/src/fftw3/rdft/scalar/r2cf/hc2cfdft2_32.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:24 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 552 FP additions, 414 FP multiplications, |
32 | | * (or, 300 additions, 162 multiplications, 252 fused multiply/add), |
33 | | * 175 stack variables, 8 constants, and 128 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP831469612, +0.831469612302545237078788377617905756738560812); |
40 | | DK(KP980785280, +0.980785280403230449126182236134239036973933731); |
41 | | DK(KP198912367, +0.198912367379658006911597622644676228597850501); |
42 | | DK(KP668178637, +0.668178637919298919997757686523080761552472251); |
43 | | DK(KP923879532, +0.923879532511286756128183189396788286822416626); |
44 | | DK(KP414213562, +0.414213562373095048801688724209698078569671875); |
45 | | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
46 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
47 | | { |
48 | | INT m; |
49 | | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { |
50 | | E T1, Th, T2, T5, Ti, Tl, T4, T6, T1a, Tc, T1c, Tk, Tz, T2H, T2v; |
51 | | E T1u, Tm, Ts, T15, T2W, TZ, T2l, T2q, T2R, TR, TL, T3B, T3S, T3F, T3V; |
52 | | E T4E, T4Y, T4I, T51, TF, T40, T44, T2A, T4M, T4Q, T1A, T3s, T3w, T2M, T4l; |
53 | | E T4p, T1g, T1H, T1F, T1d, T1h, T1O, T1n, T1I, T28, T34, T32, T25, T29, T3b; |
54 | | E T2f, T35; |
55 | | { |
56 | | E Tj, TY, TK, Tr, T14, TQ, T1b, T24, TE, T1z; |
57 | | { |
58 | | E T3, T1t, Tb, Ty; |
59 | | T1 = W[0]; |
60 | | Th = W[4]; |
61 | | T2 = W[2]; |
62 | | T5 = W[3]; |
63 | | T3 = T1 * T2; |
64 | | T1t = T2 * Th; |
65 | | Tb = T1 * T5; |
66 | | Ty = T1 * Th; |
67 | | Ti = W[6]; |
68 | | Tj = Th * Ti; |
69 | | TY = T2 * Ti; |
70 | | TK = T1 * Ti; |
71 | | Tl = W[7]; |
72 | | Tr = Th * Tl; |
73 | | T14 = T2 * Tl; |
74 | | TQ = T1 * Tl; |
75 | | T4 = W[1]; |
76 | | T6 = FMA(T4, T5, T3); |
77 | | T1a = FNMS(T4, T5, T3); |
78 | | T1b = T1a * Th; |
79 | | T24 = T6 * Th; |
80 | | Tc = FNMS(T4, T2, Tb); |
81 | | T1c = FMA(T4, T2, Tb); |
82 | | Tk = W[5]; |
83 | | TE = T1 * Tk; |
84 | | T1z = T2 * Tk; |
85 | | Tz = FNMS(T4, Tk, Ty); |
86 | | T2H = FMA(T4, Tk, Ty); |
87 | | T2v = FNMS(T5, Tk, T1t); |
88 | | T1u = FMA(T5, Tk, T1t); |
89 | | } |
90 | | Tm = FMA(Tk, Tl, Tj); |
91 | | Ts = FNMS(Tk, Ti, Tr); |
92 | | T15 = FMA(T5, Ti, T14); |
93 | | T2W = FNMS(T5, Ti, T14); |
94 | | TZ = FNMS(T5, Tl, TY); |
95 | | T2l = FNMS(T4, Tl, TK); |
96 | | T2q = FMA(T4, Ti, TQ); |
97 | | T2R = FMA(T5, Tl, TY); |
98 | | TR = FNMS(T4, Ti, TQ); |
99 | | TL = FMA(T4, Tl, TK); |
100 | | { |
101 | | E T3A, T3E, T4k, T4o; |
102 | | T3A = T6 * Ti; |
103 | | T3B = FNMS(Tc, Tl, T3A); |
104 | | T3S = FMA(Tc, Tl, T3A); |
105 | | T3E = T6 * Tl; |
106 | | T3F = FMA(Tc, Ti, T3E); |
107 | | T3V = FNMS(Tc, Ti, T3E); |
108 | | { |
109 | | E T4D, T4H, T3Z, T43; |
110 | | T4D = T1a * Ti; |
111 | | T4E = FNMS(T1c, Tl, T4D); |
112 | | T4Y = FMA(T1c, Tl, T4D); |
113 | | T4H = T1a * Tl; |
114 | | T4I = FMA(T1c, Ti, T4H); |
115 | | T51 = FNMS(T1c, Ti, T4H); |
116 | | T3Z = Tz * Ti; |
117 | | T43 = Tz * Tl; |
118 | | TF = FMA(T4, Th, TE); |
119 | | T40 = FMA(TF, Tl, T3Z); |
120 | | T44 = FNMS(TF, Ti, T43); |
121 | | } |
122 | | { |
123 | | E T4L, T4P, T3r, T3v; |
124 | | T4L = T2v * Ti; |
125 | | T4P = T2v * Tl; |
126 | | T2A = FMA(T5, Th, T1z); |
127 | | T4M = FMA(T2A, Tl, T4L); |
128 | | T4Q = FNMS(T2A, Ti, T4P); |
129 | | T3r = T1u * Ti; |
130 | | T3v = T1u * Tl; |
131 | | T1A = FNMS(T5, Th, T1z); |
132 | | T3s = FMA(T1A, Tl, T3r); |
133 | | T3w = FNMS(T1A, Ti, T3v); |
134 | | } |
135 | | T4k = T2H * Ti; |
136 | | T4o = T2H * Tl; |
137 | | T2M = FNMS(T4, Th, TE); |
138 | | T4l = FMA(T2M, Tl, T4k); |
139 | | T4p = FNMS(T2M, Ti, T4o); |
140 | | { |
141 | | E T1G, T1N, T1e, T1m, T1f; |
142 | | T1f = T1a * Tk; |
143 | | T1g = FMA(T1c, Th, T1f); |
144 | | T1H = FNMS(T1c, Th, T1f); |
145 | | T1F = FMA(T1c, Tk, T1b); |
146 | | T1G = T1F * Ti; |
147 | | T1N = T1F * Tl; |
148 | | T1d = FNMS(T1c, Tk, T1b); |
149 | | T1e = T1d * Ti; |
150 | | T1m = T1d * Tl; |
151 | | T1h = FMA(T1g, Tl, T1e); |
152 | | T1O = FNMS(T1H, Ti, T1N); |
153 | | T1n = FNMS(T1g, Ti, T1m); |
154 | | T1I = FMA(T1H, Tl, T1G); |
155 | | } |
156 | | { |
157 | | E T33, T3a, T26, T2e, T27; |
158 | | T27 = T6 * Tk; |
159 | | T28 = FNMS(Tc, Th, T27); |
160 | | T34 = FMA(Tc, Th, T27); |
161 | | T32 = FNMS(Tc, Tk, T24); |
162 | | T33 = T32 * Ti; |
163 | | T3a = T32 * Tl; |
164 | | T25 = FMA(Tc, Tk, T24); |
165 | | T26 = T25 * Ti; |
166 | | T2e = T25 * Tl; |
167 | | T29 = FMA(T28, Tl, T26); |
168 | | T3b = FNMS(T34, Ti, T3a); |
169 | | T2f = FNMS(T28, Ti, T2e); |
170 | | T35 = FMA(T34, Tl, T33); |
171 | | } |
172 | | } |
173 | | } |
174 | | { |
175 | | E T3j, T7Z, T5b, T93, T4d, T8J, T6B, T8V, T1T, T8l, T6e, T8r, T54, T8C, T5O; |
176 | | E T8i, T31, T94, T6w, T8K, T3Y, T8U, T5g, T80, T1s, T8h, T69, T8B, T4T, T8q; |
177 | | E T5J, T8k, Tx, T8a, T5y, T8d, T4s, T8E, T5Y, T8v, T2k, T82, T5m, T83, T3z; |
178 | | E T8X, T6l, T8O, T2F, T86, T5r, T85, T3M, T8Y, T6q, T8R, TW, T8e, T5D, T8b; |
179 | | E T4B, T8F, T63, T8y; |
180 | | { |
181 | | E T3i, T4b, T38, T39, T45, T4a, T6z, T58, T3e, T42, T6x, T59, T3f, T5a; |
182 | | { |
183 | | E T3g, T3h, T36, T37; |
184 | | T3g = Ip[0]; |
185 | | T3h = Im[0]; |
186 | | T3i = T3g - T3h; |
187 | | T4b = T3g + T3h; |
188 | | T36 = Ip[WS(rs, 8)]; |
189 | | T37 = Im[WS(rs, 8)]; |
190 | | T38 = T36 - T37; |
191 | | T39 = T35 * T38; |
192 | | T45 = T36 + T37; |
193 | | } |
194 | | { |
195 | | E T47, T48, T49, T41, T3c, T3d; |
196 | | T47 = Rm[0]; |
197 | | T48 = Rp[0]; |
198 | | T49 = T47 - T48; |
199 | | T4a = T1 * T49; |
200 | | T6z = T4 * T49; |
201 | | T58 = T48 + T47; |
202 | | T3c = Rp[WS(rs, 8)]; |
203 | | T3d = Rm[WS(rs, 8)]; |
204 | | T3e = T3c + T3d; |
205 | | T41 = T3d - T3c; |
206 | | T42 = T40 * T41; |
207 | | T6x = T44 * T41; |
208 | | T59 = T35 * T3e; |
209 | | } |
210 | | T3f = FNMS(T3b, T3e, T39); |
211 | | T3j = T3f + T3i; |
212 | | T7Z = T3i - T3f; |
213 | | T5a = FMA(T3b, T38, T59); |
214 | | T5b = T58 + T5a; |
215 | | T93 = T58 - T5a; |
216 | | { |
217 | | E T46, T4c, T6y, T6A; |
218 | | T46 = FNMS(T44, T45, T42); |
219 | | T4c = FNMS(T4, T4b, T4a); |
220 | | T4d = T46 + T4c; |
221 | | T8J = T4c - T46; |
222 | | T6y = FMA(T40, T45, T6x); |
223 | | T6A = FMA(T1, T4b, T6z); |
224 | | T6B = T6y + T6A; |
225 | | T8V = T6A - T6y; |
226 | | } |
227 | | } |
228 | | { |
229 | | E T1x, T4W, T1y, T6a, T1D, T4U, T4V, T5K, T1L, T52, T1M, T6c, T1R, T4Z, T50; |
230 | | E T5M; |
231 | | { |
232 | | E T1v, T1w, T1B, T1C; |
233 | | T1v = Ip[WS(rs, 3)]; |
234 | | T1w = Im[WS(rs, 3)]; |
235 | | T1x = T1v - T1w; |
236 | | T4W = T1v + T1w; |
237 | | T1y = T1u * T1x; |
238 | | T6a = T25 * T4W; |
239 | | T1B = Rp[WS(rs, 3)]; |
240 | | T1C = Rm[WS(rs, 3)]; |
241 | | T1D = T1B + T1C; |
242 | | T4U = T1B - T1C; |
243 | | T4V = T25 * T4U; |
244 | | T5K = T1u * T1D; |
245 | | } |
246 | | { |
247 | | E T1J, T1K, T1P, T1Q; |
248 | | T1J = Ip[WS(rs, 11)]; |
249 | | T1K = Im[WS(rs, 11)]; |
250 | | T1L = T1J - T1K; |
251 | | T52 = T1J + T1K; |
252 | | T1M = T1I * T1L; |
253 | | T6c = T4Y * T52; |
254 | | T1P = Rp[WS(rs, 11)]; |
255 | | T1Q = Rm[WS(rs, 11)]; |
256 | | T1R = T1P + T1Q; |
257 | | T4Z = T1P - T1Q; |
258 | | T50 = T4Y * T4Z; |
259 | | T5M = T1I * T1R; |
260 | | } |
261 | | { |
262 | | E T1E, T1S, T6b, T6d; |
263 | | T1E = FNMS(T1A, T1D, T1y); |
264 | | T1S = FNMS(T1O, T1R, T1M); |
265 | | T1T = T1E + T1S; |
266 | | T8l = T1E - T1S; |
267 | | T6b = FNMS(T28, T4U, T6a); |
268 | | T6d = FNMS(T51, T4Z, T6c); |
269 | | T6e = T6b + T6d; |
270 | | T8r = T6d - T6b; |
271 | | } |
272 | | { |
273 | | E T4X, T53, T5L, T5N; |
274 | | T4X = FMA(T28, T4W, T4V); |
275 | | T53 = FMA(T51, T52, T50); |
276 | | T54 = T4X + T53; |
277 | | T8C = T53 - T4X; |
278 | | T5L = FMA(T1A, T1x, T5K); |
279 | | T5N = FMA(T1O, T1L, T5M); |
280 | | T5O = T5L + T5N; |
281 | | T8i = T5L - T5N; |
282 | | } |
283 | | } |
284 | | { |
285 | | E T2K, T2L, T3Q, T2P, T3P, T6s, T5c, T2U, T2V, T3W, T2Z, T3U, T6u, T5e; |
286 | | { |
287 | | E T2I, T2J, T3O, T2N, T2O; |
288 | | T2I = Ip[WS(rs, 4)]; |
289 | | T2J = Im[WS(rs, 4)]; |
290 | | T2K = T2I - T2J; |
291 | | T2L = T2H * T2K; |
292 | | T3Q = T2I + T2J; |
293 | | T2N = Rp[WS(rs, 4)]; |
294 | | T2O = Rm[WS(rs, 4)]; |
295 | | T2P = T2N + T2O; |
296 | | T3O = T2O - T2N; |
297 | | T3P = Th * T3O; |
298 | | T6s = Tk * T3O; |
299 | | T5c = T2H * T2P; |
300 | | } |
301 | | { |
302 | | E T2S, T2T, T3T, T2X, T2Y; |
303 | | T2S = Ip[WS(rs, 12)]; |
304 | | T2T = Im[WS(rs, 12)]; |
305 | | T2U = T2S - T2T; |
306 | | T2V = T2R * T2U; |
307 | | T3W = T2S + T2T; |
308 | | T2X = Rp[WS(rs, 12)]; |
309 | | T2Y = Rm[WS(rs, 12)]; |
310 | | T2Z = T2X + T2Y; |
311 | | T3T = T2Y - T2X; |
312 | | T3U = T3S * T3T; |
313 | | T6u = T3V * T3T; |
314 | | T5e = T2R * T2Z; |
315 | | } |
316 | | { |
317 | | E T2Q, T30, T6t, T6v; |
318 | | T2Q = FNMS(T2M, T2P, T2L); |
319 | | T30 = FNMS(T2W, T2Z, T2V); |
320 | | T31 = T2Q + T30; |
321 | | T94 = T2Q - T30; |
322 | | T6t = FMA(Th, T3Q, T6s); |
323 | | T6v = FMA(T3S, T3W, T6u); |
324 | | T6w = T6t + T6v; |
325 | | T8K = T6t - T6v; |
326 | | } |
327 | | { |
328 | | E T3R, T3X, T5d, T5f; |
329 | | T3R = FNMS(Tk, T3Q, T3P); |
330 | | T3X = FNMS(T3V, T3W, T3U); |
331 | | T3Y = T3R + T3X; |
332 | | T8U = T3R - T3X; |
333 | | T5d = FMA(T2M, T2K, T5c); |
334 | | T5f = FMA(T2W, T2U, T5e); |
335 | | T5g = T5d + T5f; |
336 | | T80 = T5d - T5f; |
337 | | } |
338 | | } |
339 | | { |
340 | | E T12, T4J, T13, T65, T18, T4F, T4G, T5F, T1k, T4R, T1l, T67, T1q, T4N, T4O; |
341 | | E T5H; |
342 | | { |
343 | | E T10, T11, T16, T17; |
344 | | T10 = Ip[WS(rs, 15)]; |
345 | | T11 = Im[WS(rs, 15)]; |
346 | | T12 = T10 - T11; |
347 | | T4J = T10 + T11; |
348 | | T13 = TZ * T12; |
349 | | T65 = T4E * T4J; |
350 | | T16 = Rp[WS(rs, 15)]; |
351 | | T17 = Rm[WS(rs, 15)]; |
352 | | T18 = T16 + T17; |
353 | | T4F = T16 - T17; |
354 | | T4G = T4E * T4F; |
355 | | T5F = TZ * T18; |
356 | | } |
357 | | { |
358 | | E T1i, T1j, T1o, T1p; |
359 | | T1i = Ip[WS(rs, 7)]; |
360 | | T1j = Im[WS(rs, 7)]; |
361 | | T1k = T1i - T1j; |
362 | | T4R = T1i + T1j; |
363 | | T1l = T1h * T1k; |
364 | | T67 = T4M * T4R; |
365 | | T1o = Rp[WS(rs, 7)]; |
366 | | T1p = Rm[WS(rs, 7)]; |
367 | | T1q = T1o + T1p; |
368 | | T4N = T1o - T1p; |
369 | | T4O = T4M * T4N; |
370 | | T5H = T1h * T1q; |
371 | | } |
372 | | { |
373 | | E T19, T1r, T66, T68; |
374 | | T19 = FNMS(T15, T18, T13); |
375 | | T1r = FNMS(T1n, T1q, T1l); |
376 | | T1s = T19 + T1r; |
377 | | T8h = T19 - T1r; |
378 | | T66 = FNMS(T4I, T4F, T65); |
379 | | T68 = FNMS(T4Q, T4N, T67); |
380 | | T69 = T66 + T68; |
381 | | T8B = T66 - T68; |
382 | | } |
383 | | { |
384 | | E T4K, T4S, T5G, T5I; |
385 | | T4K = FMA(T4I, T4J, T4G); |
386 | | T4S = FMA(T4Q, T4R, T4O); |
387 | | T4T = T4K + T4S; |
388 | | T8q = T4S - T4K; |
389 | | T5G = FMA(T15, T12, T5F); |
390 | | T5I = FMA(T1n, T1k, T5H); |
391 | | T5J = T5G + T5I; |
392 | | T8k = T5G - T5I; |
393 | | } |
394 | | } |
395 | | { |
396 | | E T9, T4i, Ta, T5U, Tf, T4g, T4h, T5u, Tp, T4q, Tq, T5W, Tv, T4m, T4n; |
397 | | E T5w; |
398 | | { |
399 | | E T7, T8, Td, Te; |
400 | | T7 = Ip[WS(rs, 1)]; |
401 | | T8 = Im[WS(rs, 1)]; |
402 | | T9 = T7 - T8; |
403 | | T4i = T7 + T8; |
404 | | Ta = T6 * T9; |
405 | | T5U = T2 * T4i; |
406 | | Td = Rp[WS(rs, 1)]; |
407 | | Te = Rm[WS(rs, 1)]; |
408 | | Tf = Td + Te; |
409 | | T4g = Td - Te; |
410 | | T4h = T2 * T4g; |
411 | | T5u = T6 * Tf; |
412 | | } |
413 | | { |
414 | | E Tn, To, Tt, Tu; |
415 | | Tn = Ip[WS(rs, 9)]; |
416 | | To = Im[WS(rs, 9)]; |
417 | | Tp = Tn - To; |
418 | | T4q = Tn + To; |
419 | | Tq = Tm * Tp; |
420 | | T5W = T4l * T4q; |
421 | | Tt = Rp[WS(rs, 9)]; |
422 | | Tu = Rm[WS(rs, 9)]; |
423 | | Tv = Tt + Tu; |
424 | | T4m = Tt - Tu; |
425 | | T4n = T4l * T4m; |
426 | | T5w = Tm * Tv; |
427 | | } |
428 | | { |
429 | | E Tg, Tw, T5v, T5x; |
430 | | Tg = FNMS(Tc, Tf, Ta); |
431 | | Tw = FNMS(Ts, Tv, Tq); |
432 | | Tx = Tg + Tw; |
433 | | T8a = Tg - Tw; |
434 | | T5v = FMA(Tc, T9, T5u); |
435 | | T5x = FMA(Ts, Tp, T5w); |
436 | | T5y = T5v + T5x; |
437 | | T8d = T5v - T5x; |
438 | | { |
439 | | E T4j, T4r, T8t, T5V, T5X, T8u; |
440 | | T4j = FMA(T5, T4i, T4h); |
441 | | T4r = FMA(T4p, T4q, T4n); |
442 | | T8t = T4r - T4j; |
443 | | T5V = FNMS(T5, T4g, T5U); |
444 | | T5X = FNMS(T4p, T4m, T5W); |
445 | | T8u = T5V - T5X; |
446 | | T4s = T4j + T4r; |
447 | | T8E = T8u + T8t; |
448 | | T5Y = T5V + T5X; |
449 | | T8v = T8t - T8u; |
450 | | } |
451 | | } |
452 | | } |
453 | | { |
454 | | E T1Y, T1Z, T3p, T22, T3o, T6h, T5i, T2c, T2d, T3x, T2i, T3u, T6j, T5k; |
455 | | { |
456 | | E T1W, T1X, T3n, T20, T21; |
457 | | T1W = Ip[WS(rs, 2)]; |
458 | | T1X = Im[WS(rs, 2)]; |
459 | | T1Y = T1W - T1X; |
460 | | T1Z = T1a * T1Y; |
461 | | T3p = T1W + T1X; |
462 | | T20 = Rp[WS(rs, 2)]; |
463 | | T21 = Rm[WS(rs, 2)]; |
464 | | T22 = T20 + T21; |
465 | | T3n = T21 - T20; |
466 | | T3o = T1F * T3n; |
467 | | T6h = T1H * T3n; |
468 | | T5i = T1a * T22; |
469 | | } |
470 | | { |
471 | | E T2a, T2b, T3t, T2g, T2h; |
472 | | T2a = Ip[WS(rs, 10)]; |
473 | | T2b = Im[WS(rs, 10)]; |
474 | | T2c = T2a - T2b; |
475 | | T2d = T29 * T2c; |
476 | | T3x = T2a + T2b; |
477 | | T2g = Rp[WS(rs, 10)]; |
478 | | T2h = Rm[WS(rs, 10)]; |
479 | | T2i = T2g + T2h; |
480 | | T3t = T2h - T2g; |
481 | | T3u = T3s * T3t; |
482 | | T6j = T3w * T3t; |
483 | | T5k = T29 * T2i; |
484 | | } |
485 | | { |
486 | | E T23, T2j, T5j, T5l; |
487 | | T23 = FNMS(T1c, T22, T1Z); |
488 | | T2j = FNMS(T2f, T2i, T2d); |
489 | | T2k = T23 + T2j; |
490 | | T82 = T23 - T2j; |
491 | | T5j = FMA(T1c, T1Y, T5i); |
492 | | T5l = FMA(T2f, T2c, T5k); |
493 | | T5m = T5j + T5l; |
494 | | T83 = T5j - T5l; |
495 | | { |
496 | | E T3q, T3y, T8M, T6i, T6k, T8N; |
497 | | T3q = FNMS(T1H, T3p, T3o); |
498 | | T3y = FNMS(T3w, T3x, T3u); |
499 | | T8M = T3q - T3y; |
500 | | T6i = FMA(T1F, T3p, T6h); |
501 | | T6k = FMA(T3s, T3x, T6j); |
502 | | T8N = T6i - T6k; |
503 | | T3z = T3q + T3y; |
504 | | T8X = T8M + T8N; |
505 | | T6l = T6i + T6k; |
506 | | T8O = T8M - T8N; |
507 | | } |
508 | | } |
509 | | } |
510 | | { |
511 | | E T2o, T2p, T3G, T2t, T3D, T6m, T5n, T2y, T2z, T3K, T2D, T3J, T6o, T5p; |
512 | | { |
513 | | E T2m, T2n, T3C, T2r, T2s; |
514 | | T2m = Ip[WS(rs, 14)]; |
515 | | T2n = Im[WS(rs, 14)]; |
516 | | T2o = T2m - T2n; |
517 | | T2p = T2l * T2o; |
518 | | T3G = T2m + T2n; |
519 | | T2r = Rp[WS(rs, 14)]; |
520 | | T2s = Rm[WS(rs, 14)]; |
521 | | T2t = T2r + T2s; |
522 | | T3C = T2s - T2r; |
523 | | T3D = T3B * T3C; |
524 | | T6m = T3F * T3C; |
525 | | T5n = T2l * T2t; |
526 | | } |
527 | | { |
528 | | E T2w, T2x, T3I, T2B, T2C; |
529 | | T2w = Ip[WS(rs, 6)]; |
530 | | T2x = Im[WS(rs, 6)]; |
531 | | T2y = T2w - T2x; |
532 | | T2z = T2v * T2y; |
533 | | T3K = T2w + T2x; |
534 | | T2B = Rp[WS(rs, 6)]; |
535 | | T2C = Rm[WS(rs, 6)]; |
536 | | T2D = T2B + T2C; |
537 | | T3I = T2C - T2B; |
538 | | T3J = T1d * T3I; |
539 | | T6o = T1g * T3I; |
540 | | T5p = T2v * T2D; |
541 | | } |
542 | | { |
543 | | E T2u, T2E, T5o, T5q; |
544 | | T2u = FNMS(T2q, T2t, T2p); |
545 | | T2E = FNMS(T2A, T2D, T2z); |
546 | | T2F = T2u + T2E; |
547 | | T86 = T2u - T2E; |
548 | | T5o = FMA(T2q, T2o, T5n); |
549 | | T5q = FMA(T2A, T2y, T5p); |
550 | | T5r = T5o + T5q; |
551 | | T85 = T5o - T5q; |
552 | | { |
553 | | E T3H, T3L, T8P, T6n, T6p, T8Q; |
554 | | T3H = FNMS(T3F, T3G, T3D); |
555 | | T3L = FNMS(T1g, T3K, T3J); |
556 | | T8P = T3H - T3L; |
557 | | T6n = FMA(T3B, T3G, T6m); |
558 | | T6p = FMA(T1d, T3K, T6o); |
559 | | T8Q = T6n - T6p; |
560 | | T3M = T3H + T3L; |
561 | | T8Y = T8Q - T8P; |
562 | | T6q = T6n + T6p; |
563 | | T8R = T8P + T8Q; |
564 | | } |
565 | | } |
566 | | } |
567 | | { |
568 | | E TC, T4v, TD, T5Z, TI, T4t, T4u, T5z, TO, T4z, TP, T61, TU, T4x, T4y; |
569 | | E T5B; |
570 | | { |
571 | | E TA, TB, TG, TH; |
572 | | TA = Ip[WS(rs, 5)]; |
573 | | TB = Im[WS(rs, 5)]; |
574 | | TC = TA - TB; |
575 | | T4v = TA + TB; |
576 | | TD = Tz * TC; |
577 | | T5Z = T32 * T4v; |
578 | | TG = Rp[WS(rs, 5)]; |
579 | | TH = Rm[WS(rs, 5)]; |
580 | | TI = TG + TH; |
581 | | T4t = TG - TH; |
582 | | T4u = T32 * T4t; |
583 | | T5z = Tz * TI; |
584 | | } |
585 | | { |
586 | | E TM, TN, TS, TT; |
587 | | TM = Ip[WS(rs, 13)]; |
588 | | TN = Im[WS(rs, 13)]; |
589 | | TO = TM - TN; |
590 | | T4z = TM + TN; |
591 | | TP = TL * TO; |
592 | | T61 = Ti * T4z; |
593 | | TS = Rp[WS(rs, 13)]; |
594 | | TT = Rm[WS(rs, 13)]; |
595 | | TU = TS + TT; |
596 | | T4x = TS - TT; |
597 | | T4y = Ti * T4x; |
598 | | T5B = TL * TU; |
599 | | } |
600 | | { |
601 | | E TJ, TV, T5A, T5C; |
602 | | TJ = FNMS(TF, TI, TD); |
603 | | TV = FNMS(TR, TU, TP); |
604 | | TW = TJ + TV; |
605 | | T8e = TJ - TV; |
606 | | T5A = FMA(TF, TC, T5z); |
607 | | T5C = FMA(TR, TO, T5B); |
608 | | T5D = T5A + T5C; |
609 | | T8b = T5A - T5C; |
610 | | { |
611 | | E T4w, T4A, T8x, T60, T62, T8w; |
612 | | T4w = FMA(T34, T4v, T4u); |
613 | | T4A = FMA(Tl, T4z, T4y); |
614 | | T8x = T4w - T4A; |
615 | | T60 = FNMS(T34, T4t, T5Z); |
616 | | T62 = FNMS(Tl, T4x, T61); |
617 | | T8w = T62 - T60; |
618 | | T4B = T4w + T4A; |
619 | | T8F = T8w - T8x; |
620 | | T63 = T60 + T62; |
621 | | T8y = T8w + T8x; |
622 | | } |
623 | | } |
624 | | } |
625 | | { |
626 | | E T1V, T6S, T3l, T6I, T5Q, T6H, T5t, T6R, T56, T6W, T6g, T6M, T4f, T6X, T6D; |
627 | | E T6P; |
628 | | { |
629 | | E TX, T1U, T5h, T5s; |
630 | | TX = Tx + TW; |
631 | | T1U = T1s + T1T; |
632 | | T1V = TX + T1U; |
633 | | T6S = TX - T1U; |
634 | | { |
635 | | E T2G, T3k, T5E, T5P; |
636 | | T2G = T2k + T2F; |
637 | | T3k = T31 + T3j; |
638 | | T3l = T2G + T3k; |
639 | | T6I = T3k - T2G; |
640 | | T5E = T5y + T5D; |
641 | | T5P = T5J + T5O; |
642 | | T5Q = T5E + T5P; |
643 | | T6H = T5P - T5E; |
644 | | } |
645 | | T5h = T5b + T5g; |
646 | | T5s = T5m + T5r; |
647 | | T5t = T5h + T5s; |
648 | | T6R = T5h - T5s; |
649 | | { |
650 | | E T4C, T55, T6L, T64, T6f, T6K; |
651 | | T4C = T4s + T4B; |
652 | | T55 = T4T + T54; |
653 | | T6L = T4C - T55; |
654 | | T64 = T5Y + T63; |
655 | | T6f = T69 + T6e; |
656 | | T6K = T6f - T64; |
657 | | T56 = T4C + T55; |
658 | | T6W = T6K - T6L; |
659 | | T6g = T64 + T6f; |
660 | | T6M = T6K + T6L; |
661 | | } |
662 | | { |
663 | | E T3N, T4e, T6N, T6r, T6C, T6O; |
664 | | T3N = T3z + T3M; |
665 | | T4e = T3Y + T4d; |
666 | | T6N = T4e - T3N; |
667 | | T6r = T6l + T6q; |
668 | | T6C = T6w + T6B; |
669 | | T6O = T6C - T6r; |
670 | | T4f = T3N + T4e; |
671 | | T6X = T6N + T6O; |
672 | | T6D = T6r + T6C; |
673 | | T6P = T6N - T6O; |
674 | | } |
675 | | } |
676 | | { |
677 | | E T3m, T57, T6F, T6G; |
678 | | T3m = T1V + T3l; |
679 | | T57 = T4f - T56; |
680 | | Ip[0] = KP500000000 * (T3m + T57); |
681 | | Im[WS(rs, 15)] = KP500000000 * (T57 - T3m); |
682 | | T6F = T5t + T5Q; |
683 | | T6G = T6g + T6D; |
684 | | Rm[WS(rs, 15)] = KP500000000 * (T6F - T6G); |
685 | | Rp[0] = KP500000000 * (T6F + T6G); |
686 | | } |
687 | | { |
688 | | E T5R, T5S, T5T, T6E; |
689 | | T5R = T5t - T5Q; |
690 | | T5S = T56 + T4f; |
691 | | Rm[WS(rs, 7)] = KP500000000 * (T5R - T5S); |
692 | | Rp[WS(rs, 8)] = KP500000000 * (T5R + T5S); |
693 | | T5T = T3l - T1V; |
694 | | T6E = T6g - T6D; |
695 | | Ip[WS(rs, 8)] = KP500000000 * (T5T + T6E); |
696 | | Im[WS(rs, 7)] = KP500000000 * (T6E - T5T); |
697 | | } |
698 | | { |
699 | | E T6J, T6Q, T6Z, T70; |
700 | | T6J = T6H + T6I; |
701 | | T6Q = T6M + T6P; |
702 | | Ip[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T6Q, T6J)); |
703 | | Im[WS(rs, 11)] = -(KP500000000 * (FNMS(KP707106781, T6Q, T6J))); |
704 | | T6Z = T6R + T6S; |
705 | | T70 = T6W + T6X; |
706 | | Rm[WS(rs, 11)] = KP500000000 * (FNMS(KP707106781, T70, T6Z)); |
707 | | Rp[WS(rs, 4)] = KP500000000 * (FMA(KP707106781, T70, T6Z)); |
708 | | } |
709 | | { |
710 | | E T6T, T6U, T6V, T6Y; |
711 | | T6T = T6R - T6S; |
712 | | T6U = T6P - T6M; |
713 | | Rm[WS(rs, 3)] = KP500000000 * (FNMS(KP707106781, T6U, T6T)); |
714 | | Rp[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6U, T6T)); |
715 | | T6V = T6I - T6H; |
716 | | T6Y = T6W - T6X; |
717 | | Ip[WS(rs, 12)] = KP500000000 * (FMA(KP707106781, T6Y, T6V)); |
718 | | Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP707106781, T6Y, T6V))); |
719 | | } |
720 | | } |
721 | | { |
722 | | E T73, T7F, T7t, T7P, T7a, T7Q, T7w, T7G, T7i, T7U, T7A, T7K, T7p, T7V, T7B; |
723 | | E T7N; |
724 | | { |
725 | | E T71, T72, T7r, T7s; |
726 | | T71 = T5r - T5m; |
727 | | T72 = T3j - T31; |
728 | | T73 = T71 + T72; |
729 | | T7F = T72 - T71; |
730 | | T7r = T5b - T5g; |
731 | | T7s = T2k - T2F; |
732 | | T7t = T7r + T7s; |
733 | | T7P = T7r - T7s; |
734 | | } |
735 | | { |
736 | | E T76, T7u, T79, T7v; |
737 | | { |
738 | | E T74, T75, T77, T78; |
739 | | T74 = Tx - TW; |
740 | | T75 = T5y - T5D; |
741 | | T76 = T74 - T75; |
742 | | T7u = T75 + T74; |
743 | | T77 = T5J - T5O; |
744 | | T78 = T1s - T1T; |
745 | | T79 = T77 + T78; |
746 | | T7v = T77 - T78; |
747 | | } |
748 | | T7a = T76 + T79; |
749 | | T7Q = T76 - T79; |
750 | | T7w = T7u + T7v; |
751 | | T7G = T7v - T7u; |
752 | | } |
753 | | { |
754 | | E T7e, T7I, T7h, T7J; |
755 | | { |
756 | | E T7c, T7d, T7f, T7g; |
757 | | T7c = T63 - T5Y; |
758 | | T7d = T54 - T4T; |
759 | | T7e = T7c + T7d; |
760 | | T7I = T7c - T7d; |
761 | | T7f = T4B - T4s; |
762 | | T7g = T69 - T6e; |
763 | | T7h = T7f + T7g; |
764 | | T7J = T7g - T7f; |
765 | | } |
766 | | T7i = FMA(KP414213562, T7h, T7e); |
767 | | T7U = FNMS(KP414213562, T7I, T7J); |
768 | | T7A = FNMS(KP414213562, T7e, T7h); |
769 | | T7K = FMA(KP414213562, T7J, T7I); |
770 | | } |
771 | | { |
772 | | E T7l, T7L, T7o, T7M; |
773 | | { |
774 | | E T7j, T7k, T7m, T7n; |
775 | | T7j = T6q - T6l; |
776 | | T7k = T4d - T3Y; |
777 | | T7l = T7j + T7k; |
778 | | T7L = T7k - T7j; |
779 | | T7m = T3z - T3M; |
780 | | T7n = T6B - T6w; |
781 | | T7o = T7m + T7n; |
782 | | T7M = T7n - T7m; |
783 | | } |
784 | | T7p = FNMS(KP414213562, T7o, T7l); |
785 | | T7V = FNMS(KP414213562, T7L, T7M); |
786 | | T7B = FMA(KP414213562, T7l, T7o); |
787 | | T7N = FMA(KP414213562, T7M, T7L); |
788 | | } |
789 | | { |
790 | | E T7b, T7q, T7D, T7E; |
791 | | T7b = FMA(KP707106781, T7a, T73); |
792 | | T7q = T7i + T7p; |
793 | | Ip[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7q, T7b)); |
794 | | Im[WS(rs, 13)] = -(KP500000000 * (FNMS(KP923879532, T7q, T7b))); |
795 | | T7D = FMA(KP707106781, T7w, T7t); |
796 | | T7E = T7A + T7B; |
797 | | Rm[WS(rs, 13)] = KP500000000 * (FNMS(KP923879532, T7E, T7D)); |
798 | | Rp[WS(rs, 2)] = KP500000000 * (FMA(KP923879532, T7E, T7D)); |
799 | | } |
800 | | { |
801 | | E T7x, T7y, T7z, T7C; |
802 | | T7x = FNMS(KP707106781, T7w, T7t); |
803 | | T7y = T7p - T7i; |
804 | | Rm[WS(rs, 5)] = KP500000000 * (FNMS(KP923879532, T7y, T7x)); |
805 | | Rp[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7y, T7x)); |
806 | | T7z = FNMS(KP707106781, T7a, T73); |
807 | | T7C = T7A - T7B; |
808 | | Ip[WS(rs, 10)] = KP500000000 * (FMA(KP923879532, T7C, T7z)); |
809 | | Im[WS(rs, 5)] = -(KP500000000 * (FNMS(KP923879532, T7C, T7z))); |
810 | | } |
811 | | { |
812 | | E T7H, T7O, T7X, T7Y; |
813 | | T7H = FNMS(KP707106781, T7G, T7F); |
814 | | T7O = T7K - T7N; |
815 | | Ip[WS(rs, 14)] = KP500000000 * (FMA(KP923879532, T7O, T7H)); |
816 | | Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP923879532, T7O, T7H))); |
817 | | T7X = FNMS(KP707106781, T7Q, T7P); |
818 | | T7Y = T7U + T7V; |
819 | | Rp[WS(rs, 14)] = KP500000000 * (FNMS(KP923879532, T7Y, T7X)); |
820 | | Rm[WS(rs, 1)] = KP500000000 * (FMA(KP923879532, T7Y, T7X)); |
821 | | } |
822 | | { |
823 | | E T7R, T7S, T7T, T7W; |
824 | | T7R = FMA(KP707106781, T7Q, T7P); |
825 | | T7S = T7K + T7N; |
826 | | Rm[WS(rs, 9)] = KP500000000 * (FNMS(KP923879532, T7S, T7R)); |
827 | | Rp[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7S, T7R)); |
828 | | T7T = FMA(KP707106781, T7G, T7F); |
829 | | T7W = T7U - T7V; |
830 | | Ip[WS(rs, 6)] = KP500000000 * (FMA(KP923879532, T7W, T7T)); |
831 | | Im[WS(rs, 9)] = -(KP500000000 * (FNMS(KP923879532, T7W, T7T))); |
832 | | } |
833 | | } |
834 | | { |
835 | | E T89, Tat, T9l, Ta7, T99, Taj, T9v, T9H, T8o, T9w, T9c, T9m, Ta3, Tay, Tae; |
836 | | E Tao, T8I, T9A, T9g, T9q, T9O, Tau, Taa, Tak, T9W, Taz, Taf, Tar, T91, T9B; |
837 | | E T9h, T9t; |
838 | | { |
839 | | E T81, Ta5, T88, Ta6, T84, T87; |
840 | | T81 = T7Z - T80; |
841 | | Ta5 = T93 - T94; |
842 | | T84 = T82 - T83; |
843 | | T87 = T85 + T86; |
844 | | T88 = T84 + T87; |
845 | | Ta6 = T84 - T87; |
846 | | T89 = FMA(KP707106781, T88, T81); |
847 | | Tat = FNMS(KP707106781, Ta6, Ta5); |
848 | | T9l = FNMS(KP707106781, T88, T81); |
849 | | Ta7 = FMA(KP707106781, Ta6, Ta5); |
850 | | } |
851 | | { |
852 | | E T95, T9F, T98, T9G, T96, T97; |
853 | | T95 = T93 + T94; |
854 | | T9F = T80 + T7Z; |
855 | | T96 = T83 + T82; |
856 | | T97 = T85 - T86; |
857 | | T98 = T96 + T97; |
858 | | T9G = T97 - T96; |
859 | | T99 = FMA(KP707106781, T98, T95); |
860 | | Taj = FNMS(KP707106781, T9G, T9F); |
861 | | T9v = FNMS(KP707106781, T98, T95); |
862 | | T9H = FMA(KP707106781, T9G, T9F); |
863 | | } |
864 | | { |
865 | | E T8g, T9a, T8n, T9b; |
866 | | { |
867 | | E T8c, T8f, T8j, T8m; |
868 | | T8c = T8a - T8b; |
869 | | T8f = T8d + T8e; |
870 | | T8g = FNMS(KP414213562, T8f, T8c); |
871 | | T9a = FMA(KP414213562, T8c, T8f); |
872 | | T8j = T8h - T8i; |
873 | | T8m = T8k + T8l; |
874 | | T8n = FMA(KP414213562, T8m, T8j); |
875 | | T9b = FNMS(KP414213562, T8j, T8m); |
876 | | } |
877 | | T8o = T8g + T8n; |
878 | | T9w = T8g - T8n; |
879 | | T9c = T9a + T9b; |
880 | | T9m = T9b - T9a; |
881 | | } |
882 | | { |
883 | | E T9Z, Tam, Ta2, Tan; |
884 | | { |
885 | | E T9X, T9Y, Ta0, Ta1; |
886 | | T9X = T8r - T8q; |
887 | | T9Y = T8F - T8E; |
888 | | T9Z = FNMS(KP707106781, T9Y, T9X); |
889 | | Tam = FMA(KP707106781, T9Y, T9X); |
890 | | Ta0 = T8B - T8C; |
891 | | Ta1 = T8y - T8v; |
892 | | Ta2 = FNMS(KP707106781, Ta1, Ta0); |
893 | | Tan = FMA(KP707106781, Ta1, Ta0); |
894 | | } |
895 | | Ta3 = FNMS(KP668178637, Ta2, T9Z); |
896 | | Tay = FNMS(KP198912367, Tam, Tan); |
897 | | Tae = FMA(KP668178637, T9Z, Ta2); |
898 | | Tao = FMA(KP198912367, Tan, Tam); |
899 | | } |
900 | | { |
901 | | E T8A, T9o, T8H, T9p; |
902 | | { |
903 | | E T8s, T8z, T8D, T8G; |
904 | | T8s = T8q + T8r; |
905 | | T8z = T8v + T8y; |
906 | | T8A = FMA(KP707106781, T8z, T8s); |
907 | | T9o = FNMS(KP707106781, T8z, T8s); |
908 | | T8D = T8B + T8C; |
909 | | T8G = T8E + T8F; |
910 | | T8H = FMA(KP707106781, T8G, T8D); |
911 | | T9p = FNMS(KP707106781, T8G, T8D); |
912 | | } |
913 | | T8I = FMA(KP198912367, T8H, T8A); |
914 | | T9A = FMA(KP668178637, T9o, T9p); |
915 | | T9g = FNMS(KP198912367, T8A, T8H); |
916 | | T9q = FNMS(KP668178637, T9p, T9o); |
917 | | } |
918 | | { |
919 | | E T9K, Ta9, T9N, Ta8; |
920 | | { |
921 | | E T9I, T9J, T9L, T9M; |
922 | | T9I = T8k - T8l; |
923 | | T9J = T8h + T8i; |
924 | | T9K = FMA(KP414213562, T9J, T9I); |
925 | | Ta9 = FNMS(KP414213562, T9I, T9J); |
926 | | T9L = T8d - T8e; |
927 | | T9M = T8a + T8b; |
928 | | T9N = FNMS(KP414213562, T9M, T9L); |
929 | | Ta8 = FMA(KP414213562, T9L, T9M); |
930 | | } |
931 | | T9O = T9K - T9N; |
932 | | Tau = T9N + T9K; |
933 | | Taa = Ta8 - Ta9; |
934 | | Tak = Ta8 + Ta9; |
935 | | } |
936 | | { |
937 | | E T9S, Tap, T9V, Taq; |
938 | | { |
939 | | E T9Q, T9R, T9T, T9U; |
940 | | T9Q = T8K + T8J; |
941 | | T9R = T8X - T8Y; |
942 | | T9S = FNMS(KP707106781, T9R, T9Q); |
943 | | Tap = FMA(KP707106781, T9R, T9Q); |
944 | | T9T = T8V - T8U; |
945 | | T9U = T8R - T8O; |
946 | | T9V = FNMS(KP707106781, T9U, T9T); |
947 | | Taq = FMA(KP707106781, T9U, T9T); |
948 | | } |
949 | | T9W = FNMS(KP668178637, T9V, T9S); |
950 | | Taz = FNMS(KP198912367, Tap, Taq); |
951 | | Taf = FMA(KP668178637, T9S, T9V); |
952 | | Tar = FMA(KP198912367, Taq, Tap); |
953 | | } |
954 | | { |
955 | | E T8T, T9r, T90, T9s; |
956 | | { |
957 | | E T8L, T8S, T8W, T8Z; |
958 | | T8L = T8J - T8K; |
959 | | T8S = T8O + T8R; |
960 | | T8T = FMA(KP707106781, T8S, T8L); |
961 | | T9r = FNMS(KP707106781, T8S, T8L); |
962 | | T8W = T8U + T8V; |
963 | | T8Z = T8X + T8Y; |
964 | | T90 = FMA(KP707106781, T8Z, T8W); |
965 | | T9s = FNMS(KP707106781, T8Z, T8W); |
966 | | } |
967 | | T91 = FNMS(KP198912367, T90, T8T); |
968 | | T9B = FNMS(KP668178637, T9r, T9s); |
969 | | T9h = FMA(KP198912367, T8T, T90); |
970 | | T9t = FMA(KP668178637, T9s, T9r); |
971 | | } |
972 | | { |
973 | | E T8p, T92, T9j, T9k; |
974 | | T8p = FMA(KP923879532, T8o, T89); |
975 | | T92 = T8I + T91; |
976 | | Ip[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T92, T8p)); |
977 | | Im[WS(rs, 14)] = -(KP500000000 * (FNMS(KP980785280, T92, T8p))); |
978 | | T9j = FMA(KP923879532, T9c, T99); |
979 | | T9k = T9g + T9h; |
980 | | Rm[WS(rs, 14)] = KP500000000 * (FNMS(KP980785280, T9k, T9j)); |
981 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP980785280, T9k, T9j)); |
982 | | } |
983 | | { |
984 | | E T9d, T9e, T9f, T9i; |
985 | | T9d = FNMS(KP923879532, T9c, T99); |
986 | | T9e = T91 - T8I; |
987 | | Rm[WS(rs, 6)] = KP500000000 * (FNMS(KP980785280, T9e, T9d)); |
988 | | Rp[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9e, T9d)); |
989 | | T9f = FNMS(KP923879532, T8o, T89); |
990 | | T9i = T9g - T9h; |
991 | | Ip[WS(rs, 9)] = KP500000000 * (FMA(KP980785280, T9i, T9f)); |
992 | | Im[WS(rs, 6)] = -(KP500000000 * (FNMS(KP980785280, T9i, T9f))); |
993 | | } |
994 | | { |
995 | | E T9n, T9u, T9D, T9E; |
996 | | T9n = FNMS(KP923879532, T9m, T9l); |
997 | | T9u = T9q + T9t; |
998 | | Ip[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9u, T9n)); |
999 | | Im[WS(rs, 2)] = -(KP500000000 * (FMA(KP831469612, T9u, T9n))); |
1000 | | T9D = FNMS(KP923879532, T9w, T9v); |
1001 | | T9E = T9A + T9B; |
1002 | | Rp[WS(rs, 13)] = KP500000000 * (FNMS(KP831469612, T9E, T9D)); |
1003 | | Rm[WS(rs, 2)] = KP500000000 * (FMA(KP831469612, T9E, T9D)); |
1004 | | } |
1005 | | { |
1006 | | E T9x, T9y, T9z, T9C; |
1007 | | T9x = FMA(KP923879532, T9w, T9v); |
1008 | | T9y = T9t - T9q; |
1009 | | Rm[WS(rs, 10)] = KP500000000 * (FNMS(KP831469612, T9y, T9x)); |
1010 | | Rp[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9y, T9x)); |
1011 | | T9z = FMA(KP923879532, T9m, T9l); |
1012 | | T9C = T9A - T9B; |
1013 | | Ip[WS(rs, 5)] = KP500000000 * (FMA(KP831469612, T9C, T9z)); |
1014 | | Im[WS(rs, 10)] = -(KP500000000 * (FNMS(KP831469612, T9C, T9z))); |
1015 | | } |
1016 | | { |
1017 | | E T9P, Ta4, Tah, Tai; |
1018 | | T9P = FMA(KP923879532, T9O, T9H); |
1019 | | Ta4 = T9W - Ta3; |
1020 | | Ip[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Ta4, T9P)); |
1021 | | Im[WS(rs, 12)] = -(KP500000000 * (FNMS(KP831469612, Ta4, T9P))); |
1022 | | Tah = FMA(KP923879532, Taa, Ta7); |
1023 | | Tai = Tae + Taf; |
1024 | | Rm[WS(rs, 12)] = KP500000000 * (FNMS(KP831469612, Tai, Tah)); |
1025 | | Rp[WS(rs, 3)] = KP500000000 * (FMA(KP831469612, Tai, Tah)); |
1026 | | } |
1027 | | { |
1028 | | E Tab, Tac, Tad, Tag; |
1029 | | Tab = FNMS(KP923879532, Taa, Ta7); |
1030 | | Tac = Ta3 + T9W; |
1031 | | Rm[WS(rs, 4)] = KP500000000 * (FNMS(KP831469612, Tac, Tab)); |
1032 | | Rp[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tac, Tab)); |
1033 | | Tad = FNMS(KP923879532, T9O, T9H); |
1034 | | Tag = Tae - Taf; |
1035 | | Ip[WS(rs, 11)] = KP500000000 * (FMA(KP831469612, Tag, Tad)); |
1036 | | Im[WS(rs, 4)] = -(KP500000000 * (FNMS(KP831469612, Tag, Tad))); |
1037 | | } |
1038 | | { |
1039 | | E Tal, Tas, TaB, TaC; |
1040 | | Tal = FMA(KP923879532, Tak, Taj); |
1041 | | Tas = Tao - Tar; |
1042 | | Ip[WS(rs, 15)] = KP500000000 * (FMA(KP980785280, Tas, Tal)); |
1043 | | Im[0] = -(KP500000000 * (FNMS(KP980785280, Tas, Tal))); |
1044 | | TaB = FMA(KP923879532, Tau, Tat); |
1045 | | TaC = Tay + Taz; |
1046 | | Rp[WS(rs, 15)] = KP500000000 * (FNMS(KP980785280, TaC, TaB)); |
1047 | | Rm[0] = KP500000000 * (FMA(KP980785280, TaC, TaB)); |
1048 | | } |
1049 | | { |
1050 | | E Tav, Taw, Tax, TaA; |
1051 | | Tav = FNMS(KP923879532, Tau, Tat); |
1052 | | Taw = Tao + Tar; |
1053 | | Rm[WS(rs, 8)] = KP500000000 * (FNMS(KP980785280, Taw, Tav)); |
1054 | | Rp[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, Taw, Tav)); |
1055 | | Tax = FNMS(KP923879532, Tak, Taj); |
1056 | | TaA = Tay - Taz; |
1057 | | Ip[WS(rs, 7)] = KP500000000 * (FMA(KP980785280, TaA, Tax)); |
1058 | | Im[WS(rs, 8)] = -(KP500000000 * (FNMS(KP980785280, TaA, Tax))); |
1059 | | } |
1060 | | } |
1061 | | } |
1062 | | } |
1063 | | } |
1064 | | } |
1065 | | |
1066 | | static const tw_instr twinstr[] = { |
1067 | | { TW_CEXP, 1, 1 }, |
1068 | | { TW_CEXP, 1, 3 }, |
1069 | | { TW_CEXP, 1, 9 }, |
1070 | | { TW_CEXP, 1, 27 }, |
1071 | | { TW_NEXT, 1, 0 } |
1072 | | }; |
1073 | | |
1074 | | static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, { 300, 162, 252, 0 } }; |
1075 | | |
1076 | | void X(codelet_hc2cfdft2_32) (planner *p) { |
1077 | | X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT); |
1078 | | } |
1079 | | #else |
1080 | | |
1081 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 32 -dit -name hc2cfdft2_32 -include rdft/scalar/hc2cf.h */ |
1082 | | |
1083 | | /* |
1084 | | * This function contains 552 FP additions, 300 FP multiplications, |
1085 | | * (or, 440 additions, 188 multiplications, 112 fused multiply/add), |
1086 | | * 166 stack variables, 9 constants, and 128 memory accesses |
1087 | | */ |
1088 | | #include "rdft/scalar/hc2cf.h" |
1089 | | |
1090 | | static void hc2cfdft2_32(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
1091 | 0 | { |
1092 | 0 | DK(KP277785116, +0.277785116509801112371415406974266437187468595); |
1093 | 0 | DK(KP415734806, +0.415734806151272618539394188808952878369280406); |
1094 | 0 | DK(KP097545161, +0.097545161008064133924142434238511120463845809); |
1095 | 0 | DK(KP490392640, +0.490392640201615224563091118067119518486966865); |
1096 | 0 | DK(KP707106781, +0.707106781186547524400844362104849039284835938); |
1097 | 0 | DK(KP191341716, +0.191341716182544885864229992015199433380672281); |
1098 | 0 | DK(KP461939766, +0.461939766255643378064091594698394143411208313); |
1099 | 0 | DK(KP353553390, +0.353553390593273762200422181052424519642417969); |
1100 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
1101 | 0 | { |
1102 | 0 | INT m; |
1103 | 0 | for (m = mb, W = W + ((mb - 1) * 8); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 8, MAKE_VOLATILE_STRIDE(128, rs)) { |
1104 | 0 | E T1, T4, T2, T5, T7, T1b, T1d, Td, Ti, Tk, Tj, Tl, TL, TR, T2h; |
1105 | 0 | E T2O, T16, T2l, T10, T2K, Tm, Tq, T3s, T3K, T3w, T3M, T4e, T4u, T4i, T4w; |
1106 | 0 | E Ty, TE, T3h, T3j, T2q, T2u, T4l, T4n, T1v, T1B, T3E, T3G, T2B, T2F, T3Y; |
1107 | 0 | E T40, T1f, T1G, T1i, T1H, T1j, T1M, T1n, T1I, T23, T2U, T26, T2V, T27, T30; |
1108 | 0 | E T2b, T2W; |
1109 | 0 | { |
1110 | 0 | E Tw, T1A, TD, T1t, Tx, T1z, TC, T1u, TJ, T15, TQ, TY, TK, T14, TP; |
1111 | 0 | E TZ; |
1112 | 0 | { |
1113 | 0 | E T3, Tc, T6, Tb; |
1114 | 0 | T1 = W[0]; |
1115 | 0 | T4 = W[1]; |
1116 | 0 | T2 = W[2]; |
1117 | 0 | T5 = W[3]; |
1118 | 0 | T3 = T1 * T2; |
1119 | 0 | Tc = T4 * T2; |
1120 | 0 | T6 = T4 * T5; |
1121 | 0 | Tb = T1 * T5; |
1122 | 0 | T7 = T3 + T6; |
1123 | 0 | T1b = T3 - T6; |
1124 | 0 | T1d = Tb + Tc; |
1125 | 0 | Td = Tb - Tc; |
1126 | 0 | Ti = W[4]; |
1127 | 0 | Tw = T1 * Ti; |
1128 | 0 | T1A = T5 * Ti; |
1129 | 0 | TD = T4 * Ti; |
1130 | 0 | T1t = T2 * Ti; |
1131 | 0 | Tk = W[5]; |
1132 | 0 | Tx = T4 * Tk; |
1133 | 0 | T1z = T2 * Tk; |
1134 | 0 | TC = T1 * Tk; |
1135 | 0 | T1u = T5 * Tk; |
1136 | 0 | Tj = W[6]; |
1137 | 0 | TJ = T1 * Tj; |
1138 | 0 | T15 = T5 * Tj; |
1139 | 0 | TQ = T4 * Tj; |
1140 | 0 | TY = T2 * Tj; |
1141 | 0 | Tl = W[7]; |
1142 | 0 | TK = T4 * Tl; |
1143 | 0 | T14 = T2 * Tl; |
1144 | 0 | TP = T1 * Tl; |
1145 | 0 | TZ = T5 * Tl; |
1146 | 0 | } |
1147 | 0 | TL = TJ + TK; |
1148 | 0 | TR = TP - TQ; |
1149 | 0 | T2h = TJ - TK; |
1150 | 0 | T2O = T14 - T15; |
1151 | 0 | T16 = T14 + T15; |
1152 | 0 | T2l = TP + TQ; |
1153 | 0 | T10 = TY - TZ; |
1154 | 0 | T2K = TY + TZ; |
1155 | 0 | Tm = FMA(Ti, Tj, Tk * Tl); |
1156 | 0 | Tq = FNMS(Tk, Tj, Ti * Tl); |
1157 | 0 | { |
1158 | 0 | E T3q, T3r, T3u, T3v; |
1159 | 0 | T3q = T7 * Tj; |
1160 | 0 | T3r = Td * Tl; |
1161 | 0 | T3s = T3q + T3r; |
1162 | 0 | T3K = T3q - T3r; |
1163 | 0 | T3u = T7 * Tl; |
1164 | 0 | T3v = Td * Tj; |
1165 | 0 | T3w = T3u - T3v; |
1166 | 0 | T3M = T3u + T3v; |
1167 | 0 | } |
1168 | 0 | { |
1169 | 0 | E T4c, T4d, T4g, T4h; |
1170 | 0 | T4c = T1b * Tj; |
1171 | 0 | T4d = T1d * Tl; |
1172 | 0 | T4e = T4c - T4d; |
1173 | 0 | T4u = T4c + T4d; |
1174 | 0 | T4g = T1b * Tl; |
1175 | 0 | T4h = T1d * Tj; |
1176 | 0 | T4i = T4g + T4h; |
1177 | 0 | T4w = T4g - T4h; |
1178 | 0 | Ty = Tw - Tx; |
1179 | 0 | TE = TC + TD; |
1180 | 0 | T3h = FMA(Ty, Tj, TE * Tl); |
1181 | 0 | T3j = FNMS(TE, Tj, Ty * Tl); |
1182 | 0 | } |
1183 | 0 | T2q = T1t - T1u; |
1184 | 0 | T2u = T1z + T1A; |
1185 | 0 | T4l = FMA(T2q, Tj, T2u * Tl); |
1186 | 0 | T4n = FNMS(T2u, Tj, T2q * Tl); |
1187 | 0 | T1v = T1t + T1u; |
1188 | 0 | T1B = T1z - T1A; |
1189 | 0 | T3E = FMA(T1v, Tj, T1B * Tl); |
1190 | 0 | T3G = FNMS(T1B, Tj, T1v * Tl); |
1191 | 0 | T2B = Tw + Tx; |
1192 | 0 | T2F = TC - TD; |
1193 | 0 | T3Y = FMA(T2B, Tj, T2F * Tl); |
1194 | 0 | T40 = FNMS(T2F, Tj, T2B * Tl); |
1195 | 0 | { |
1196 | 0 | E T1c, T1e, T1g, T1h; |
1197 | 0 | T1c = T1b * Ti; |
1198 | 0 | T1e = T1d * Tk; |
1199 | 0 | T1f = T1c - T1e; |
1200 | 0 | T1G = T1c + T1e; |
1201 | 0 | T1g = T1b * Tk; |
1202 | 0 | T1h = T1d * Ti; |
1203 | 0 | T1i = T1g + T1h; |
1204 | 0 | T1H = T1g - T1h; |
1205 | 0 | } |
1206 | 0 | T1j = FMA(T1f, Tj, T1i * Tl); |
1207 | 0 | T1M = FNMS(T1H, Tj, T1G * Tl); |
1208 | 0 | T1n = FNMS(T1i, Tj, T1f * Tl); |
1209 | 0 | T1I = FMA(T1G, Tj, T1H * Tl); |
1210 | 0 | { |
1211 | 0 | E T21, T22, T24, T25; |
1212 | 0 | T21 = T7 * Ti; |
1213 | 0 | T22 = Td * Tk; |
1214 | 0 | T23 = T21 + T22; |
1215 | 0 | T2U = T21 - T22; |
1216 | 0 | T24 = T7 * Tk; |
1217 | 0 | T25 = Td * Ti; |
1218 | 0 | T26 = T24 - T25; |
1219 | 0 | T2V = T24 + T25; |
1220 | 0 | } |
1221 | 0 | T27 = FMA(T23, Tj, T26 * Tl); |
1222 | 0 | T30 = FNMS(T2V, Tj, T2U * Tl); |
1223 | 0 | T2b = FNMS(T26, Tj, T23 * Tl); |
1224 | 0 | T2W = FMA(T2U, Tj, T2V * Tl); |
1225 | 0 | } |
1226 | 0 | { |
1227 | 0 | E T38, T7l, T7S, T8Y, T7Z, T91, T3A, T6k, T4F, T83, T5C, T6n, T2T, T84, T4I; |
1228 | 0 | E T7m, T2g, T4M, T4P, T2z, T3T, T6m, T7O, T7V, T7j, T87, T5v, T6j, T7L, T7U; |
1229 | 0 | E T7g, T86, Tv, TW, T61, T4U, T4X, T62, T4b, T6c, T7v, T7C, T5g, T6f, T74; |
1230 | 0 | E T8G, T7s, T7B, T71, T8F, T1s, T1R, T65, T51, T54, T64, T4A, T6g, T7G, T8U; |
1231 | 0 | E T5n, T6d, T7b, T8J, T7z, T8R, T78, T8I; |
1232 | 0 | { |
1233 | 0 | E T2E, T2I, T3p, T5w, T37, T4D, T3g, T5A, T2N, T2R, T3y, T5x, T2Z, T33, T3l; |
1234 | 0 | E T5z; |
1235 | 0 | { |
1236 | 0 | E T2C, T2D, T3o, T2G, T2H, T3n; |
1237 | 0 | T2C = Ip[WS(rs, 4)]; |
1238 | 0 | T2D = Im[WS(rs, 4)]; |
1239 | 0 | T3o = T2C + T2D; |
1240 | 0 | T2G = Rp[WS(rs, 4)]; |
1241 | 0 | T2H = Rm[WS(rs, 4)]; |
1242 | 0 | T3n = T2G - T2H; |
1243 | 0 | T2E = T2C - T2D; |
1244 | 0 | T2I = T2G + T2H; |
1245 | 0 | T3p = FMA(Ti, T3n, Tk * T3o); |
1246 | 0 | T5w = FNMS(Tk, T3n, Ti * T3o); |
1247 | 0 | } |
1248 | 0 | { |
1249 | 0 | E T35, T36, T3f, T3c, T3d, T3e; |
1250 | 0 | T35 = Ip[0]; |
1251 | 0 | T36 = Im[0]; |
1252 | 0 | T3f = T35 + T36; |
1253 | 0 | T3c = Rm[0]; |
1254 | 0 | T3d = Rp[0]; |
1255 | 0 | T3e = T3c - T3d; |
1256 | 0 | T37 = T35 - T36; |
1257 | 0 | T4D = T3d + T3c; |
1258 | 0 | T3g = FNMS(T4, T3f, T1 * T3e); |
1259 | 0 | T5A = FMA(T4, T3e, T1 * T3f); |
1260 | 0 | } |
1261 | 0 | { |
1262 | 0 | E T2L, T2M, T3x, T2P, T2Q, T3t; |
1263 | 0 | T2L = Ip[WS(rs, 12)]; |
1264 | 0 | T2M = Im[WS(rs, 12)]; |
1265 | 0 | T3x = T2L + T2M; |
1266 | 0 | T2P = Rp[WS(rs, 12)]; |
1267 | 0 | T2Q = Rm[WS(rs, 12)]; |
1268 | 0 | T3t = T2P - T2Q; |
1269 | 0 | T2N = T2L - T2M; |
1270 | 0 | T2R = T2P + T2Q; |
1271 | 0 | T3y = FMA(T3s, T3t, T3w * T3x); |
1272 | 0 | T5x = FNMS(T3w, T3t, T3s * T3x); |
1273 | 0 | } |
1274 | 0 | { |
1275 | 0 | E T2X, T2Y, T3k, T31, T32, T3i; |
1276 | 0 | T2X = Ip[WS(rs, 8)]; |
1277 | 0 | T2Y = Im[WS(rs, 8)]; |
1278 | 0 | T3k = T2X + T2Y; |
1279 | 0 | T31 = Rp[WS(rs, 8)]; |
1280 | 0 | T32 = Rm[WS(rs, 8)]; |
1281 | 0 | T3i = T31 - T32; |
1282 | 0 | T2Z = T2X - T2Y; |
1283 | 0 | T33 = T31 + T32; |
1284 | 0 | T3l = FMA(T3h, T3i, T3j * T3k); |
1285 | 0 | T5z = FNMS(T3j, T3i, T3h * T3k); |
1286 | 0 | } |
1287 | 0 | { |
1288 | 0 | E T34, T7Q, T7R, T4E, T5y, T5B; |
1289 | 0 | T34 = FNMS(T30, T33, T2W * T2Z); |
1290 | 0 | T38 = T34 + T37; |
1291 | 0 | T7l = T37 - T34; |
1292 | 0 | T7Q = T3l + T3g; |
1293 | 0 | T7R = T5w - T5x; |
1294 | 0 | T7S = T7Q - T7R; |
1295 | 0 | T8Y = T7R + T7Q; |
1296 | 0 | { |
1297 | 0 | E T7X, T7Y, T3m, T3z; |
1298 | 0 | T7X = T3y - T3p; |
1299 | 0 | T7Y = T5A - T5z; |
1300 | 0 | T7Z = T7X + T7Y; |
1301 | 0 | T91 = T7Y - T7X; |
1302 | 0 | T3m = T3g - T3l; |
1303 | 0 | T3z = T3p + T3y; |
1304 | 0 | T3A = T3m - T3z; |
1305 | 0 | T6k = T3z + T3m; |
1306 | 0 | } |
1307 | 0 | T4E = FMA(T2W, T33, T30 * T2Z); |
1308 | 0 | T4F = T4D + T4E; |
1309 | 0 | T83 = T4D - T4E; |
1310 | 0 | T5y = T5w + T5x; |
1311 | 0 | T5B = T5z + T5A; |
1312 | 0 | T5C = T5y + T5B; |
1313 | 0 | T6n = T5B - T5y; |
1314 | 0 | { |
1315 | 0 | E T2J, T2S, T4G, T4H; |
1316 | 0 | T2J = FNMS(T2F, T2I, T2B * T2E); |
1317 | 0 | T2S = FNMS(T2O, T2R, T2K * T2N); |
1318 | 0 | T2T = T2J + T2S; |
1319 | 0 | T84 = T2J - T2S; |
1320 | 0 | T4G = FMA(T2B, T2I, T2F * T2E); |
1321 | 0 | T4H = FMA(T2K, T2R, T2O * T2N); |
1322 | 0 | T4I = T4G + T4H; |
1323 | 0 | T7m = T4G - T4H; |
1324 | 0 | } |
1325 | 0 | } |
1326 | 0 | } |
1327 | 0 | { |
1328 | 0 | E T20, T5p, T3D, T4K, T2y, T5t, T3R, T4O, T2f, T5q, T3I, T4L, T2p, T5s, T3O; |
1329 | 0 | E T4N; |
1330 | 0 | { |
1331 | 0 | E T1W, T3C, T1Z, T3B; |
1332 | 0 | { |
1333 | 0 | E T1U, T1V, T1X, T1Y; |
1334 | 0 | T1U = Ip[WS(rs, 2)]; |
1335 | 0 | T1V = Im[WS(rs, 2)]; |
1336 | 0 | T1W = T1U - T1V; |
1337 | 0 | T3C = T1U + T1V; |
1338 | 0 | T1X = Rp[WS(rs, 2)]; |
1339 | 0 | T1Y = Rm[WS(rs, 2)]; |
1340 | 0 | T1Z = T1X + T1Y; |
1341 | 0 | T3B = T1X - T1Y; |
1342 | 0 | } |
1343 | 0 | T20 = FNMS(T1d, T1Z, T1b * T1W); |
1344 | 0 | T5p = FNMS(T1H, T3B, T1G * T3C); |
1345 | 0 | T3D = FMA(T1G, T3B, T1H * T3C); |
1346 | 0 | T4K = FMA(T1b, T1Z, T1d * T1W); |
1347 | 0 | } |
1348 | 0 | { |
1349 | 0 | E T2t, T3Q, T2x, T3P; |
1350 | 0 | { |
1351 | 0 | E T2r, T2s, T2v, T2w; |
1352 | 0 | T2r = Ip[WS(rs, 6)]; |
1353 | 0 | T2s = Im[WS(rs, 6)]; |
1354 | 0 | T2t = T2r - T2s; |
1355 | 0 | T3Q = T2r + T2s; |
1356 | 0 | T2v = Rp[WS(rs, 6)]; |
1357 | 0 | T2w = Rm[WS(rs, 6)]; |
1358 | 0 | T2x = T2v + T2w; |
1359 | 0 | T3P = T2v - T2w; |
1360 | 0 | } |
1361 | 0 | T2y = FNMS(T2u, T2x, T2q * T2t); |
1362 | 0 | T5t = FNMS(T1i, T3P, T1f * T3Q); |
1363 | 0 | T3R = FMA(T1f, T3P, T1i * T3Q); |
1364 | 0 | T4O = FMA(T2q, T2x, T2u * T2t); |
1365 | 0 | } |
1366 | 0 | { |
1367 | 0 | E T2a, T3H, T2e, T3F; |
1368 | 0 | { |
1369 | 0 | E T28, T29, T2c, T2d; |
1370 | 0 | T28 = Ip[WS(rs, 10)]; |
1371 | 0 | T29 = Im[WS(rs, 10)]; |
1372 | 0 | T2a = T28 - T29; |
1373 | 0 | T3H = T28 + T29; |
1374 | 0 | T2c = Rp[WS(rs, 10)]; |
1375 | 0 | T2d = Rm[WS(rs, 10)]; |
1376 | 0 | T2e = T2c + T2d; |
1377 | 0 | T3F = T2c - T2d; |
1378 | 0 | } |
1379 | 0 | T2f = FNMS(T2b, T2e, T27 * T2a); |
1380 | 0 | T5q = FNMS(T3G, T3F, T3E * T3H); |
1381 | 0 | T3I = FMA(T3E, T3F, T3G * T3H); |
1382 | 0 | T4L = FMA(T27, T2e, T2b * T2a); |
1383 | 0 | } |
1384 | 0 | { |
1385 | 0 | E T2k, T3N, T2o, T3L; |
1386 | 0 | { |
1387 | 0 | E T2i, T2j, T2m, T2n; |
1388 | 0 | T2i = Ip[WS(rs, 14)]; |
1389 | 0 | T2j = Im[WS(rs, 14)]; |
1390 | 0 | T2k = T2i - T2j; |
1391 | 0 | T3N = T2i + T2j; |
1392 | 0 | T2m = Rp[WS(rs, 14)]; |
1393 | 0 | T2n = Rm[WS(rs, 14)]; |
1394 | 0 | T2o = T2m + T2n; |
1395 | 0 | T3L = T2m - T2n; |
1396 | 0 | } |
1397 | 0 | T2p = FNMS(T2l, T2o, T2h * T2k); |
1398 | 0 | T5s = FNMS(T3M, T3L, T3K * T3N); |
1399 | 0 | T3O = FMA(T3K, T3L, T3M * T3N); |
1400 | 0 | T4N = FMA(T2h, T2o, T2l * T2k); |
1401 | 0 | } |
1402 | 0 | { |
1403 | 0 | E T3J, T3S, T5r, T5u; |
1404 | 0 | T2g = T20 + T2f; |
1405 | 0 | T4M = T4K + T4L; |
1406 | 0 | T4P = T4N + T4O; |
1407 | 0 | T2z = T2p + T2y; |
1408 | 0 | T3J = T3D + T3I; |
1409 | 0 | T3S = T3O + T3R; |
1410 | 0 | T3T = T3J + T3S; |
1411 | 0 | T6m = T3S - T3J; |
1412 | 0 | { |
1413 | 0 | E T7M, T7N, T7h, T7i; |
1414 | 0 | T7M = T5s - T5t; |
1415 | 0 | T7N = T3R - T3O; |
1416 | 0 | T7O = T7M + T7N; |
1417 | 0 | T7V = T7M - T7N; |
1418 | 0 | T7h = T4N - T4O; |
1419 | 0 | T7i = T2p - T2y; |
1420 | 0 | T7j = T7h + T7i; |
1421 | 0 | T87 = T7h - T7i; |
1422 | 0 | } |
1423 | 0 | T5r = T5p + T5q; |
1424 | 0 | T5u = T5s + T5t; |
1425 | 0 | T5v = T5r + T5u; |
1426 | 0 | T6j = T5u - T5r; |
1427 | 0 | { |
1428 | 0 | E T7J, T7K, T7e, T7f; |
1429 | 0 | T7J = T3I - T3D; |
1430 | 0 | T7K = T5p - T5q; |
1431 | 0 | T7L = T7J - T7K; |
1432 | 0 | T7U = T7K + T7J; |
1433 | 0 | T7e = T20 - T2f; |
1434 | 0 | T7f = T4K - T4L; |
1435 | 0 | T7g = T7e - T7f; |
1436 | 0 | T86 = T7f + T7e; |
1437 | 0 | } |
1438 | 0 | } |
1439 | 0 | } |
1440 | 0 | { |
1441 | 0 | E Th, T5a, T3X, T4S, TV, T5e, T49, T4W, Tu, T5b, T42, T4T, TI, T5d, T46; |
1442 | 0 | E T4V; |
1443 | 0 | { |
1444 | 0 | E Ta, T3W, Tg, T3V; |
1445 | 0 | { |
1446 | 0 | E T8, T9, Te, Tf; |
1447 | 0 | T8 = Ip[WS(rs, 1)]; |
1448 | 0 | T9 = Im[WS(rs, 1)]; |
1449 | 0 | Ta = T8 - T9; |
1450 | 0 | T3W = T8 + T9; |
1451 | 0 | Te = Rp[WS(rs, 1)]; |
1452 | 0 | Tf = Rm[WS(rs, 1)]; |
1453 | 0 | Tg = Te + Tf; |
1454 | 0 | T3V = Te - Tf; |
1455 | 0 | } |
1456 | 0 | Th = FNMS(Td, Tg, T7 * Ta); |
1457 | 0 | T5a = FNMS(T5, T3V, T2 * T3W); |
1458 | 0 | T3X = FMA(T2, T3V, T5 * T3W); |
1459 | 0 | T4S = FMA(T7, Tg, Td * Ta); |
1460 | 0 | } |
1461 | 0 | { |
1462 | 0 | E TO, T48, TU, T47; |
1463 | 0 | { |
1464 | 0 | E TM, TN, TS, TT; |
1465 | 0 | TM = Ip[WS(rs, 13)]; |
1466 | 0 | TN = Im[WS(rs, 13)]; |
1467 | 0 | TO = TM - TN; |
1468 | 0 | T48 = TM + TN; |
1469 | 0 | TS = Rp[WS(rs, 13)]; |
1470 | 0 | TT = Rm[WS(rs, 13)]; |
1471 | 0 | TU = TS + TT; |
1472 | 0 | T47 = TS - TT; |
1473 | 0 | } |
1474 | 0 | TV = FNMS(TR, TU, TL * TO); |
1475 | 0 | T5e = FNMS(Tl, T47, Tj * T48); |
1476 | 0 | T49 = FMA(Tj, T47, Tl * T48); |
1477 | 0 | T4W = FMA(TL, TU, TR * TO); |
1478 | 0 | } |
1479 | 0 | { |
1480 | 0 | E Tp, T41, Tt, T3Z; |
1481 | 0 | { |
1482 | 0 | E Tn, To, Tr, Ts; |
1483 | 0 | Tn = Ip[WS(rs, 9)]; |
1484 | 0 | To = Im[WS(rs, 9)]; |
1485 | 0 | Tp = Tn - To; |
1486 | 0 | T41 = Tn + To; |
1487 | 0 | Tr = Rp[WS(rs, 9)]; |
1488 | 0 | Ts = Rm[WS(rs, 9)]; |
1489 | 0 | Tt = Tr + Ts; |
1490 | 0 | T3Z = Tr - Ts; |
1491 | 0 | } |
1492 | 0 | Tu = FNMS(Tq, Tt, Tm * Tp); |
1493 | 0 | T5b = FNMS(T40, T3Z, T3Y * T41); |
1494 | 0 | T42 = FMA(T3Y, T3Z, T40 * T41); |
1495 | 0 | T4T = FMA(Tm, Tt, Tq * Tp); |
1496 | 0 | } |
1497 | 0 | { |
1498 | 0 | E TB, T45, TH, T44; |
1499 | 0 | { |
1500 | 0 | E Tz, TA, TF, TG; |
1501 | 0 | Tz = Ip[WS(rs, 5)]; |
1502 | 0 | TA = Im[WS(rs, 5)]; |
1503 | 0 | TB = Tz - TA; |
1504 | 0 | T45 = Tz + TA; |
1505 | 0 | TF = Rp[WS(rs, 5)]; |
1506 | 0 | TG = Rm[WS(rs, 5)]; |
1507 | 0 | TH = TF + TG; |
1508 | 0 | T44 = TF - TG; |
1509 | 0 | } |
1510 | 0 | TI = FNMS(TE, TH, Ty * TB); |
1511 | 0 | T5d = FNMS(T2V, T44, T2U * T45); |
1512 | 0 | T46 = FMA(T2U, T44, T2V * T45); |
1513 | 0 | T4V = FMA(Ty, TH, TE * TB); |
1514 | 0 | } |
1515 | 0 | Tv = Th + Tu; |
1516 | 0 | TW = TI + TV; |
1517 | 0 | T61 = Tv - TW; |
1518 | 0 | T4U = T4S + T4T; |
1519 | 0 | T4X = T4V + T4W; |
1520 | 0 | T62 = T4U - T4X; |
1521 | 0 | { |
1522 | 0 | E T43, T4a, T7t, T7u; |
1523 | 0 | T43 = T3X + T42; |
1524 | 0 | T4a = T46 + T49; |
1525 | 0 | T4b = T43 + T4a; |
1526 | 0 | T6c = T4a - T43; |
1527 | 0 | T7t = T5e - T5d; |
1528 | 0 | T7u = T46 - T49; |
1529 | 0 | T7v = T7t + T7u; |
1530 | 0 | T7C = T7t - T7u; |
1531 | 0 | } |
1532 | 0 | { |
1533 | 0 | E T5c, T5f, T72, T73; |
1534 | 0 | T5c = T5a + T5b; |
1535 | 0 | T5f = T5d + T5e; |
1536 | 0 | T5g = T5c + T5f; |
1537 | 0 | T6f = T5f - T5c; |
1538 | 0 | T72 = T4S - T4T; |
1539 | 0 | T73 = TI - TV; |
1540 | 0 | T74 = T72 + T73; |
1541 | 0 | T8G = T72 - T73; |
1542 | 0 | } |
1543 | 0 | { |
1544 | 0 | E T7q, T7r, T6Z, T70; |
1545 | 0 | T7q = T42 - T3X; |
1546 | 0 | T7r = T5a - T5b; |
1547 | 0 | T7s = T7q - T7r; |
1548 | 0 | T7B = T7r + T7q; |
1549 | 0 | T6Z = Th - Tu; |
1550 | 0 | T70 = T4V - T4W; |
1551 | 0 | T71 = T6Z - T70; |
1552 | 0 | T8F = T6Z + T70; |
1553 | 0 | } |
1554 | 0 | } |
1555 | 0 | { |
1556 | 0 | E T1a, T5h, T4k, T4Z, T1Q, T5l, T4y, T53, T1r, T5i, T4p, T50, T1F, T5k, T4t; |
1557 | 0 | E T52; |
1558 | 0 | { |
1559 | 0 | E T13, T4j, T19, T4f; |
1560 | 0 | { |
1561 | 0 | E T11, T12, T17, T18; |
1562 | 0 | T11 = Ip[WS(rs, 15)]; |
1563 | 0 | T12 = Im[WS(rs, 15)]; |
1564 | 0 | T13 = T11 - T12; |
1565 | 0 | T4j = T11 + T12; |
1566 | 0 | T17 = Rp[WS(rs, 15)]; |
1567 | 0 | T18 = Rm[WS(rs, 15)]; |
1568 | 0 | T19 = T17 + T18; |
1569 | 0 | T4f = T17 - T18; |
1570 | 0 | } |
1571 | 0 | T1a = FNMS(T16, T19, T10 * T13); |
1572 | 0 | T5h = FNMS(T4i, T4f, T4e * T4j); |
1573 | 0 | T4k = FMA(T4e, T4f, T4i * T4j); |
1574 | 0 | T4Z = FMA(T10, T19, T16 * T13); |
1575 | 0 | } |
1576 | 0 | { |
1577 | 0 | E T1L, T4x, T1P, T4v; |
1578 | 0 | { |
1579 | 0 | E T1J, T1K, T1N, T1O; |
1580 | 0 | T1J = Ip[WS(rs, 11)]; |
1581 | 0 | T1K = Im[WS(rs, 11)]; |
1582 | 0 | T1L = T1J - T1K; |
1583 | 0 | T4x = T1J + T1K; |
1584 | 0 | T1N = Rp[WS(rs, 11)]; |
1585 | 0 | T1O = Rm[WS(rs, 11)]; |
1586 | 0 | T1P = T1N + T1O; |
1587 | 0 | T4v = T1N - T1O; |
1588 | 0 | } |
1589 | 0 | T1Q = FNMS(T1M, T1P, T1I * T1L); |
1590 | 0 | T5l = FNMS(T4w, T4v, T4u * T4x); |
1591 | 0 | T4y = FMA(T4u, T4v, T4w * T4x); |
1592 | 0 | T53 = FMA(T1I, T1P, T1M * T1L); |
1593 | 0 | } |
1594 | 0 | { |
1595 | 0 | E T1m, T4o, T1q, T4m; |
1596 | 0 | { |
1597 | 0 | E T1k, T1l, T1o, T1p; |
1598 | 0 | T1k = Ip[WS(rs, 7)]; |
1599 | 0 | T1l = Im[WS(rs, 7)]; |
1600 | 0 | T1m = T1k - T1l; |
1601 | 0 | T4o = T1k + T1l; |
1602 | 0 | T1o = Rp[WS(rs, 7)]; |
1603 | 0 | T1p = Rm[WS(rs, 7)]; |
1604 | 0 | T1q = T1o + T1p; |
1605 | 0 | T4m = T1o - T1p; |
1606 | 0 | } |
1607 | 0 | T1r = FNMS(T1n, T1q, T1j * T1m); |
1608 | 0 | T5i = FNMS(T4n, T4m, T4l * T4o); |
1609 | 0 | T4p = FMA(T4l, T4m, T4n * T4o); |
1610 | 0 | T50 = FMA(T1j, T1q, T1n * T1m); |
1611 | 0 | } |
1612 | 0 | { |
1613 | 0 | E T1y, T4s, T1E, T4r; |
1614 | 0 | { |
1615 | 0 | E T1w, T1x, T1C, T1D; |
1616 | 0 | T1w = Ip[WS(rs, 3)]; |
1617 | 0 | T1x = Im[WS(rs, 3)]; |
1618 | 0 | T1y = T1w - T1x; |
1619 | 0 | T4s = T1w + T1x; |
1620 | 0 | T1C = Rp[WS(rs, 3)]; |
1621 | 0 | T1D = Rm[WS(rs, 3)]; |
1622 | 0 | T1E = T1C + T1D; |
1623 | 0 | T4r = T1C - T1D; |
1624 | 0 | } |
1625 | 0 | T1F = FNMS(T1B, T1E, T1v * T1y); |
1626 | 0 | T5k = FNMS(T26, T4r, T23 * T4s); |
1627 | 0 | T4t = FMA(T23, T4r, T26 * T4s); |
1628 | 0 | T52 = FMA(T1v, T1E, T1B * T1y); |
1629 | 0 | } |
1630 | 0 | T1s = T1a + T1r; |
1631 | 0 | T1R = T1F + T1Q; |
1632 | 0 | T65 = T1s - T1R; |
1633 | 0 | T51 = T4Z + T50; |
1634 | 0 | T54 = T52 + T53; |
1635 | 0 | T64 = T51 - T54; |
1636 | 0 | { |
1637 | 0 | E T4q, T4z, T7E, T7F; |
1638 | 0 | T4q = T4k + T4p; |
1639 | 0 | T4z = T4t + T4y; |
1640 | 0 | T4A = T4q + T4z; |
1641 | 0 | T6g = T4z - T4q; |
1642 | 0 | T7E = T5h - T5i; |
1643 | 0 | T7F = T4y - T4t; |
1644 | 0 | T7G = T7E + T7F; |
1645 | 0 | T8U = T7E - T7F; |
1646 | 0 | } |
1647 | 0 | { |
1648 | 0 | E T5j, T5m, T79, T7a; |
1649 | 0 | T5j = T5h + T5i; |
1650 | 0 | T5m = T5k + T5l; |
1651 | 0 | T5n = T5j + T5m; |
1652 | 0 | T6d = T5j - T5m; |
1653 | 0 | T79 = T4Z - T50; |
1654 | 0 | T7a = T1F - T1Q; |
1655 | 0 | T7b = T79 + T7a; |
1656 | 0 | T8J = T79 - T7a; |
1657 | 0 | } |
1658 | 0 | { |
1659 | 0 | E T7x, T7y, T76, T77; |
1660 | 0 | T7x = T4p - T4k; |
1661 | 0 | T7y = T5k - T5l; |
1662 | 0 | T7z = T7x - T7y; |
1663 | 0 | T8R = T7x + T7y; |
1664 | 0 | T76 = T1a - T1r; |
1665 | 0 | T77 = T52 - T53; |
1666 | 0 | T78 = T76 - T77; |
1667 | 0 | T8I = T76 + T77; |
1668 | 0 | } |
1669 | 0 | } |
1670 | 0 | { |
1671 | 0 | E T1T, T5S, T5M, T5W, T5P, T5X, T3a, T5I, T4C, T58, T56, T5H, T5E, T5G, T4R; |
1672 | 0 | E T5R; |
1673 | 0 | { |
1674 | 0 | E TX, T1S, T5K, T5L; |
1675 | 0 | TX = Tv + TW; |
1676 | 0 | T1S = T1s + T1R; |
1677 | 0 | T1T = TX + T1S; |
1678 | 0 | T5S = TX - T1S; |
1679 | 0 | T5K = T5n - T5g; |
1680 | 0 | T5L = T4b - T4A; |
1681 | 0 | T5M = T5K + T5L; |
1682 | 0 | T5W = T5K - T5L; |
1683 | 0 | } |
1684 | 0 | { |
1685 | 0 | E T5N, T5O, T2A, T39; |
1686 | 0 | T5N = T3T + T3A; |
1687 | 0 | T5O = T5C - T5v; |
1688 | 0 | T5P = T5N - T5O; |
1689 | 0 | T5X = T5N + T5O; |
1690 | 0 | T2A = T2g + T2z; |
1691 | 0 | T39 = T2T + T38; |
1692 | 0 | T3a = T2A + T39; |
1693 | 0 | T5I = T39 - T2A; |
1694 | 0 | } |
1695 | 0 | { |
1696 | 0 | E T3U, T4B, T4Y, T55; |
1697 | 0 | T3U = T3A - T3T; |
1698 | 0 | T4B = T4b + T4A; |
1699 | 0 | T4C = T3U - T4B; |
1700 | 0 | T58 = T4B + T3U; |
1701 | 0 | T4Y = T4U + T4X; |
1702 | 0 | T55 = T51 + T54; |
1703 | 0 | T56 = T4Y + T55; |
1704 | 0 | T5H = T55 - T4Y; |
1705 | 0 | } |
1706 | 0 | { |
1707 | 0 | E T5o, T5D, T4J, T4Q; |
1708 | 0 | T5o = T5g + T5n; |
1709 | 0 | T5D = T5v + T5C; |
1710 | 0 | T5E = T5o - T5D; |
1711 | 0 | T5G = T5o + T5D; |
1712 | 0 | T4J = T4F + T4I; |
1713 | 0 | T4Q = T4M + T4P; |
1714 | 0 | T4R = T4J + T4Q; |
1715 | 0 | T5R = T4J - T4Q; |
1716 | 0 | } |
1717 | 0 | { |
1718 | 0 | E T3b, T5F, T57, T59; |
1719 | 0 | T3b = T1T + T3a; |
1720 | 0 | Ip[0] = KP500000000 * (T3b + T4C); |
1721 | 0 | Im[WS(rs, 15)] = KP500000000 * (T4C - T3b); |
1722 | 0 | T5F = T4R + T56; |
1723 | 0 | Rm[WS(rs, 15)] = KP500000000 * (T5F - T5G); |
1724 | 0 | Rp[0] = KP500000000 * (T5F + T5G); |
1725 | 0 | T57 = T4R - T56; |
1726 | 0 | Rm[WS(rs, 7)] = KP500000000 * (T57 - T58); |
1727 | 0 | Rp[WS(rs, 8)] = KP500000000 * (T57 + T58); |
1728 | 0 | T59 = T3a - T1T; |
1729 | 0 | Ip[WS(rs, 8)] = KP500000000 * (T59 + T5E); |
1730 | 0 | Im[WS(rs, 7)] = KP500000000 * (T5E - T59); |
1731 | 0 | } |
1732 | 0 | { |
1733 | 0 | E T5J, T5Q, T5Z, T60; |
1734 | 0 | T5J = KP500000000 * (T5H + T5I); |
1735 | 0 | T5Q = KP353553390 * (T5M + T5P); |
1736 | 0 | Ip[WS(rs, 4)] = T5J + T5Q; |
1737 | 0 | Im[WS(rs, 11)] = T5Q - T5J; |
1738 | 0 | T5Z = KP500000000 * (T5R + T5S); |
1739 | 0 | T60 = KP353553390 * (T5W + T5X); |
1740 | 0 | Rm[WS(rs, 11)] = T5Z - T60; |
1741 | 0 | Rp[WS(rs, 4)] = T5Z + T60; |
1742 | 0 | } |
1743 | 0 | { |
1744 | 0 | E T5T, T5U, T5V, T5Y; |
1745 | 0 | T5T = KP500000000 * (T5R - T5S); |
1746 | 0 | T5U = KP353553390 * (T5P - T5M); |
1747 | 0 | Rm[WS(rs, 3)] = T5T - T5U; |
1748 | 0 | Rp[WS(rs, 12)] = T5T + T5U; |
1749 | 0 | T5V = KP500000000 * (T5I - T5H); |
1750 | 0 | T5Y = KP353553390 * (T5W - T5X); |
1751 | 0 | Ip[WS(rs, 12)] = T5V + T5Y; |
1752 | 0 | Im[WS(rs, 3)] = T5Y - T5V; |
1753 | 0 | } |
1754 | 0 | } |
1755 | 0 | { |
1756 | 0 | E T67, T6Q, T6K, T6U, T6N, T6V, T6a, T6G, T6i, T6A, T6t, T6P, T6w, T6F, T6p; |
1757 | 0 | E T6B; |
1758 | 0 | { |
1759 | 0 | E T63, T66, T6I, T6J; |
1760 | 0 | T63 = T61 - T62; |
1761 | 0 | T66 = T64 + T65; |
1762 | 0 | T67 = KP353553390 * (T63 + T66); |
1763 | 0 | T6Q = KP353553390 * (T63 - T66); |
1764 | 0 | T6I = T6d - T6c; |
1765 | 0 | T6J = T6g - T6f; |
1766 | 0 | T6K = FMA(KP461939766, T6I, KP191341716 * T6J); |
1767 | 0 | T6U = FNMS(KP461939766, T6J, KP191341716 * T6I); |
1768 | 0 | } |
1769 | 0 | { |
1770 | 0 | E T6L, T6M, T68, T69; |
1771 | 0 | T6L = T6k - T6j; |
1772 | 0 | T6M = T6n - T6m; |
1773 | 0 | T6N = FNMS(KP461939766, T6M, KP191341716 * T6L); |
1774 | 0 | T6V = FMA(KP461939766, T6L, KP191341716 * T6M); |
1775 | 0 | T68 = T4P - T4M; |
1776 | 0 | T69 = T38 - T2T; |
1777 | 0 | T6a = KP500000000 * (T68 + T69); |
1778 | 0 | T6G = KP500000000 * (T69 - T68); |
1779 | 0 | } |
1780 | 0 | { |
1781 | 0 | E T6e, T6h, T6r, T6s; |
1782 | 0 | T6e = T6c + T6d; |
1783 | 0 | T6h = T6f + T6g; |
1784 | 0 | T6i = FMA(KP191341716, T6e, KP461939766 * T6h); |
1785 | 0 | T6A = FNMS(KP191341716, T6h, KP461939766 * T6e); |
1786 | 0 | T6r = T4F - T4I; |
1787 | 0 | T6s = T2g - T2z; |
1788 | 0 | T6t = KP500000000 * (T6r + T6s); |
1789 | 0 | T6P = KP500000000 * (T6r - T6s); |
1790 | 0 | } |
1791 | 0 | { |
1792 | 0 | E T6u, T6v, T6l, T6o; |
1793 | 0 | T6u = T62 + T61; |
1794 | 0 | T6v = T64 - T65; |
1795 | 0 | T6w = KP353553390 * (T6u + T6v); |
1796 | 0 | T6F = KP353553390 * (T6v - T6u); |
1797 | 0 | T6l = T6j + T6k; |
1798 | 0 | T6o = T6m + T6n; |
1799 | 0 | T6p = FNMS(KP191341716, T6o, KP461939766 * T6l); |
1800 | 0 | T6B = FMA(KP191341716, T6l, KP461939766 * T6o); |
1801 | 0 | } |
1802 | 0 | { |
1803 | 0 | E T6b, T6q, T6D, T6E; |
1804 | 0 | T6b = T67 + T6a; |
1805 | 0 | T6q = T6i + T6p; |
1806 | 0 | Ip[WS(rs, 2)] = T6b + T6q; |
1807 | 0 | Im[WS(rs, 13)] = T6q - T6b; |
1808 | 0 | T6D = T6t + T6w; |
1809 | 0 | T6E = T6A + T6B; |
1810 | 0 | Rm[WS(rs, 13)] = T6D - T6E; |
1811 | 0 | Rp[WS(rs, 2)] = T6D + T6E; |
1812 | 0 | } |
1813 | 0 | { |
1814 | 0 | E T6x, T6y, T6z, T6C; |
1815 | 0 | T6x = T6t - T6w; |
1816 | 0 | T6y = T6p - T6i; |
1817 | 0 | Rm[WS(rs, 5)] = T6x - T6y; |
1818 | 0 | Rp[WS(rs, 10)] = T6x + T6y; |
1819 | 0 | T6z = T6a - T67; |
1820 | 0 | T6C = T6A - T6B; |
1821 | 0 | Ip[WS(rs, 10)] = T6z + T6C; |
1822 | 0 | Im[WS(rs, 5)] = T6C - T6z; |
1823 | 0 | } |
1824 | 0 | { |
1825 | 0 | E T6H, T6O, T6X, T6Y; |
1826 | 0 | T6H = T6F + T6G; |
1827 | 0 | T6O = T6K + T6N; |
1828 | 0 | Ip[WS(rs, 6)] = T6H + T6O; |
1829 | 0 | Im[WS(rs, 9)] = T6O - T6H; |
1830 | 0 | T6X = T6P + T6Q; |
1831 | 0 | T6Y = T6U + T6V; |
1832 | 0 | Rm[WS(rs, 9)] = T6X - T6Y; |
1833 | 0 | Rp[WS(rs, 6)] = T6X + T6Y; |
1834 | 0 | } |
1835 | 0 | { |
1836 | 0 | E T6R, T6S, T6T, T6W; |
1837 | 0 | T6R = T6P - T6Q; |
1838 | 0 | T6S = T6N - T6K; |
1839 | 0 | Rm[WS(rs, 1)] = T6R - T6S; |
1840 | 0 | Rp[WS(rs, 14)] = T6R + T6S; |
1841 | 0 | T6T = T6G - T6F; |
1842 | 0 | T6W = T6U - T6V; |
1843 | 0 | Ip[WS(rs, 14)] = T6T + T6W; |
1844 | 0 | Im[WS(rs, 1)] = T6W - T6T; |
1845 | 0 | } |
1846 | 0 | } |
1847 | 0 | { |
1848 | 0 | E T7d, T8w, T7o, T8m, T8c, T8l, T89, T8v, T81, T8B, T8h, T8t, T7I, T8A, T8g; |
1849 | 0 | E T8q; |
1850 | 0 | { |
1851 | 0 | E T75, T7c, T85, T88; |
1852 | 0 | T75 = FNMS(KP191341716, T74, KP461939766 * T71); |
1853 | 0 | T7c = FMA(KP461939766, T78, KP191341716 * T7b); |
1854 | 0 | T7d = T75 + T7c; |
1855 | 0 | T8w = T75 - T7c; |
1856 | 0 | { |
1857 | 0 | E T7k, T7n, T8a, T8b; |
1858 | 0 | T7k = KP353553390 * (T7g + T7j); |
1859 | 0 | T7n = KP500000000 * (T7l - T7m); |
1860 | 0 | T7o = T7k + T7n; |
1861 | 0 | T8m = T7n - T7k; |
1862 | 0 | T8a = FMA(KP191341716, T71, KP461939766 * T74); |
1863 | 0 | T8b = FNMS(KP191341716, T78, KP461939766 * T7b); |
1864 | 0 | T8c = T8a + T8b; |
1865 | 0 | T8l = T8b - T8a; |
1866 | 0 | } |
1867 | 0 | T85 = KP500000000 * (T83 + T84); |
1868 | 0 | T88 = KP353553390 * (T86 + T87); |
1869 | 0 | T89 = T85 + T88; |
1870 | 0 | T8v = T85 - T88; |
1871 | 0 | { |
1872 | 0 | E T7T, T8r, T80, T8s, T7P, T7W; |
1873 | 0 | T7P = KP707106781 * (T7L + T7O); |
1874 | 0 | T7T = T7P + T7S; |
1875 | 0 | T8r = T7S - T7P; |
1876 | 0 | T7W = KP707106781 * (T7U + T7V); |
1877 | 0 | T80 = T7W + T7Z; |
1878 | 0 | T8s = T7Z - T7W; |
1879 | 0 | T81 = FNMS(KP097545161, T80, KP490392640 * T7T); |
1880 | 0 | T8B = FMA(KP415734806, T8r, KP277785116 * T8s); |
1881 | 0 | T8h = FMA(KP097545161, T7T, KP490392640 * T80); |
1882 | 0 | T8t = FNMS(KP415734806, T8s, KP277785116 * T8r); |
1883 | 0 | } |
1884 | 0 | { |
1885 | 0 | E T7A, T8o, T7H, T8p, T7w, T7D; |
1886 | 0 | T7w = KP707106781 * (T7s + T7v); |
1887 | 0 | T7A = T7w + T7z; |
1888 | 0 | T8o = T7z - T7w; |
1889 | 0 | T7D = KP707106781 * (T7B + T7C); |
1890 | 0 | T7H = T7D + T7G; |
1891 | 0 | T8p = T7G - T7D; |
1892 | 0 | T7I = FMA(KP490392640, T7A, KP097545161 * T7H); |
1893 | 0 | T8A = FNMS(KP415734806, T8o, KP277785116 * T8p); |
1894 | 0 | T8g = FNMS(KP097545161, T7A, KP490392640 * T7H); |
1895 | 0 | T8q = FMA(KP277785116, T8o, KP415734806 * T8p); |
1896 | 0 | } |
1897 | 0 | } |
1898 | 0 | { |
1899 | 0 | E T7p, T82, T8j, T8k; |
1900 | 0 | T7p = T7d + T7o; |
1901 | 0 | T82 = T7I + T81; |
1902 | 0 | Ip[WS(rs, 1)] = T7p + T82; |
1903 | 0 | Im[WS(rs, 14)] = T82 - T7p; |
1904 | 0 | T8j = T89 + T8c; |
1905 | 0 | T8k = T8g + T8h; |
1906 | 0 | Rm[WS(rs, 14)] = T8j - T8k; |
1907 | 0 | Rp[WS(rs, 1)] = T8j + T8k; |
1908 | 0 | } |
1909 | 0 | { |
1910 | 0 | E T8d, T8e, T8f, T8i; |
1911 | 0 | T8d = T89 - T8c; |
1912 | 0 | T8e = T81 - T7I; |
1913 | 0 | Rm[WS(rs, 6)] = T8d - T8e; |
1914 | 0 | Rp[WS(rs, 9)] = T8d + T8e; |
1915 | 0 | T8f = T7o - T7d; |
1916 | 0 | T8i = T8g - T8h; |
1917 | 0 | Ip[WS(rs, 9)] = T8f + T8i; |
1918 | 0 | Im[WS(rs, 6)] = T8i - T8f; |
1919 | 0 | } |
1920 | 0 | { |
1921 | 0 | E T8n, T8u, T8D, T8E; |
1922 | 0 | T8n = T8l + T8m; |
1923 | 0 | T8u = T8q + T8t; |
1924 | 0 | Ip[WS(rs, 5)] = T8n + T8u; |
1925 | 0 | Im[WS(rs, 10)] = T8u - T8n; |
1926 | 0 | T8D = T8v + T8w; |
1927 | 0 | T8E = T8A + T8B; |
1928 | 0 | Rm[WS(rs, 10)] = T8D - T8E; |
1929 | 0 | Rp[WS(rs, 5)] = T8D + T8E; |
1930 | 0 | } |
1931 | 0 | { |
1932 | 0 | E T8x, T8y, T8z, T8C; |
1933 | 0 | T8x = T8v - T8w; |
1934 | 0 | T8y = T8t - T8q; |
1935 | 0 | Rm[WS(rs, 2)] = T8x - T8y; |
1936 | 0 | Rp[WS(rs, 13)] = T8x + T8y; |
1937 | 0 | T8z = T8m - T8l; |
1938 | 0 | T8C = T8A - T8B; |
1939 | 0 | Ip[WS(rs, 13)] = T8z + T8C; |
1940 | 0 | Im[WS(rs, 2)] = T8C - T8z; |
1941 | 0 | } |
1942 | 0 | } |
1943 | 0 | { |
1944 | 0 | E T8L, T9u, T8O, T9k, T9a, T9j, T97, T9t, T93, T9z, T9f, T9r, T8W, T9y, T9e; |
1945 | 0 | E T9o; |
1946 | 0 | { |
1947 | 0 | E T8H, T8K, T95, T96; |
1948 | 0 | T8H = FNMS(KP461939766, T8G, KP191341716 * T8F); |
1949 | 0 | T8K = FMA(KP191341716, T8I, KP461939766 * T8J); |
1950 | 0 | T8L = T8H + T8K; |
1951 | 0 | T9u = T8H - T8K; |
1952 | 0 | { |
1953 | 0 | E T8M, T8N, T98, T99; |
1954 | 0 | T8M = KP353553390 * (T87 - T86); |
1955 | 0 | T8N = KP500000000 * (T7m + T7l); |
1956 | 0 | T8O = T8M + T8N; |
1957 | 0 | T9k = T8N - T8M; |
1958 | 0 | T98 = FMA(KP461939766, T8F, KP191341716 * T8G); |
1959 | 0 | T99 = FNMS(KP461939766, T8I, KP191341716 * T8J); |
1960 | 0 | T9a = T98 + T99; |
1961 | 0 | T9j = T99 - T98; |
1962 | 0 | } |
1963 | 0 | T95 = KP500000000 * (T83 - T84); |
1964 | 0 | T96 = KP353553390 * (T7g - T7j); |
1965 | 0 | T97 = T95 + T96; |
1966 | 0 | T9t = T95 - T96; |
1967 | 0 | { |
1968 | 0 | E T8Z, T9p, T92, T9q, T8X, T90; |
1969 | 0 | T8X = KP707106781 * (T7V - T7U); |
1970 | 0 | T8Z = T8X + T8Y; |
1971 | 0 | T9p = T8Y - T8X; |
1972 | 0 | T90 = KP707106781 * (T7L - T7O); |
1973 | 0 | T92 = T90 + T91; |
1974 | 0 | T9q = T91 - T90; |
1975 | 0 | T93 = FNMS(KP277785116, T92, KP415734806 * T8Z); |
1976 | 0 | T9z = FMA(KP490392640, T9p, KP097545161 * T9q); |
1977 | 0 | T9f = FMA(KP277785116, T8Z, KP415734806 * T92); |
1978 | 0 | T9r = FNMS(KP490392640, T9q, KP097545161 * T9p); |
1979 | 0 | } |
1980 | 0 | { |
1981 | 0 | E T8S, T9m, T8V, T9n, T8Q, T8T; |
1982 | 0 | T8Q = KP707106781 * (T7C - T7B); |
1983 | 0 | T8S = T8Q + T8R; |
1984 | 0 | T9m = T8R - T8Q; |
1985 | 0 | T8T = KP707106781 * (T7s - T7v); |
1986 | 0 | T8V = T8T + T8U; |
1987 | 0 | T9n = T8U - T8T; |
1988 | 0 | T8W = FMA(KP415734806, T8S, KP277785116 * T8V); |
1989 | 0 | T9y = FNMS(KP490392640, T9m, KP097545161 * T9n); |
1990 | 0 | T9e = FNMS(KP277785116, T8S, KP415734806 * T8V); |
1991 | 0 | T9o = FMA(KP097545161, T9m, KP490392640 * T9n); |
1992 | 0 | } |
1993 | 0 | } |
1994 | 0 | { |
1995 | 0 | E T8P, T94, T9h, T9i; |
1996 | 0 | T8P = T8L + T8O; |
1997 | 0 | T94 = T8W + T93; |
1998 | 0 | Ip[WS(rs, 3)] = T8P + T94; |
1999 | 0 | Im[WS(rs, 12)] = T94 - T8P; |
2000 | 0 | T9h = T97 + T9a; |
2001 | 0 | T9i = T9e + T9f; |
2002 | 0 | Rm[WS(rs, 12)] = T9h - T9i; |
2003 | 0 | Rp[WS(rs, 3)] = T9h + T9i; |
2004 | 0 | } |
2005 | 0 | { |
2006 | 0 | E T9b, T9c, T9d, T9g; |
2007 | 0 | T9b = T97 - T9a; |
2008 | 0 | T9c = T93 - T8W; |
2009 | 0 | Rm[WS(rs, 4)] = T9b - T9c; |
2010 | 0 | Rp[WS(rs, 11)] = T9b + T9c; |
2011 | 0 | T9d = T8O - T8L; |
2012 | 0 | T9g = T9e - T9f; |
2013 | 0 | Ip[WS(rs, 11)] = T9d + T9g; |
2014 | 0 | Im[WS(rs, 4)] = T9g - T9d; |
2015 | 0 | } |
2016 | 0 | { |
2017 | 0 | E T9l, T9s, T9B, T9C; |
2018 | 0 | T9l = T9j + T9k; |
2019 | 0 | T9s = T9o + T9r; |
2020 | 0 | Ip[WS(rs, 7)] = T9l + T9s; |
2021 | 0 | Im[WS(rs, 8)] = T9s - T9l; |
2022 | 0 | T9B = T9t + T9u; |
2023 | 0 | T9C = T9y + T9z; |
2024 | 0 | Rm[WS(rs, 8)] = T9B - T9C; |
2025 | 0 | Rp[WS(rs, 7)] = T9B + T9C; |
2026 | 0 | } |
2027 | 0 | { |
2028 | 0 | E T9v, T9w, T9x, T9A; |
2029 | 0 | T9v = T9t - T9u; |
2030 | 0 | T9w = T9r - T9o; |
2031 | 0 | Rm[0] = T9v - T9w; |
2032 | 0 | Rp[WS(rs, 15)] = T9v + T9w; |
2033 | 0 | T9x = T9k - T9j; |
2034 | 0 | T9A = T9y - T9z; |
2035 | 0 | Ip[WS(rs, 15)] = T9x + T9A; |
2036 | 0 | Im[0] = T9A - T9x; |
2037 | 0 | } |
2038 | 0 | } |
2039 | 0 | } |
2040 | 0 | } |
2041 | 0 | } |
2042 | 0 | } |
2043 | | |
2044 | | static const tw_instr twinstr[] = { |
2045 | | { TW_CEXP, 1, 1 }, |
2046 | | { TW_CEXP, 1, 3 }, |
2047 | | { TW_CEXP, 1, 9 }, |
2048 | | { TW_CEXP, 1, 27 }, |
2049 | | { TW_NEXT, 1, 0 } |
2050 | | }; |
2051 | | |
2052 | | static const hc2c_desc desc = { 32, "hc2cfdft2_32", twinstr, &GENUS, { 440, 188, 112, 0 } }; |
2053 | | |
2054 | 1 | void X(codelet_hc2cfdft2_32) (planner *p) { |
2055 | 1 | X(khc2c_register) (p, hc2cfdft2_32, &desc, HC2C_VIA_DFT); |
2056 | 1 | } |
2057 | | #endif |