;
984
0
         }
985
0
         {
986
0
        E T4w, T4r, T4x, T4v, T4A, T4t, T4u, T4z, T4y;
987
0
        T4w = KP559016994 * (T4p + T4q);
988
0
        T4r = T4p - T4q;
989
0
        T4x = FMA(KP250000000, T4r, T4s);
990
0
        T4t = T2v - T2A;
991
0
        T4u = T2G - T2L;
992
0
        T4v = FMA(KP951056516, T4t, KP587785252 * T4u);
993
0
        T4A = FNMS(KP587785252, T4t, KP951056516 * T4u);
994
0
        Im[WS(rs, 4)] = T4r - T4s;
995
0
        T4z = T4w + T4x;
996
0
        Ip[WS(rs, 3)] = T4z - T4A;
997
0
        Ip[WS(rs, 7)] = T4A + T4z;
998
0
        T4y = T4w - T4x;
999
0
        Im[WS(rs, 8)] = T4v + T4y;
1000
0
        Im[0] = T4y - T4v;
1001
0
         }
1002
0
         {
1003
0
        E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a;
1004
0
        T36 = KP559016994 * (T32 - T35);
1005
0
        T38 = T32 + T35;
1006
0
        T39 = FNMS(KP250000000, T38, T37);
1007
0
        T2V = T2T - T2U;
1008
0
        T2Y = T2W - T2X;
1009
0
        T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y);
1010
0
        T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y);
1011
0
        Rp[WS(rs, 5)] = T37 + T38;
1012
0
        T3c = T39 - T36;
1013
0
        Rm[WS(rs, 6)] = T3b + T3c;
1014
0
        Rm[WS(rs, 2)] = T3c - T3b;
1015
0
        T3a = T36 + T39;
1016
0
        Rp[WS(rs, 1)] = T2Z + T3a;
1017
0
        Rp[WS(rs, 9)] = T3a - T2Z;
1018
0
         }
1019
0
         {
1020
0
        E T4g, T4k, T4l, T4d, T4o, T4b, T4c, T4n, T4m;
1021
0
        T4g = KP559016994 * (T4e - T4f);
1022
0
        T4k = T4e + T4f;
1023
0
        T4l = FNMS(KP250000000, T4k, T4j);
1024
0
        T4b = T33 - T34;
1025
0
        T4c = T30 - T31;
1026
0
        T4d = FNMS(KP587785252, T4c, KP951056516 * T4b);
1027
0
        T4o = FMA(KP951056516, T4c, KP587785252 * T4b);
1028
0
        Ip[WS(rs, 5)] = T4k + T4j;
1029
0
        T4n = T4g + T4l;
1030
0
        Ip[WS(rs, 1)] = T4n - T4o;
1031
0
        Ip[WS(rs, 9)] = T4o + T4n;
1032
0
        T4m = T4g - T4l;
1033
0
        Im[WS(rs, 6)] = T4d + T4m;
1034
0
        Im[WS(rs, 2)] = T4m - T4d;
1035
0
         }
1036
0
    }
1037
0
     }
1038
0
}
1039
1040
static const tw_instr twinstr[] = {
1041
     { TW_FULL, 1, 20 },
1042
     { TW_NEXT, 1, 0 }
1043
};
1044
1045
static const hc2c_desc desc = { 20, "hc2cf_20", twinstr, &GENUS, { 184, 62, 62, 0 } };
1046
1047
1
void X(codelet_hc2cf_20) (planner *p) {
1048
1
     X(khc2c_register) (p, hc2cf_20, &desc, HC2C_VIA_RDFT);
1049
1
}
1050
#endif