/src/fftw3/rdft/scalar/r2cf/hc2cf_20.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:19 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2c.native -fma -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cf_20 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 246 FP additions, 148 FP multiplications, |
32 | | * (or, 136 additions, 38 multiplications, 110 fused multiply/add), |
33 | | * 61 stack variables, 4 constants, and 80 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cf_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
42 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
46 | | E T8, T4N, T2i, T4r, Tl, T4O, T2n, T4n, TN, T2b, T3T, T4f, T2v, T3v, T3p; |
47 | | E T3F, T27, T2f, T43, T4b, T2R, T3z, T33, T3J, T1G, T2e, T40, T4c, T2K, T3y; |
48 | | E T3a, T3I, T1e, T2c, T3W, T4e, T2C, T3w, T3i, T3G; |
49 | | { |
50 | | E T1, T4q, T3, T6, T4, T4o, T2, T7, T4p, T5; |
51 | | T1 = Rp[0]; |
52 | | T4q = Rm[0]; |
53 | | T3 = Rp[WS(rs, 5)]; |
54 | | T6 = Rm[WS(rs, 5)]; |
55 | | T2 = W[18]; |
56 | | T4 = T2 * T3; |
57 | | T4o = T2 * T6; |
58 | | T5 = W[19]; |
59 | | T7 = FMA(T5, T6, T4); |
60 | | T4p = FNMS(T5, T3, T4o); |
61 | | T8 = T1 + T7; |
62 | | T4N = T4q - T4p; |
63 | | T2i = T1 - T7; |
64 | | T4r = T4p + T4q; |
65 | | } |
66 | | { |
67 | | E Ta, Td, Tb, T2j, Tg, Tj, Th, T2l, T9, Tf; |
68 | | Ta = Ip[WS(rs, 2)]; |
69 | | Td = Im[WS(rs, 2)]; |
70 | | T9 = W[8]; |
71 | | Tb = T9 * Ta; |
72 | | T2j = T9 * Td; |
73 | | Tg = Ip[WS(rs, 7)]; |
74 | | Tj = Im[WS(rs, 7)]; |
75 | | Tf = W[28]; |
76 | | Th = Tf * Tg; |
77 | | T2l = Tf * Tj; |
78 | | { |
79 | | E Te, T2k, Tk, T2m, Tc, Ti; |
80 | | Tc = W[9]; |
81 | | Te = FMA(Tc, Td, Tb); |
82 | | T2k = FNMS(Tc, Ta, T2j); |
83 | | Ti = W[29]; |
84 | | Tk = FMA(Ti, Tj, Th); |
85 | | T2m = FNMS(Ti, Tg, T2l); |
86 | | Tl = Te + Tk; |
87 | | T4O = Te - Tk; |
88 | | T2n = T2k - T2m; |
89 | | T4n = T2k + T2m; |
90 | | } |
91 | | } |
92 | | { |
93 | | E Ts, T3l, TL, T2t, Ty, T3n, TF, T2r; |
94 | | { |
95 | | E To, Tr, Tp, T3k, Tn, Tq; |
96 | | To = Rp[WS(rs, 2)]; |
97 | | Tr = Rm[WS(rs, 2)]; |
98 | | Tn = W[6]; |
99 | | Tp = Tn * To; |
100 | | T3k = Tn * Tr; |
101 | | Tq = W[7]; |
102 | | Ts = FMA(Tq, Tr, Tp); |
103 | | T3l = FNMS(Tq, To, T3k); |
104 | | } |
105 | | { |
106 | | E TH, TK, TI, T2s, TG, TJ; |
107 | | TH = Ip[WS(rs, 9)]; |
108 | | TK = Im[WS(rs, 9)]; |
109 | | TG = W[36]; |
110 | | TI = TG * TH; |
111 | | T2s = TG * TK; |
112 | | TJ = W[37]; |
113 | | TL = FMA(TJ, TK, TI); |
114 | | T2t = FNMS(TJ, TH, T2s); |
115 | | } |
116 | | { |
117 | | E Tu, Tx, Tv, T3m, Tt, Tw; |
118 | | Tu = Rp[WS(rs, 7)]; |
119 | | Tx = Rm[WS(rs, 7)]; |
120 | | Tt = W[26]; |
121 | | Tv = Tt * Tu; |
122 | | T3m = Tt * Tx; |
123 | | Tw = W[27]; |
124 | | Ty = FMA(Tw, Tx, Tv); |
125 | | T3n = FNMS(Tw, Tu, T3m); |
126 | | } |
127 | | { |
128 | | E TB, TE, TC, T2q, TA, TD; |
129 | | TB = Ip[WS(rs, 4)]; |
130 | | TE = Im[WS(rs, 4)]; |
131 | | TA = W[16]; |
132 | | TC = TA * TB; |
133 | | T2q = TA * TE; |
134 | | TD = W[17]; |
135 | | TF = FMA(TD, TE, TC); |
136 | | T2r = FNMS(TD, TB, T2q); |
137 | | } |
138 | | { |
139 | | E Tz, TM, T3R, T3S; |
140 | | Tz = Ts + Ty; |
141 | | TM = TF + TL; |
142 | | TN = Tz - TM; |
143 | | T2b = Tz + TM; |
144 | | T3R = T3l + T3n; |
145 | | T3S = T2r + T2t; |
146 | | T3T = T3R + T3S; |
147 | | T4f = T3S - T3R; |
148 | | } |
149 | | { |
150 | | E T2p, T2u, T3j, T3o; |
151 | | T2p = Ts - Ty; |
152 | | T2u = T2r - T2t; |
153 | | T2v = T2p - T2u; |
154 | | T3v = T2p + T2u; |
155 | | T3j = TL - TF; |
156 | | T3o = T3l - T3n; |
157 | | T3p = T3j - T3o; |
158 | | T3F = T3o + T3j; |
159 | | } |
160 | | } |
161 | | { |
162 | | E T1M, T2Z, T25, T2P, T1S, T31, T1Z, T2N; |
163 | | { |
164 | | E T1I, T1L, T1J, T2Y, T1H, T1K; |
165 | | T1I = Rp[WS(rs, 6)]; |
166 | | T1L = Rm[WS(rs, 6)]; |
167 | | T1H = W[22]; |
168 | | T1J = T1H * T1I; |
169 | | T2Y = T1H * T1L; |
170 | | T1K = W[23]; |
171 | | T1M = FMA(T1K, T1L, T1J); |
172 | | T2Z = FNMS(T1K, T1I, T2Y); |
173 | | } |
174 | | { |
175 | | E T21, T24, T22, T2O, T20, T23; |
176 | | T21 = Ip[WS(rs, 3)]; |
177 | | T24 = Im[WS(rs, 3)]; |
178 | | T20 = W[12]; |
179 | | T22 = T20 * T21; |
180 | | T2O = T20 * T24; |
181 | | T23 = W[13]; |
182 | | T25 = FMA(T23, T24, T22); |
183 | | T2P = FNMS(T23, T21, T2O); |
184 | | } |
185 | | { |
186 | | E T1O, T1R, T1P, T30, T1N, T1Q; |
187 | | T1O = Rp[WS(rs, 1)]; |
188 | | T1R = Rm[WS(rs, 1)]; |
189 | | T1N = W[2]; |
190 | | T1P = T1N * T1O; |
191 | | T30 = T1N * T1R; |
192 | | T1Q = W[3]; |
193 | | T1S = FMA(T1Q, T1R, T1P); |
194 | | T31 = FNMS(T1Q, T1O, T30); |
195 | | } |
196 | | { |
197 | | E T1V, T1Y, T1W, T2M, T1U, T1X; |
198 | | T1V = Ip[WS(rs, 8)]; |
199 | | T1Y = Im[WS(rs, 8)]; |
200 | | T1U = W[32]; |
201 | | T1W = T1U * T1V; |
202 | | T2M = T1U * T1Y; |
203 | | T1X = W[33]; |
204 | | T1Z = FMA(T1X, T1Y, T1W); |
205 | | T2N = FNMS(T1X, T1V, T2M); |
206 | | } |
207 | | { |
208 | | E T1T, T26, T41, T42; |
209 | | T1T = T1M + T1S; |
210 | | T26 = T1Z + T25; |
211 | | T27 = T1T - T26; |
212 | | T2f = T1T + T26; |
213 | | T41 = T2Z + T31; |
214 | | T42 = T2N + T2P; |
215 | | T43 = T41 + T42; |
216 | | T4b = T42 - T41; |
217 | | } |
218 | | { |
219 | | E T2L, T2Q, T2X, T32; |
220 | | T2L = T1M - T1S; |
221 | | T2Q = T2N - T2P; |
222 | | T2R = T2L - T2Q; |
223 | | T3z = T2L + T2Q; |
224 | | T2X = T25 - T1Z; |
225 | | T32 = T2Z - T31; |
226 | | T33 = T2X - T32; |
227 | | T3J = T32 + T2X; |
228 | | } |
229 | | } |
230 | | { |
231 | | E T1l, T36, T1E, T2I, T1r, T38, T1y, T2G; |
232 | | { |
233 | | E T1h, T1k, T1i, T35, T1g, T1j; |
234 | | T1h = Rp[WS(rs, 4)]; |
235 | | T1k = Rm[WS(rs, 4)]; |
236 | | T1g = W[14]; |
237 | | T1i = T1g * T1h; |
238 | | T35 = T1g * T1k; |
239 | | T1j = W[15]; |
240 | | T1l = FMA(T1j, T1k, T1i); |
241 | | T36 = FNMS(T1j, T1h, T35); |
242 | | } |
243 | | { |
244 | | E T1A, T1D, T1B, T2H, T1z, T1C; |
245 | | T1A = Ip[WS(rs, 1)]; |
246 | | T1D = Im[WS(rs, 1)]; |
247 | | T1z = W[4]; |
248 | | T1B = T1z * T1A; |
249 | | T2H = T1z * T1D; |
250 | | T1C = W[5]; |
251 | | T1E = FMA(T1C, T1D, T1B); |
252 | | T2I = FNMS(T1C, T1A, T2H); |
253 | | } |
254 | | { |
255 | | E T1n, T1q, T1o, T37, T1m, T1p; |
256 | | T1n = Rp[WS(rs, 9)]; |
257 | | T1q = Rm[WS(rs, 9)]; |
258 | | T1m = W[34]; |
259 | | T1o = T1m * T1n; |
260 | | T37 = T1m * T1q; |
261 | | T1p = W[35]; |
262 | | T1r = FMA(T1p, T1q, T1o); |
263 | | T38 = FNMS(T1p, T1n, T37); |
264 | | } |
265 | | { |
266 | | E T1u, T1x, T1v, T2F, T1t, T1w; |
267 | | T1u = Ip[WS(rs, 6)]; |
268 | | T1x = Im[WS(rs, 6)]; |
269 | | T1t = W[24]; |
270 | | T1v = T1t * T1u; |
271 | | T2F = T1t * T1x; |
272 | | T1w = W[25]; |
273 | | T1y = FMA(T1w, T1x, T1v); |
274 | | T2G = FNMS(T1w, T1u, T2F); |
275 | | } |
276 | | { |
277 | | E T1s, T1F, T3Y, T3Z; |
278 | | T1s = T1l + T1r; |
279 | | T1F = T1y + T1E; |
280 | | T1G = T1s - T1F; |
281 | | T2e = T1s + T1F; |
282 | | T3Y = T36 + T38; |
283 | | T3Z = T2G + T2I; |
284 | | T40 = T3Y + T3Z; |
285 | | T4c = T3Z - T3Y; |
286 | | } |
287 | | { |
288 | | E T2E, T2J, T34, T39; |
289 | | T2E = T1l - T1r; |
290 | | T2J = T2G - T2I; |
291 | | T2K = T2E - T2J; |
292 | | T3y = T2E + T2J; |
293 | | T34 = T1E - T1y; |
294 | | T39 = T36 - T38; |
295 | | T3a = T34 - T39; |
296 | | T3I = T39 + T34; |
297 | | } |
298 | | } |
299 | | { |
300 | | E TT, T3e, T1c, T2A, TZ, T3g, T16, T2y; |
301 | | { |
302 | | E TP, TS, TQ, T3d, TO, TR; |
303 | | TP = Rp[WS(rs, 8)]; |
304 | | TS = Rm[WS(rs, 8)]; |
305 | | TO = W[30]; |
306 | | TQ = TO * TP; |
307 | | T3d = TO * TS; |
308 | | TR = W[31]; |
309 | | TT = FMA(TR, TS, TQ); |
310 | | T3e = FNMS(TR, TP, T3d); |
311 | | } |
312 | | { |
313 | | E T18, T1b, T19, T2z, T17, T1a; |
314 | | T18 = Ip[WS(rs, 5)]; |
315 | | T1b = Im[WS(rs, 5)]; |
316 | | T17 = W[20]; |
317 | | T19 = T17 * T18; |
318 | | T2z = T17 * T1b; |
319 | | T1a = W[21]; |
320 | | T1c = FMA(T1a, T1b, T19); |
321 | | T2A = FNMS(T1a, T18, T2z); |
322 | | } |
323 | | { |
324 | | E TV, TY, TW, T3f, TU, TX; |
325 | | TV = Rp[WS(rs, 3)]; |
326 | | TY = Rm[WS(rs, 3)]; |
327 | | TU = W[10]; |
328 | | TW = TU * TV; |
329 | | T3f = TU * TY; |
330 | | TX = W[11]; |
331 | | TZ = FMA(TX, TY, TW); |
332 | | T3g = FNMS(TX, TV, T3f); |
333 | | } |
334 | | { |
335 | | E T12, T15, T13, T2x, T11, T14; |
336 | | T12 = Ip[0]; |
337 | | T15 = Im[0]; |
338 | | T11 = W[0]; |
339 | | T13 = T11 * T12; |
340 | | T2x = T11 * T15; |
341 | | T14 = W[1]; |
342 | | T16 = FMA(T14, T15, T13); |
343 | | T2y = FNMS(T14, T12, T2x); |
344 | | } |
345 | | { |
346 | | E T10, T1d, T3U, T3V; |
347 | | T10 = TT + TZ; |
348 | | T1d = T16 + T1c; |
349 | | T1e = T10 - T1d; |
350 | | T2c = T10 + T1d; |
351 | | T3U = T3e + T3g; |
352 | | T3V = T2y + T2A; |
353 | | T3W = T3U + T3V; |
354 | | T4e = T3V - T3U; |
355 | | } |
356 | | { |
357 | | E T2w, T2B, T3c, T3h; |
358 | | T2w = TT - TZ; |
359 | | T2B = T2y - T2A; |
360 | | T2C = T2w - T2B; |
361 | | T3w = T2w + T2B; |
362 | | T3c = T1c - T16; |
363 | | T3h = T3e - T3g; |
364 | | T3i = T3c - T3h; |
365 | | T3G = T3h + T3c; |
366 | | } |
367 | | } |
368 | | { |
369 | | E T4h, T4j, Tm, T29, T48, T49, T4i, T4a; |
370 | | { |
371 | | E T4d, T4g, T1f, T28; |
372 | | T4d = T4b - T4c; |
373 | | T4g = T4e - T4f; |
374 | | T4h = FNMS(KP618033988, T4g, T4d); |
375 | | T4j = FMA(KP618033988, T4d, T4g); |
376 | | Tm = T8 - Tl; |
377 | | T1f = TN + T1e; |
378 | | T28 = T1G + T27; |
379 | | T29 = T1f + T28; |
380 | | T48 = FNMS(KP250000000, T29, Tm); |
381 | | T49 = T1f - T28; |
382 | | } |
383 | | Rm[WS(rs, 9)] = Tm + T29; |
384 | | T4i = FMA(KP559016994, T49, T48); |
385 | | Rm[WS(rs, 5)] = FNMS(KP951056516, T4j, T4i); |
386 | | Rp[WS(rs, 6)] = FMA(KP951056516, T4j, T4i); |
387 | | T4a = FNMS(KP559016994, T49, T48); |
388 | | Rp[WS(rs, 2)] = FNMS(KP951056516, T4h, T4a); |
389 | | Rm[WS(rs, 1)] = FMA(KP951056516, T4h, T4a); |
390 | | } |
391 | | { |
392 | | E T4K, T4M, T4E, T4D, T4F, T4G, T4L, T4H; |
393 | | { |
394 | | E T4I, T4J, T4B, T4C; |
395 | | T4I = T1G - T27; |
396 | | T4J = T1e - TN; |
397 | | T4K = FMA(KP618033988, T4J, T4I); |
398 | | T4M = FNMS(KP618033988, T4I, T4J); |
399 | | T4E = T4r - T4n; |
400 | | T4B = T4f + T4e; |
401 | | T4C = T4c + T4b; |
402 | | T4D = T4B + T4C; |
403 | | T4F = FMA(KP250000000, T4D, T4E); |
404 | | T4G = T4C - T4B; |
405 | | } |
406 | | Im[WS(rs, 9)] = T4D - T4E; |
407 | | T4L = FMA(KP559016994, T4G, T4F); |
408 | | Im[WS(rs, 5)] = FMS(KP951056516, T4M, T4L); |
409 | | Ip[WS(rs, 6)] = FMA(KP951056516, T4M, T4L); |
410 | | T4H = FNMS(KP559016994, T4G, T4F); |
411 | | Im[WS(rs, 1)] = FMS(KP951056516, T4K, T4H); |
412 | | Ip[WS(rs, 2)] = FMA(KP951056516, T4K, T4H); |
413 | | } |
414 | | { |
415 | | E T45, T47, T2a, T2h, T3O, T3P, T46, T3Q; |
416 | | { |
417 | | E T3X, T44, T2d, T2g; |
418 | | T3X = T3T - T3W; |
419 | | T44 = T40 - T43; |
420 | | T45 = FMA(KP618033988, T44, T3X); |
421 | | T47 = FNMS(KP618033988, T3X, T44); |
422 | | T2a = T8 + Tl; |
423 | | T2d = T2b + T2c; |
424 | | T2g = T2e + T2f; |
425 | | T2h = T2d + T2g; |
426 | | T3O = FNMS(KP250000000, T2h, T2a); |
427 | | T3P = T2d - T2g; |
428 | | } |
429 | | Rp[0] = T2a + T2h; |
430 | | T46 = FNMS(KP559016994, T3P, T3O); |
431 | | Rm[WS(rs, 7)] = FNMS(KP951056516, T47, T46); |
432 | | Rp[WS(rs, 8)] = FMA(KP951056516, T47, T46); |
433 | | T3Q = FMA(KP559016994, T3P, T3O); |
434 | | Rp[WS(rs, 4)] = FNMS(KP951056516, T45, T3Q); |
435 | | Rm[WS(rs, 3)] = FMA(KP951056516, T45, T3Q); |
436 | | } |
437 | | { |
438 | | E T4y, T4A, T4s, T4m, T4t, T4u, T4z, T4v; |
439 | | { |
440 | | E T4w, T4x, T4k, T4l; |
441 | | T4w = T2b - T2c; |
442 | | T4x = T2f - T2e; |
443 | | T4y = FNMS(KP618033988, T4x, T4w); |
444 | | T4A = FMA(KP618033988, T4w, T4x); |
445 | | T4s = T4n + T4r; |
446 | | T4k = T3T + T3W; |
447 | | T4l = T40 + T43; |
448 | | T4m = T4k + T4l; |
449 | | T4t = FNMS(KP250000000, T4m, T4s); |
450 | | T4u = T4k - T4l; |
451 | | } |
452 | | Ip[0] = T4m + T4s; |
453 | | T4z = FNMS(KP559016994, T4u, T4t); |
454 | | Im[WS(rs, 7)] = FMS(KP951056516, T4A, T4z); |
455 | | Ip[WS(rs, 8)] = FMA(KP951056516, T4A, T4z); |
456 | | T4v = FMA(KP559016994, T4u, T4t); |
457 | | Im[WS(rs, 3)] = FMS(KP951056516, T4y, T4v); |
458 | | Ip[WS(rs, 4)] = FMA(KP951056516, T4y, T4v); |
459 | | } |
460 | | { |
461 | | E T3r, T3t, T2o, T2T, T2U, T2V, T3s, T2W; |
462 | | { |
463 | | E T3b, T3q, T2D, T2S; |
464 | | T3b = T33 - T3a; |
465 | | T3q = T3i - T3p; |
466 | | T3r = FNMS(KP618033988, T3q, T3b); |
467 | | T3t = FMA(KP618033988, T3b, T3q); |
468 | | T2o = T2i - T2n; |
469 | | T2D = T2v + T2C; |
470 | | T2S = T2K + T2R; |
471 | | T2T = T2D + T2S; |
472 | | T2U = FNMS(KP250000000, T2T, T2o); |
473 | | T2V = T2D - T2S; |
474 | | } |
475 | | Rm[WS(rs, 4)] = T2o + T2T; |
476 | | T3s = FMA(KP559016994, T2V, T2U); |
477 | | Rm[WS(rs, 8)] = FMA(KP951056516, T3t, T3s); |
478 | | Rm[0] = FNMS(KP951056516, T3t, T3s); |
479 | | T2W = FNMS(KP559016994, T2V, T2U); |
480 | | Rp[WS(rs, 3)] = FMA(KP951056516, T3r, T2W); |
481 | | Rp[WS(rs, 7)] = FNMS(KP951056516, T3r, T2W); |
482 | | } |
483 | | { |
484 | | E T5a, T5c, T54, T53, T55, T56, T5b, T57; |
485 | | { |
486 | | E T58, T59, T51, T52; |
487 | | T58 = T2v - T2C; |
488 | | T59 = T2K - T2R; |
489 | | T5a = FMA(KP618033988, T59, T58); |
490 | | T5c = FNMS(KP618033988, T58, T59); |
491 | | T54 = T4O + T4N; |
492 | | T51 = T3p + T3i; |
493 | | T52 = T3a + T33; |
494 | | T53 = T51 + T52; |
495 | | T55 = FMA(KP250000000, T53, T54); |
496 | | T56 = T51 - T52; |
497 | | } |
498 | | Im[WS(rs, 4)] = T53 - T54; |
499 | | T5b = FMA(KP559016994, T56, T55); |
500 | | Ip[WS(rs, 3)] = FNMS(KP951056516, T5c, T5b); |
501 | | Ip[WS(rs, 7)] = FMA(KP951056516, T5c, T5b); |
502 | | T57 = FNMS(KP559016994, T56, T55); |
503 | | Im[WS(rs, 8)] = FMS(KP951056516, T5a, T57); |
504 | | Im[0] = -(FMA(KP951056516, T5a, T57)); |
505 | | } |
506 | | { |
507 | | E T3L, T3N, T3u, T3B, T3C, T3D, T3M, T3E; |
508 | | { |
509 | | E T3H, T3K, T3x, T3A; |
510 | | T3H = T3F - T3G; |
511 | | T3K = T3I - T3J; |
512 | | T3L = FMA(KP618033988, T3K, T3H); |
513 | | T3N = FNMS(KP618033988, T3H, T3K); |
514 | | T3u = T2i + T2n; |
515 | | T3x = T3v + T3w; |
516 | | T3A = T3y + T3z; |
517 | | T3B = T3x + T3A; |
518 | | T3C = FNMS(KP250000000, T3B, T3u); |
519 | | T3D = T3x - T3A; |
520 | | } |
521 | | Rp[WS(rs, 5)] = T3u + T3B; |
522 | | T3M = FNMS(KP559016994, T3D, T3C); |
523 | | Rm[WS(rs, 6)] = FMA(KP951056516, T3N, T3M); |
524 | | Rm[WS(rs, 2)] = FNMS(KP951056516, T3N, T3M); |
525 | | T3E = FMA(KP559016994, T3D, T3C); |
526 | | Rp[WS(rs, 1)] = FMA(KP951056516, T3L, T3E); |
527 | | Rp[WS(rs, 9)] = FNMS(KP951056516, T3L, T3E); |
528 | | } |
529 | | { |
530 | | E T4Y, T50, T4P, T4S, T4T, T4U, T4Z, T4V; |
531 | | { |
532 | | E T4W, T4X, T4Q, T4R; |
533 | | T4W = T3y - T3z; |
534 | | T4X = T3v - T3w; |
535 | | T4Y = FNMS(KP618033988, T4X, T4W); |
536 | | T50 = FMA(KP618033988, T4W, T4X); |
537 | | T4P = T4N - T4O; |
538 | | T4Q = T3F + T3G; |
539 | | T4R = T3I + T3J; |
540 | | T4S = T4Q + T4R; |
541 | | T4T = FNMS(KP250000000, T4S, T4P); |
542 | | T4U = T4Q - T4R; |
543 | | } |
544 | | Ip[WS(rs, 5)] = T4S + T4P; |
545 | | T4Z = FMA(KP559016994, T4U, T4T); |
546 | | Ip[WS(rs, 1)] = FNMS(KP951056516, T50, T4Z); |
547 | | Ip[WS(rs, 9)] = FMA(KP951056516, T50, T4Z); |
548 | | T4V = FNMS(KP559016994, T4U, T4T); |
549 | | Im[WS(rs, 6)] = FMS(KP951056516, T4Y, T4V); |
550 | | Im[WS(rs, 2)] = -(FMA(KP951056516, T4Y, T4V)); |
551 | | } |
552 | | } |
553 | | } |
554 | | } |
555 | | |
556 | | static const tw_instr twinstr[] = { |
557 | | { TW_FULL, 1, 20 }, |
558 | | { TW_NEXT, 1, 0 } |
559 | | }; |
560 | | |
561 | | static const hc2c_desc desc = { 20, "hc2cf_20", twinstr, &GENUS, { 136, 38, 110, 0 } }; |
562 | | |
563 | | void X(codelet_hc2cf_20) (planner *p) { |
564 | | X(khc2c_register) (p, hc2cf_20, &desc, HC2C_VIA_RDFT); |
565 | | } |
566 | | #else |
567 | | |
568 | | /* Generated by: ../../../genfft/gen_hc2c.native -compact -variables 4 -pipeline-latency 4 -n 20 -dit -name hc2cf_20 -include rdft/scalar/hc2cf.h */ |
569 | | |
570 | | /* |
571 | | * This function contains 246 FP additions, 124 FP multiplications, |
572 | | * (or, 184 additions, 62 multiplications, 62 fused multiply/add), |
573 | | * 85 stack variables, 4 constants, and 80 memory accesses |
574 | | */ |
575 | | #include "rdft/scalar/hc2cf.h" |
576 | | |
577 | | static void hc2cf_20(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
578 | 0 | { |
579 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
580 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
581 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
582 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
583 | 0 | { |
584 | 0 | INT m; |
585 | 0 | for (m = mb, W = W + ((mb - 1) * 38); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 38, MAKE_VOLATILE_STRIDE(80, rs)) { |
586 | 0 | E Tj, T1R, T4j, T4s, T2q, T37, T3Q, T42, T1r, T1O, T1P, T3p, T3s, T3K, T3A; |
587 | 0 | E T3B, T3Z, T1V, T1W, T1X, T23, T28, T4q, T2W, T2X, T4f, T33, T34, T35, T2G; |
588 | 0 | E T2L, T2M, TG, T13, T14, T3i, T3l, T3J, T3D, T3E, T40, T1S, T1T, T1U, T2e; |
589 | 0 | E T2j, T4p, T2T, T2U, T4e, T30, T31, T32, T2v, T2A, T2B; |
590 | 0 | { |
591 | 0 | E T1, T3O, T6, T3N, Tc, T2n, Th, T2o; |
592 | 0 | T1 = Rp[0]; |
593 | 0 | T3O = Rm[0]; |
594 | 0 | { |
595 | 0 | E T3, T5, T2, T4; |
596 | 0 | T3 = Rp[WS(rs, 5)]; |
597 | 0 | T5 = Rm[WS(rs, 5)]; |
598 | 0 | T2 = W[18]; |
599 | 0 | T4 = W[19]; |
600 | 0 | T6 = FMA(T2, T3, T4 * T5); |
601 | 0 | T3N = FNMS(T4, T3, T2 * T5); |
602 | 0 | } |
603 | 0 | { |
604 | 0 | E T9, Tb, T8, Ta; |
605 | 0 | T9 = Ip[WS(rs, 2)]; |
606 | 0 | Tb = Im[WS(rs, 2)]; |
607 | 0 | T8 = W[8]; |
608 | 0 | Ta = W[9]; |
609 | 0 | Tc = FMA(T8, T9, Ta * Tb); |
610 | 0 | T2n = FNMS(Ta, T9, T8 * Tb); |
611 | 0 | } |
612 | 0 | { |
613 | 0 | E Te, Tg, Td, Tf; |
614 | 0 | Te = Ip[WS(rs, 7)]; |
615 | 0 | Tg = Im[WS(rs, 7)]; |
616 | 0 | Td = W[28]; |
617 | 0 | Tf = W[29]; |
618 | 0 | Th = FMA(Td, Te, Tf * Tg); |
619 | 0 | T2o = FNMS(Tf, Te, Td * Tg); |
620 | 0 | } |
621 | 0 | { |
622 | 0 | E T7, Ti, T4h, T4i; |
623 | 0 | T7 = T1 + T6; |
624 | 0 | Ti = Tc + Th; |
625 | 0 | Tj = T7 - Ti; |
626 | 0 | T1R = T7 + Ti; |
627 | 0 | T4h = T3O - T3N; |
628 | 0 | T4i = Tc - Th; |
629 | 0 | T4j = T4h - T4i; |
630 | 0 | T4s = T4i + T4h; |
631 | 0 | } |
632 | 0 | { |
633 | 0 | E T2m, T2p, T3M, T3P; |
634 | 0 | T2m = T1 - T6; |
635 | 0 | T2p = T2n - T2o; |
636 | 0 | T2q = T2m - T2p; |
637 | 0 | T37 = T2m + T2p; |
638 | 0 | T3M = T2n + T2o; |
639 | 0 | T3P = T3N + T3O; |
640 | 0 | T3Q = T3M + T3P; |
641 | 0 | T42 = T3P - T3M; |
642 | 0 | } |
643 | 0 | } |
644 | 0 | { |
645 | 0 | E T1f, T3n, T21, T2C, T1N, T3r, T27, T2K, T1q, T3o, T22, T2F, T1C, T3q, T26; |
646 | 0 | E T2H; |
647 | 0 | { |
648 | 0 | E T19, T1Z, T1e, T20; |
649 | 0 | { |
650 | 0 | E T16, T18, T15, T17; |
651 | 0 | T16 = Rp[WS(rs, 4)]; |
652 | 0 | T18 = Rm[WS(rs, 4)]; |
653 | 0 | T15 = W[14]; |
654 | 0 | T17 = W[15]; |
655 | 0 | T19 = FMA(T15, T16, T17 * T18); |
656 | 0 | T1Z = FNMS(T17, T16, T15 * T18); |
657 | 0 | } |
658 | 0 | { |
659 | 0 | E T1b, T1d, T1a, T1c; |
660 | 0 | T1b = Rp[WS(rs, 9)]; |
661 | 0 | T1d = Rm[WS(rs, 9)]; |
662 | 0 | T1a = W[34]; |
663 | 0 | T1c = W[35]; |
664 | 0 | T1e = FMA(T1a, T1b, T1c * T1d); |
665 | 0 | T20 = FNMS(T1c, T1b, T1a * T1d); |
666 | 0 | } |
667 | 0 | T1f = T19 + T1e; |
668 | 0 | T3n = T1Z + T20; |
669 | 0 | T21 = T1Z - T20; |
670 | 0 | T2C = T19 - T1e; |
671 | 0 | } |
672 | 0 | { |
673 | 0 | E T1H, T2I, T1M, T2J; |
674 | 0 | { |
675 | 0 | E T1E, T1G, T1D, T1F; |
676 | 0 | T1E = Ip[WS(rs, 8)]; |
677 | 0 | T1G = Im[WS(rs, 8)]; |
678 | 0 | T1D = W[32]; |
679 | 0 | T1F = W[33]; |
680 | 0 | T1H = FMA(T1D, T1E, T1F * T1G); |
681 | 0 | T2I = FNMS(T1F, T1E, T1D * T1G); |
682 | 0 | } |
683 | 0 | { |
684 | 0 | E T1J, T1L, T1I, T1K; |
685 | 0 | T1J = Ip[WS(rs, 3)]; |
686 | 0 | T1L = Im[WS(rs, 3)]; |
687 | 0 | T1I = W[12]; |
688 | 0 | T1K = W[13]; |
689 | 0 | T1M = FMA(T1I, T1J, T1K * T1L); |
690 | 0 | T2J = FNMS(T1K, T1J, T1I * T1L); |
691 | 0 | } |
692 | 0 | T1N = T1H + T1M; |
693 | 0 | T3r = T2I + T2J; |
694 | 0 | T27 = T1H - T1M; |
695 | 0 | T2K = T2I - T2J; |
696 | 0 | } |
697 | 0 | { |
698 | 0 | E T1k, T2D, T1p, T2E; |
699 | 0 | { |
700 | 0 | E T1h, T1j, T1g, T1i; |
701 | 0 | T1h = Ip[WS(rs, 6)]; |
702 | 0 | T1j = Im[WS(rs, 6)]; |
703 | 0 | T1g = W[24]; |
704 | 0 | T1i = W[25]; |
705 | 0 | T1k = FMA(T1g, T1h, T1i * T1j); |
706 | 0 | T2D = FNMS(T1i, T1h, T1g * T1j); |
707 | 0 | } |
708 | 0 | { |
709 | 0 | E T1m, T1o, T1l, T1n; |
710 | 0 | T1m = Ip[WS(rs, 1)]; |
711 | 0 | T1o = Im[WS(rs, 1)]; |
712 | 0 | T1l = W[4]; |
713 | 0 | T1n = W[5]; |
714 | 0 | T1p = FMA(T1l, T1m, T1n * T1o); |
715 | 0 | T2E = FNMS(T1n, T1m, T1l * T1o); |
716 | 0 | } |
717 | 0 | T1q = T1k + T1p; |
718 | 0 | T3o = T2D + T2E; |
719 | 0 | T22 = T1k - T1p; |
720 | 0 | T2F = T2D - T2E; |
721 | 0 | } |
722 | 0 | { |
723 | 0 | E T1w, T24, T1B, T25; |
724 | 0 | { |
725 | 0 | E T1t, T1v, T1s, T1u; |
726 | 0 | T1t = Rp[WS(rs, 6)]; |
727 | 0 | T1v = Rm[WS(rs, 6)]; |
728 | 0 | T1s = W[22]; |
729 | 0 | T1u = W[23]; |
730 | 0 | T1w = FMA(T1s, T1t, T1u * T1v); |
731 | 0 | T24 = FNMS(T1u, T1t, T1s * T1v); |
732 | 0 | } |
733 | 0 | { |
734 | 0 | E T1y, T1A, T1x, T1z; |
735 | 0 | T1y = Rp[WS(rs, 1)]; |
736 | 0 | T1A = Rm[WS(rs, 1)]; |
737 | 0 | T1x = W[2]; |
738 | 0 | T1z = W[3]; |
739 | 0 | T1B = FMA(T1x, T1y, T1z * T1A); |
740 | 0 | T25 = FNMS(T1z, T1y, T1x * T1A); |
741 | 0 | } |
742 | 0 | T1C = T1w + T1B; |
743 | 0 | T3q = T24 + T25; |
744 | 0 | T26 = T24 - T25; |
745 | 0 | T2H = T1w - T1B; |
746 | 0 | } |
747 | 0 | T1r = T1f - T1q; |
748 | 0 | T1O = T1C - T1N; |
749 | 0 | T1P = T1r + T1O; |
750 | 0 | T3p = T3n + T3o; |
751 | 0 | T3s = T3q + T3r; |
752 | 0 | T3K = T3p + T3s; |
753 | 0 | T3A = T3n - T3o; |
754 | 0 | T3B = T3r - T3q; |
755 | 0 | T3Z = T3B - T3A; |
756 | 0 | T1V = T1f + T1q; |
757 | 0 | T1W = T1C + T1N; |
758 | 0 | T1X = T1V + T1W; |
759 | 0 | T23 = T21 + T22; |
760 | 0 | T28 = T26 + T27; |
761 | 0 | T4q = T23 + T28; |
762 | 0 | T2W = T21 - T22; |
763 | 0 | T2X = T26 - T27; |
764 | 0 | T4f = T2W + T2X; |
765 | 0 | T33 = T2C + T2F; |
766 | 0 | T34 = T2H + T2K; |
767 | 0 | T35 = T33 + T34; |
768 | 0 | T2G = T2C - T2F; |
769 | 0 | T2L = T2H - T2K; |
770 | 0 | T2M = T2G + T2L; |
771 | 0 | } |
772 | 0 | { |
773 | 0 | E Tu, T3g, T2c, T2r, T12, T3k, T2f, T2z, TF, T3h, T2d, T2u, TR, T3j, T2i; |
774 | 0 | E T2w; |
775 | 0 | { |
776 | 0 | E To, T2a, Tt, T2b; |
777 | 0 | { |
778 | 0 | E Tl, Tn, Tk, Tm; |
779 | 0 | Tl = Rp[WS(rs, 2)]; |
780 | 0 | Tn = Rm[WS(rs, 2)]; |
781 | 0 | Tk = W[6]; |
782 | 0 | Tm = W[7]; |
783 | 0 | To = FMA(Tk, Tl, Tm * Tn); |
784 | 0 | T2a = FNMS(Tm, Tl, Tk * Tn); |
785 | 0 | } |
786 | 0 | { |
787 | 0 | E Tq, Ts, Tp, Tr; |
788 | 0 | Tq = Rp[WS(rs, 7)]; |
789 | 0 | Ts = Rm[WS(rs, 7)]; |
790 | 0 | Tp = W[26]; |
791 | 0 | Tr = W[27]; |
792 | 0 | Tt = FMA(Tp, Tq, Tr * Ts); |
793 | 0 | T2b = FNMS(Tr, Tq, Tp * Ts); |
794 | 0 | } |
795 | 0 | Tu = To + Tt; |
796 | 0 | T3g = T2a + T2b; |
797 | 0 | T2c = T2a - T2b; |
798 | 0 | T2r = To - Tt; |
799 | 0 | } |
800 | 0 | { |
801 | 0 | E TW, T2x, T11, T2y; |
802 | 0 | { |
803 | 0 | E TT, TV, TS, TU; |
804 | 0 | TT = Ip[0]; |
805 | 0 | TV = Im[0]; |
806 | 0 | TS = W[0]; |
807 | 0 | TU = W[1]; |
808 | 0 | TW = FMA(TS, TT, TU * TV); |
809 | 0 | T2x = FNMS(TU, TT, TS * TV); |
810 | 0 | } |
811 | 0 | { |
812 | 0 | E TY, T10, TX, TZ; |
813 | 0 | TY = Ip[WS(rs, 5)]; |
814 | 0 | T10 = Im[WS(rs, 5)]; |
815 | 0 | TX = W[20]; |
816 | 0 | TZ = W[21]; |
817 | 0 | T11 = FMA(TX, TY, TZ * T10); |
818 | 0 | T2y = FNMS(TZ, TY, TX * T10); |
819 | 0 | } |
820 | 0 | T12 = TW + T11; |
821 | 0 | T3k = T2x + T2y; |
822 | 0 | T2f = T11 - TW; |
823 | 0 | T2z = T2x - T2y; |
824 | 0 | } |
825 | 0 | { |
826 | 0 | E Tz, T2s, TE, T2t; |
827 | 0 | { |
828 | 0 | E Tw, Ty, Tv, Tx; |
829 | 0 | Tw = Ip[WS(rs, 4)]; |
830 | 0 | Ty = Im[WS(rs, 4)]; |
831 | 0 | Tv = W[16]; |
832 | 0 | Tx = W[17]; |
833 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
834 | 0 | T2s = FNMS(Tx, Tw, Tv * Ty); |
835 | 0 | } |
836 | 0 | { |
837 | 0 | E TB, TD, TA, TC; |
838 | 0 | TB = Ip[WS(rs, 9)]; |
839 | 0 | TD = Im[WS(rs, 9)]; |
840 | 0 | TA = W[36]; |
841 | 0 | TC = W[37]; |
842 | 0 | TE = FMA(TA, TB, TC * TD); |
843 | 0 | T2t = FNMS(TC, TB, TA * TD); |
844 | 0 | } |
845 | 0 | TF = Tz + TE; |
846 | 0 | T3h = T2s + T2t; |
847 | 0 | T2d = Tz - TE; |
848 | 0 | T2u = T2s - T2t; |
849 | 0 | } |
850 | 0 | { |
851 | 0 | E TL, T2g, TQ, T2h; |
852 | 0 | { |
853 | 0 | E TI, TK, TH, TJ; |
854 | 0 | TI = Rp[WS(rs, 8)]; |
855 | 0 | TK = Rm[WS(rs, 8)]; |
856 | 0 | TH = W[30]; |
857 | 0 | TJ = W[31]; |
858 | 0 | TL = FMA(TH, TI, TJ * TK); |
859 | 0 | T2g = FNMS(TJ, TI, TH * TK); |
860 | 0 | } |
861 | 0 | { |
862 | 0 | E TN, TP, TM, TO; |
863 | 0 | TN = Rp[WS(rs, 3)]; |
864 | 0 | TP = Rm[WS(rs, 3)]; |
865 | 0 | TM = W[10]; |
866 | 0 | TO = W[11]; |
867 | 0 | TQ = FMA(TM, TN, TO * TP); |
868 | 0 | T2h = FNMS(TO, TN, TM * TP); |
869 | 0 | } |
870 | 0 | TR = TL + TQ; |
871 | 0 | T3j = T2g + T2h; |
872 | 0 | T2i = T2g - T2h; |
873 | 0 | T2w = TL - TQ; |
874 | 0 | } |
875 | 0 | TG = Tu - TF; |
876 | 0 | T13 = TR - T12; |
877 | 0 | T14 = TG + T13; |
878 | 0 | T3i = T3g + T3h; |
879 | 0 | T3l = T3j + T3k; |
880 | 0 | T3J = T3i + T3l; |
881 | 0 | T3D = T3g - T3h; |
882 | 0 | T3E = T3j - T3k; |
883 | 0 | T40 = T3D + T3E; |
884 | 0 | T1S = Tu + TF; |
885 | 0 | T1T = TR + T12; |
886 | 0 | T1U = T1S + T1T; |
887 | 0 | T2e = T2c + T2d; |
888 | 0 | T2j = T2f - T2i; |
889 | 0 | T4p = T2j - T2e; |
890 | 0 | T2T = T2c - T2d; |
891 | 0 | T2U = T2i + T2f; |
892 | 0 | T4e = T2T + T2U; |
893 | 0 | T30 = T2r + T2u; |
894 | 0 | T31 = T2w + T2z; |
895 | 0 | T32 = T30 + T31; |
896 | 0 | T2v = T2r - T2u; |
897 | 0 | T2A = T2w - T2z; |
898 | 0 | T2B = T2v + T2A; |
899 | 0 | } |
900 | 0 | { |
901 | 0 | E T3y, T1Q, T3x, T3G, T3I, T3C, T3F, T3H, T3z; |
902 | 0 | T3y = KP559016994 * (T14 - T1P); |
903 | 0 | T1Q = T14 + T1P; |
904 | 0 | T3x = FNMS(KP250000000, T1Q, Tj); |
905 | 0 | T3C = T3A + T3B; |
906 | 0 | T3F = T3D - T3E; |
907 | 0 | T3G = FNMS(KP587785252, T3F, KP951056516 * T3C); |
908 | 0 | T3I = FMA(KP951056516, T3F, KP587785252 * T3C); |
909 | 0 | Rm[WS(rs, 9)] = Tj + T1Q; |
910 | 0 | T3H = T3y + T3x; |
911 | 0 | Rm[WS(rs, 5)] = T3H - T3I; |
912 | 0 | Rp[WS(rs, 6)] = T3H + T3I; |
913 | 0 | T3z = T3x - T3y; |
914 | 0 | Rp[WS(rs, 2)] = T3z - T3G; |
915 | 0 | Rm[WS(rs, 1)] = T3z + T3G; |
916 | 0 | } |
917 | 0 | { |
918 | 0 | E T47, T41, T46, T45, T49, T43, T44, T4a, T48; |
919 | 0 | T47 = KP559016994 * (T40 + T3Z); |
920 | 0 | T41 = T3Z - T40; |
921 | 0 | T46 = FMA(KP250000000, T41, T42); |
922 | 0 | T43 = T13 - TG; |
923 | 0 | T44 = T1r - T1O; |
924 | 0 | T45 = FMA(KP587785252, T43, KP951056516 * T44); |
925 | 0 | T49 = FNMS(KP587785252, T44, KP951056516 * T43); |
926 | 0 | Im[WS(rs, 9)] = T41 - T42; |
927 | 0 | T4a = T47 + T46; |
928 | 0 | Im[WS(rs, 5)] = T49 - T4a; |
929 | 0 | Ip[WS(rs, 6)] = T49 + T4a; |
930 | 0 | T48 = T46 - T47; |
931 | 0 | Im[WS(rs, 1)] = T45 - T48; |
932 | 0 | Ip[WS(rs, 2)] = T45 + T48; |
933 | 0 | } |
934 | 0 | { |
935 | 0 | E T3d, T1Y, T3e, T3u, T3w, T3m, T3t, T3v, T3f; |
936 | 0 | T3d = KP559016994 * (T1U - T1X); |
937 | 0 | T1Y = T1U + T1X; |
938 | 0 | T3e = FNMS(KP250000000, T1Y, T1R); |
939 | 0 | T3m = T3i - T3l; |
940 | 0 | T3t = T3p - T3s; |
941 | 0 | T3u = FMA(KP951056516, T3m, KP587785252 * T3t); |
942 | 0 | T3w = FNMS(KP587785252, T3m, KP951056516 * T3t); |
943 | 0 | Rp[0] = T1R + T1Y; |
944 | 0 | T3v = T3e - T3d; |
945 | 0 | Rm[WS(rs, 7)] = T3v - T3w; |
946 | 0 | Rp[WS(rs, 8)] = T3v + T3w; |
947 | 0 | T3f = T3d + T3e; |
948 | 0 | Rp[WS(rs, 4)] = T3f - T3u; |
949 | 0 | Rm[WS(rs, 3)] = T3f + T3u; |
950 | 0 | } |
951 | 0 | { |
952 | 0 | E T3U, T3L, T3V, T3T, T3X, T3R, T3S, T3Y, T3W; |
953 | 0 | T3U = KP559016994 * (T3J - T3K); |
954 | 0 | T3L = T3J + T3K; |
955 | 0 | T3V = FNMS(KP250000000, T3L, T3Q); |
956 | 0 | T3R = T1S - T1T; |
957 | 0 | T3S = T1V - T1W; |
958 | 0 | T3T = FMA(KP951056516, T3R, KP587785252 * T3S); |
959 | 0 | T3X = FNMS(KP951056516, T3S, KP587785252 * T3R); |
960 | 0 | Ip[0] = T3L + T3Q; |
961 | 0 | T3Y = T3V - T3U; |
962 | 0 | Im[WS(rs, 7)] = T3X - T3Y; |
963 | 0 | Ip[WS(rs, 8)] = T3X + T3Y; |
964 | 0 | T3W = T3U + T3V; |
965 | 0 | Im[WS(rs, 3)] = T3T - T3W; |
966 | 0 | Ip[WS(rs, 4)] = T3T + T3W; |
967 | 0 | } |
968 | 0 | { |
969 | 0 | E T2P, T2N, T2O, T2l, T2R, T29, T2k, T2S, T2Q; |
970 | 0 | T2P = KP559016994 * (T2B - T2M); |
971 | 0 | T2N = T2B + T2M; |
972 | 0 | T2O = FNMS(KP250000000, T2N, T2q); |
973 | 0 | T29 = T23 - T28; |
974 | 0 | T2k = T2e + T2j; |
975 | 0 | T2l = FNMS(KP587785252, T2k, KP951056516 * T29); |
976 | 0 | T2R = FMA(KP951056516, T2k, KP587785252 * T29); |
977 | 0 | Rm[WS(rs, 4)] = T2q + T2N; |
978 | 0 | T2S = T2P + T2O; |
979 | 0 | Rm[WS(rs, 8)] = T2R + T2S; |
980 | 0 | Rm[0] = T2S - T2R; |
981 | 0 | T2Q = T2O - T2P; |
982 | 0 | Rp[WS(rs, 3)] = T2l + T2Q; |
983 | 0 | Rp[WS(rs, 7)] = T2Q - T2l; |
984 | 0 | } |
985 | 0 | { |
986 | 0 | E T4w, T4r, T4x, T4v, T4A, T4t, T4u, T4z, T4y; |
987 | 0 | T4w = KP559016994 * (T4p + T4q); |
988 | 0 | T4r = T4p - T4q; |
989 | 0 | T4x = FMA(KP250000000, T4r, T4s); |
990 | 0 | T4t = T2v - T2A; |
991 | 0 | T4u = T2G - T2L; |
992 | 0 | T4v = FMA(KP951056516, T4t, KP587785252 * T4u); |
993 | 0 | T4A = FNMS(KP587785252, T4t, KP951056516 * T4u); |
994 | 0 | Im[WS(rs, 4)] = T4r - T4s; |
995 | 0 | T4z = T4w + T4x; |
996 | 0 | Ip[WS(rs, 3)] = T4z - T4A; |
997 | 0 | Ip[WS(rs, 7)] = T4A + T4z; |
998 | 0 | T4y = T4w - T4x; |
999 | 0 | Im[WS(rs, 8)] = T4v + T4y; |
1000 | 0 | Im[0] = T4y - T4v; |
1001 | 0 | } |
1002 | 0 | { |
1003 | 0 | E T36, T38, T39, T2Z, T3b, T2V, T2Y, T3c, T3a; |
1004 | 0 | T36 = KP559016994 * (T32 - T35); |
1005 | 0 | T38 = T32 + T35; |
1006 | 0 | T39 = FNMS(KP250000000, T38, T37); |
1007 | 0 | T2V = T2T - T2U; |
1008 | 0 | T2Y = T2W - T2X; |
1009 | 0 | T2Z = FMA(KP951056516, T2V, KP587785252 * T2Y); |
1010 | 0 | T3b = FNMS(KP587785252, T2V, KP951056516 * T2Y); |
1011 | 0 | Rp[WS(rs, 5)] = T37 + T38; |
1012 | 0 | T3c = T39 - T36; |
1013 | 0 | Rm[WS(rs, 6)] = T3b + T3c; |
1014 | 0 | Rm[WS(rs, 2)] = T3c - T3b; |
1015 | 0 | T3a = T36 + T39; |
1016 | 0 | Rp[WS(rs, 1)] = T2Z + T3a; |
1017 | 0 | Rp[WS(rs, 9)] = T3a - T2Z; |
1018 | 0 | } |
1019 | 0 | { |
1020 | 0 | E T4g, T4k, T4l, T4d, T4o, T4b, T4c, T4n, T4m; |
1021 | 0 | T4g = KP559016994 * (T4e - T4f); |
1022 | 0 | T4k = T4e + T4f; |
1023 | 0 | T4l = FNMS(KP250000000, T4k, T4j); |
1024 | 0 | T4b = T33 - T34; |
1025 | 0 | T4c = T30 - T31; |
1026 | 0 | T4d = FNMS(KP587785252, T4c, KP951056516 * T4b); |
1027 | 0 | T4o = FMA(KP951056516, T4c, KP587785252 * T4b); |
1028 | 0 | Ip[WS(rs, 5)] = T4k + T4j; |
1029 | 0 | T4n = T4g + T4l; |
1030 | 0 | Ip[WS(rs, 1)] = T4n - T4o; |
1031 | 0 | Ip[WS(rs, 9)] = T4o + T4n; |
1032 | 0 | T4m = T4g - T4l; |
1033 | 0 | Im[WS(rs, 6)] = T4d + T4m; |
1034 | 0 | Im[WS(rs, 2)] = T4m - T4d; |
1035 | 0 | } |
1036 | 0 | } |
1037 | 0 | } |
1038 | 0 | } |
1039 | | |
1040 | | static const tw_instr twinstr[] = { |
1041 | | { TW_FULL, 1, 20 }, |
1042 | | { TW_NEXT, 1, 0 } |
1043 | | }; |
1044 | | |
1045 | | static const hc2c_desc desc = { 20, "hc2cf_20", twinstr, &GENUS, { 184, 62, 62, 0 } }; |
1046 | | |
1047 | 1 | void X(codelet_hc2cf_20) (planner *p) { |
1048 | 1 | X(khc2c_register) (p, hc2cf_20, &desc, HC2C_VIA_RDFT); |
1049 | 1 | } |
1050 | | #endif |