Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cf/hc2cfdft_10.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:20 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 122 FP additions, 92 FP multiplications,
32
 * (or, 68 additions, 38 multiplications, 54 fused multiply/add),
33
 * 81 stack variables, 5 constants, and 40 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40
     DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
42
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
43
     DK(KP618033988, +0.618033988749894848204586834365638117720309180);
44
     {
45
    INT m;
46
    for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
47
         E T3, T1u, Td, T1w, T1S, T2f, T14, T1p, T1j, T1q, T1N, T2e, TQ, T2i, T1n;
48
         E T1H, Tz, T2h, T1m, T1C;
49
         {
50
        E T1, T2, T1h, Tc, TW, T1c, T1d, T1b, T1f, T1g, T1Q, T7, TV, T1J, TS;
51
        E TU, Ts, Tx, T19, T18, T1O, T15, T17, Tt, T1A, Ti, Tn, TE, TD, T1F;
52
        E TA, TC, Tj, T1y, TJ, TO, T12, T11, T1L, TY, T10, TK, T1D;
53
        {
54
       E Ta, Tb, T1e, T5, T6, TT;
55
       T1 = Ip[0];
56
       T2 = Im[0];
57
       T1h = T1 + T2;
58
       Ta = Rp[WS(rs, 2)];
59
       Tb = Rm[WS(rs, 2)];
60
       Tc = Ta - Tb;
61
       TW = Ta + Tb;
62
       T1c = Rm[0];
63
       T1d = Rp[0];
64
       T1e = T1c - T1d;
65
       T1b = W[0];
66
       T1f = T1b * T1e;
67
       T1g = W[1];
68
       T1Q = T1g * T1e;
69
       T5 = Ip[WS(rs, 2)];
70
       T6 = Im[WS(rs, 2)];
71
       TT = T5 - T6;
72
       T7 = T5 + T6;
73
       TV = W[7];
74
       T1J = TV * TT;
75
       TS = W[6];
76
       TU = TS * TT;
77
       {
78
            E Tq, Tr, T16, Tv, Tw, Tp;
79
            Tq = Rm[WS(rs, 3)];
80
            Tr = Rp[WS(rs, 3)];
81
            Ts = Tq - Tr;
82
            Tv = Ip[WS(rs, 3)];
83
            Tw = Im[WS(rs, 3)];
84
            Tx = Tv + Tw;
85
            T16 = Tv - Tw;
86
            T19 = Tr + Tq;
87
            T18 = W[11];
88
            T1O = T18 * T16;
89
            T15 = W[10];
90
            T17 = T15 * T16;
91
            Tp = W[12];
92
            Tt = Tp * Ts;
93
            T1A = Tp * Tx;
94
       }
95
       {
96
            E Tg, Th, TB, Tl, Tm, Tf;
97
            Tg = Ip[WS(rs, 1)];
98
            Th = Im[WS(rs, 1)];
99
            Ti = Tg - Th;
100
            Tl = Rp[WS(rs, 1)];
101
            Tm = Rm[WS(rs, 1)];
102
            Tn = Tl + Tm;
103
            TB = Tm - Tl;
104
            TE = Tg + Th;
105
            TD = W[5];
106
            T1F = TD * TB;
107
            TA = W[4];
108
            TC = TA * TB;
109
            Tf = W[2];
110
            Tj = Tf * Ti;
111
            T1y = Tf * Tn;
112
       }
113
       {
114
            E TH, TI, TZ, TM, TN, TG;
115
            TH = Ip[WS(rs, 4)];
116
            TI = Im[WS(rs, 4)];
117
            TJ = TH - TI;
118
            TM = Rp[WS(rs, 4)];
119
            TN = Rm[WS(rs, 4)];
120
            TO = TM + TN;
121
            TZ = TN - TM;
122
            T12 = TH + TI;
123
            T11 = W[17];
124
            T1L = T11 * TZ;
125
            TY = W[16];
126
            T10 = TY * TZ;
127
            TG = W[14];
128
            TK = TG * TJ;
129
            T1D = TG * TO;
130
       }
131
        }
132
        {
133
       E T1P, T1R, T1K, T1M;
134
       T3 = T1 - T2;
135
       T1u = T1d + T1c;
136
       {
137
            E T4, T8, T9, T1v;
138
            T4 = W[9];
139
            T8 = T4 * T7;
140
            T9 = W[8];
141
            T1v = T9 * T7;
142
            Td = FMA(T9, Tc, T8);
143
            T1w = FNMS(T4, Tc, T1v);
144
       }
145
       T1P = FMA(T15, T19, T1O);
146
       T1R = FMA(T1b, T1h, T1Q);
147
       T1S = T1P - T1R;
148
       T2f = T1P + T1R;
149
       {
150
            E TX, T13, T1a, T1i;
151
            TX = FNMS(TV, TW, TU);
152
            T13 = FNMS(T11, T12, T10);
153
            T14 = TX + T13;
154
            T1p = T13 - TX;
155
            T1a = FNMS(T18, T19, T17);
156
            T1i = FNMS(T1g, T1h, T1f);
157
            T1j = T1a + T1i;
158
            T1q = T1i - T1a;
159
       }
160
       T1K = FMA(TS, TW, T1J);
161
       T1M = FMA(TY, T12, T1L);
162
       T1N = T1K - T1M;
163
       T2e = T1K + T1M;
164
       {
165
            E TF, T1G, TP, T1E, TL;
166
            TF = FNMS(TD, TE, TC);
167
            T1G = FMA(TA, TE, T1F);
168
            TL = W[15];
169
            TP = FNMS(TL, TO, TK);
170
            T1E = FMA(TL, TJ, T1D);
171
            TQ = TF + TP;
172
            T2i = T1G + T1E;
173
            T1n = TF - TP;
174
            T1H = T1E - T1G;
175
       }
176
       {
177
            E To, T1z, Ty, T1B, Tk, Tu;
178
            Tk = W[3];
179
            To = FNMS(Tk, Tn, Tj);
180
            T1z = FMA(Tk, Ti, T1y);
181
            Tu = W[13];
182
            Ty = FNMS(Tu, Tx, Tt);
183
            T1B = FMA(Tu, Ts, T1A);
184
            Tz = To + Ty;
185
            T2h = T1z + T1B;
186
            T1m = Ty - To;
187
            T1C = T1z - T1B;
188
       }
189
        }
190
         }
191
         {
192
        E T2k, T2m, Te, T1l, T2b, T2c, T2l, T2d;
193
        {
194
       E T2g, T2j, TR, T1k;
195
       T2g = T2e - T2f;
196
       T2j = T2h - T2i;
197
       T2k = FNMS(KP618033988, T2j, T2g);
198
       T2m = FMA(KP618033988, T2g, T2j);
199
       Te = T3 - Td;
200
       TR = Tz + TQ;
201
       T1k = T14 + T1j;
202
       T1l = TR + T1k;
203
       T2b = FNMS(KP250000000, T1l, Te);
204
       T2c = TR - T1k;
205
        }
206
        Ip[0] = KP500000000 * (Te + T1l);
207
        T2l = FMA(KP559016994, T2c, T2b);
208
        Ip[WS(rs, 4)] = KP500000000 * (FMA(KP951056516, T2m, T2l));
209
        Im[WS(rs, 3)] = -(KP500000000 * (FNMS(KP951056516, T2m, T2l)));
210
        T2d = FNMS(KP559016994, T2c, T2b);
211
        Ip[WS(rs, 2)] = KP500000000 * (FMA(KP951056516, T2k, T2d));
212
        Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP951056516, T2k, T2d)));
213
         }
214
         {
215
        E T2w, T2y, T2n, T2q, T2r, T2s, T2x, T2t;
216
        {
217
       E T2u, T2v, T2o, T2p;
218
       T2u = T14 - T1j;
219
       T2v = Tz - TQ;
220
       T2w = FNMS(KP618033988, T2v, T2u);
221
       T2y = FMA(KP618033988, T2u, T2v);
222
       T2n = T1u + T1w;
223
       T2o = T2h + T2i;
224
       T2p = T2e + T2f;
225
       T2q = T2o + T2p;
226
       T2r = FNMS(KP250000000, T2q, T2n);
227
       T2s = T2o - T2p;
228
        }
229
        Rp[0] = KP500000000 * (T2n + T2q);
230
        T2x = FMA(KP559016994, T2s, T2r);
231
        Rp[WS(rs, 4)] = KP500000000 * (FNMS(KP951056516, T2y, T2x));
232
        Rm[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2y, T2x));
233
        T2t = FNMS(KP559016994, T2s, T2r);
234
        Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T2w, T2t));
235
        Rm[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T2w, T2t));
236
         }
237
         {
238
        E T28, T2a, T1t, T1s, T23, T24, T29, T25;
239
        {
240
       E T26, T27, T1o, T1r;
241
       T26 = T1H - T1C;
242
       T27 = T1S - T1N;
243
       T28 = FMA(KP618033988, T27, T26);
244
       T2a = FNMS(KP618033988, T26, T27);
245
       T1t = Td + T3;
246
       T1o = T1m + T1n;
247
       T1r = T1p + T1q;
248
       T1s = T1o + T1r;
249
       T23 = FMA(KP250000000, T1s, T1t);
250
       T24 = T1r - T1o;
251
        }
252
        Im[WS(rs, 4)] = KP500000000 * (T1s - T1t);
253
        T29 = FNMS(KP559016994, T24, T23);
254
        Ip[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T2a, T29));
255
        Im[WS(rs, 2)] = -(KP500000000 * (FNMS(KP951056516, T2a, T29)));
256
        T25 = FMA(KP559016994, T24, T23);
257
        Ip[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T28, T25));
258
        Im[0] = -(KP500000000 * (FNMS(KP951056516, T28, T25)));
259
         }
260
         {
261
        E T20, T22, T1x, T1U, T1V, T1W, T21, T1X;
262
        {
263
       E T1Y, T1Z, T1I, T1T;
264
       T1Y = T1n - T1m;
265
       T1Z = T1q - T1p;
266
       T20 = FMA(KP618033988, T1Z, T1Y);
267
       T22 = FNMS(KP618033988, T1Y, T1Z);
268
       T1x = T1u - T1w;
269
       T1I = T1C + T1H;
270
       T1T = T1N + T1S;
271
       T1U = T1I + T1T;
272
       T1V = FNMS(KP250000000, T1U, T1x);
273
       T1W = T1I - T1T;
274
        }
275
        Rm[WS(rs, 4)] = KP500000000 * (T1x + T1U);
276
        T21 = FNMS(KP559016994, T1W, T1V);
277
        Rp[WS(rs, 3)] = KP500000000 * (FMA(KP951056516, T22, T21));
278
        Rm[WS(rs, 2)] = KP500000000 * (FNMS(KP951056516, T22, T21));
279
        T1X = FMA(KP559016994, T1W, T1V);
280
        Rp[WS(rs, 1)] = KP500000000 * (FMA(KP951056516, T20, T1X));
281
        Rm[0] = KP500000000 * (FNMS(KP951056516, T20, T1X));
282
         }
283
    }
284
     }
285
}
286
287
static const tw_instr twinstr[] = {
288
     { TW_FULL, 1, 10 },
289
     { TW_NEXT, 1, 0 }
290
};
291
292
static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, { 68, 38, 54, 0 } };
293
294
void X(codelet_hc2cfdft_10) (planner *p) {
295
     X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
296
}
297
#else
298
299
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hc2cfdft_10 -include rdft/scalar/hc2cf.h */
300
301
/*
302
 * This function contains 122 FP additions, 68 FP multiplications,
303
 * (or, 92 additions, 38 multiplications, 30 fused multiply/add),
304
 * 62 stack variables, 5 constants, and 40 memory accesses
305
 */
306
#include "rdft/scalar/hc2cf.h"
307
308
static void hc2cfdft_10(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
309
0
{
310
0
     DK(KP293892626, +0.293892626146236564584352977319536384298826219);
311
0
     DK(KP475528258, +0.475528258147576786058219666689691071702849317);
312
0
     DK(KP125000000, +0.125000000000000000000000000000000000000000000);
313
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
314
0
     DK(KP279508497, +0.279508497187473712051146708591409529430077295);
315
0
     {
316
0
    INT m;
317
0
    for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 18, MAKE_VOLATILE_STRIDE(40, rs)) {
318
0
         E Tw, TL, TM, T1W, T1X, T27, T1Z, T20, T26, TX, T1a, T1b, T1d, T1e, T1f;
319
0
         E T1q, T1t, T1u, T1x, T1A, T1B, T1g, T1h, T1i, Td, T25, T1k, T1F;
320
0
         {
321
0
        E T3, T1D, T19, T1z, T7, Tb, TR, T1v, Tm, T1o, TK, T1s, Tv, T1p, T12;
322
0
        E T1y, TF, T1r, TW, T1w;
323
0
        {
324
0
       E T1, T2, T18, T14, T15, T16, T13, T17;
325
0
       T1 = Ip[0];
326
0
       T2 = Im[0];
327
0
       T18 = T1 + T2;
328
0
       T14 = Rm[0];
329
0
       T15 = Rp[0];
330
0
       T16 = T14 - T15;
331
0
       T3 = T1 - T2;
332
0
       T1D = T15 + T14;
333
0
       T13 = W[0];
334
0
       T17 = W[1];
335
0
       T19 = FNMS(T17, T18, T13 * T16);
336
0
       T1z = FMA(T17, T16, T13 * T18);
337
0
        }
338
0
        {
339
0
       E T5, T6, TO, T9, Ta, TQ, TN, TP;
340
0
       T5 = Ip[WS(rs, 2)];
341
0
       T6 = Im[WS(rs, 2)];
342
0
       TO = T5 - T6;
343
0
       T9 = Rp[WS(rs, 2)];
344
0
       Ta = Rm[WS(rs, 2)];
345
0
       TQ = T9 + Ta;
346
0
       T7 = T5 + T6;
347
0
       Tb = T9 - Ta;
348
0
       TN = W[6];
349
0
       TP = W[7];
350
0
       TR = FNMS(TP, TQ, TN * TO);
351
0
       T1v = FMA(TP, TO, TN * TQ);
352
0
        }
353
0
        {
354
0
       E Th, TJ, Tl, TH;
355
0
       {
356
0
            E Tf, Tg, Tj, Tk;
357
0
            Tf = Ip[WS(rs, 1)];
358
0
            Tg = Im[WS(rs, 1)];
359
0
            Th = Tf - Tg;
360
0
            TJ = Tf + Tg;
361
0
            Tj = Rp[WS(rs, 1)];
362
0
            Tk = Rm[WS(rs, 1)];
363
0
            Tl = Tj + Tk;
364
0
            TH = Tj - Tk;
365
0
       }
366
0
       {
367
0
            E Te, Ti, TG, TI;
368
0
            Te = W[2];
369
0
            Ti = W[3];
370
0
            Tm = FNMS(Ti, Tl, Te * Th);
371
0
            T1o = FMA(Te, Tl, Ti * Th);
372
0
            TG = W[4];
373
0
            TI = W[5];
374
0
            TK = FMA(TG, TH, TI * TJ);
375
0
            T1s = FNMS(TI, TH, TG * TJ);
376
0
       }
377
0
        }
378
0
        {
379
0
       E Tq, TZ, Tu, T11;
380
0
       {
381
0
            E To, Tp, Ts, Tt;
382
0
            To = Ip[WS(rs, 3)];
383
0
            Tp = Im[WS(rs, 3)];
384
0
            Tq = To + Tp;
385
0
            TZ = To - Tp;
386
0
            Ts = Rp[WS(rs, 3)];
387
0
            Tt = Rm[WS(rs, 3)];
388
0
            Tu = Ts - Tt;
389
0
            T11 = Ts + Tt;
390
0
       }
391
0
       {
392
0
            E Tn, Tr, TY, T10;
393
0
            Tn = W[13];
394
0
            Tr = W[12];
395
0
            Tv = FMA(Tn, Tq, Tr * Tu);
396
0
            T1p = FNMS(Tn, Tu, Tr * Tq);
397
0
            TY = W[10];
398
0
            T10 = W[11];
399
0
            T12 = FNMS(T10, T11, TY * TZ);
400
0
            T1y = FMA(T10, TZ, TY * T11);
401
0
       }
402
0
        }
403
0
        {
404
0
       E TA, TV, TE, TT;
405
0
       {
406
0
            E Ty, Tz, TC, TD;
407
0
            Ty = Ip[WS(rs, 4)];
408
0
            Tz = Im[WS(rs, 4)];
409
0
            TA = Ty - Tz;
410
0
            TV = Ty + Tz;
411
0
            TC = Rp[WS(rs, 4)];
412
0
            TD = Rm[WS(rs, 4)];
413
0
            TE = TC + TD;
414
0
            TT = TC - TD;
415
0
       }
416
0
       {
417
0
            E Tx, TB, TS, TU;
418
0
            Tx = W[14];
419
0
            TB = W[15];
420
0
            TF = FNMS(TB, TE, Tx * TA);
421
0
            T1r = FMA(Tx, TE, TB * TA);
422
0
            TS = W[16];
423
0
            TU = W[17];
424
0
            TW = FMA(TS, TT, TU * TV);
425
0
            T1w = FNMS(TU, TT, TS * TV);
426
0
       }
427
0
        }
428
0
        Tw = Tm - Tv;
429
0
        TL = TF - TK;
430
0
        TM = Tw + TL;
431
0
        T1W = T1v + T1w;
432
0
        T1X = T1y + T1z;
433
0
        T27 = T1W + T1X;
434
0
        T1Z = T1o + T1p;
435
0
        T20 = T1s + T1r;
436
0
        T26 = T1Z + T20;
437
0
        TX = TR - TW;
438
0
        T1a = T12 + T19;
439
0
        T1b = TX + T1a;
440
0
        T1d = T19 - T12;
441
0
        T1e = TR + TW;
442
0
        T1f = T1d - T1e;
443
0
        T1q = T1o - T1p;
444
0
        T1t = T1r - T1s;
445
0
        T1u = T1q + T1t;
446
0
        T1x = T1v - T1w;
447
0
        T1A = T1y - T1z;
448
0
        T1B = T1x + T1A;
449
0
        T1g = Tm + Tv;
450
0
        T1h = TK + TF;
451
0
        T1i = T1g + T1h;
452
0
        {
453
0
       E Tc, T1E, T4, T8;
454
0
       T4 = W[9];
455
0
       T8 = W[8];
456
0
       Tc = FMA(T4, T7, T8 * Tb);
457
0
       T1E = FNMS(T4, Tb, T8 * T7);
458
0
       Td = T3 - Tc;
459
0
       T25 = T1D + T1E;
460
0
       T1k = Tc + T3;
461
0
       T1F = T1D - T1E;
462
0
        }
463
0
         }
464
0
         {
465
0
        E T1U, T1c, T1T, T22, T24, T1Y, T21, T23, T1V;
466
0
        T1U = KP279508497 * (TM - T1b);
467
0
        T1c = TM + T1b;
468
0
        T1T = FNMS(KP125000000, T1c, KP500000000 * Td);
469
0
        T1Y = T1W - T1X;
470
0
        T21 = T1Z - T20;
471
0
        T22 = FNMS(KP293892626, T21, KP475528258 * T1Y);
472
0
        T24 = FMA(KP475528258, T21, KP293892626 * T1Y);
473
0
        Ip[0] = KP500000000 * (Td + T1c);
474
0
        T23 = T1U + T1T;
475
0
        Ip[WS(rs, 4)] = T23 + T24;
476
0
        Im[WS(rs, 3)] = T24 - T23;
477
0
        T1V = T1T - T1U;
478
0
        Ip[WS(rs, 2)] = T1V + T22;
479
0
        Im[WS(rs, 1)] = T22 - T1V;
480
0
         }
481
0
         {
482
0
        E T2a, T28, T29, T2e, T2g, T2c, T2d, T2f, T2b;
483
0
        T2a = KP279508497 * (T26 - T27);
484
0
        T28 = T26 + T27;
485
0
        T29 = FNMS(KP125000000, T28, KP500000000 * T25);
486
0
        T2c = TX - T1a;
487
0
        T2d = Tw - TL;
488
0
        T2e = FNMS(KP293892626, T2d, KP475528258 * T2c);
489
0
        T2g = FMA(KP475528258, T2d, KP293892626 * T2c);
490
0
        Rp[0] = KP500000000 * (T25 + T28);
491
0
        T2f = T2a + T29;
492
0
        Rp[WS(rs, 4)] = T2f - T2g;
493
0
        Rm[WS(rs, 3)] = T2g + T2f;
494
0
        T2b = T29 - T2a;
495
0
        Rp[WS(rs, 2)] = T2b - T2e;
496
0
        Rm[WS(rs, 1)] = T2e + T2b;
497
0
         }
498
0
         {
499
0
        E T1M, T1j, T1L, T1Q, T1S, T1O, T1P, T1R, T1N;
500
0
        T1M = KP279508497 * (T1i + T1f);
501
0
        T1j = T1f - T1i;
502
0
        T1L = FMA(KP500000000, T1k, KP125000000 * T1j);
503
0
        T1O = T1A - T1x;
504
0
        T1P = T1q - T1t;
505
0
        T1Q = FNMS(KP475528258, T1P, KP293892626 * T1O);
506
0
        T1S = FMA(KP293892626, T1P, KP475528258 * T1O);
507
0
        Im[WS(rs, 4)] = KP500000000 * (T1j - T1k);
508
0
        T1R = T1L - T1M;
509
0
        Ip[WS(rs, 3)] = T1R + T1S;
510
0
        Im[WS(rs, 2)] = T1S - T1R;
511
0
        T1N = T1L + T1M;
512
0
        Ip[WS(rs, 1)] = T1N + T1Q;
513
0
        Im[0] = T1Q - T1N;
514
0
         }
515
0
         {
516
0
        E T1C, T1G, T1H, T1n, T1J, T1l, T1m, T1K, T1I;
517
0
        T1C = KP279508497 * (T1u - T1B);
518
0
        T1G = T1u + T1B;
519
0
        T1H = FNMS(KP125000000, T1G, KP500000000 * T1F);
520
0
        T1l = T1g - T1h;
521
0
        T1m = T1e + T1d;
522
0
        T1n = FMA(KP475528258, T1l, KP293892626 * T1m);
523
0
        T1J = FNMS(KP293892626, T1l, KP475528258 * T1m);
524
0
        Rm[WS(rs, 4)] = KP500000000 * (T1F + T1G);
525
0
        T1K = T1H - T1C;
526
0
        Rp[WS(rs, 3)] = T1J + T1K;
527
0
        Rm[WS(rs, 2)] = T1K - T1J;
528
0
        T1I = T1C + T1H;
529
0
        Rp[WS(rs, 1)] = T1n + T1I;
530
0
        Rm[0] = T1I - T1n;
531
0
         }
532
0
    }
533
0
     }
534
0
}
535
536
static const tw_instr twinstr[] = {
537
     { TW_FULL, 1, 10 },
538
     { TW_NEXT, 1, 0 }
539
};
540
541
static const hc2c_desc desc = { 10, "hc2cfdft_10", twinstr, &GENUS, { 92, 38, 30, 0 } };
542
543
1
void X(codelet_hc2cfdft_10) (planner *p) {
544
1
     X(khc2c_register) (p, hc2cfdft_10, &desc, HC2C_VIA_DFT);
545
1
}
546
#endif