Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cf/hc2cfdft_6.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:20 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */
29
30
/*
31
 * This function contains 58 FP additions, 44 FP multiplications,
32
 * (or, 36 additions, 22 multiplications, 22 fused multiply/add),
33
 * 27 stack variables, 2 constants, and 24 memory accesses
34
 */
35
#include "rdft/scalar/hc2cf.h"
36
37
static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
40
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
41
     {
42
    INT m;
43
    for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
44
         E T3, TQ, TJ, T12, Tu, TX, TB, T10, Td, TS, Tk, TV;
45
         {
46
        E T1, T2, TI, TD, TE, TF;
47
        T1 = Ip[0];
48
        T2 = Im[0];
49
        TI = T1 + T2;
50
        TD = Rm[0];
51
        TE = Rp[0];
52
        TF = TD - TE;
53
        T3 = T1 - T2;
54
        TQ = TE + TD;
55
        {
56
       E TC, TG, TH, T11;
57
       TC = W[0];
58
       TG = TC * TF;
59
       TH = W[1];
60
       T11 = TH * TF;
61
       TJ = FNMS(TH, TI, TG);
62
       T12 = FMA(TC, TI, T11);
63
        }
64
         }
65
         {
66
        E To, TA, Tt, Tx;
67
        {
68
       E Tm, Tn, Tr, Ts;
69
       Tm = Rm[WS(rs, 2)];
70
       Tn = Rp[WS(rs, 2)];
71
       To = Tm - Tn;
72
       TA = Tn + Tm;
73
       Tr = Ip[WS(rs, 2)];
74
       Ts = Im[WS(rs, 2)];
75
       Tt = Tr + Ts;
76
       Tx = Tr - Ts;
77
        }
78
        {
79
       E Tp, TW, Tl, Tq;
80
       Tl = W[8];
81
       Tp = Tl * To;
82
       TW = Tl * Tt;
83
       Tq = W[9];
84
       Tu = FNMS(Tq, Tt, Tp);
85
       TX = FMA(Tq, To, TW);
86
        }
87
        {
88
       E Tw, Ty, Tz, TZ;
89
       Tw = W[6];
90
       Ty = Tw * Tx;
91
       Tz = W[7];
92
       TZ = Tz * Tx;
93
       TB = FNMS(Tz, TA, Ty);
94
       T10 = FMA(Tw, TA, TZ);
95
        }
96
         }
97
         {
98
        E T7, Tg, Tc, Tj;
99
        {
100
       E T5, T6, Ta, Tb;
101
       T5 = Ip[WS(rs, 1)];
102
       T6 = Im[WS(rs, 1)];
103
       T7 = T5 + T6;
104
       Tg = T5 - T6;
105
       Ta = Rp[WS(rs, 1)];
106
       Tb = Rm[WS(rs, 1)];
107
       Tc = Ta - Tb;
108
       Tj = Ta + Tb;
109
        }
110
        {
111
       E T4, T8, T9, TR;
112
       T4 = W[5];
113
       T8 = T4 * T7;
114
       T9 = W[4];
115
       TR = T9 * T7;
116
       Td = FMA(T9, Tc, T8);
117
       TS = FNMS(T4, Tc, TR);
118
        }
119
        {
120
       E Tf, Th, Ti, TU;
121
       Tf = W[2];
122
       Th = Tf * Tg;
123
       Ti = W[3];
124
       TU = Ti * Tg;
125
       Tk = FNMS(Ti, Tj, Th);
126
       TV = FMA(Tf, Tj, TU);
127
        }
128
         }
129
         {
130
        E Te, T1d, TL, T1g, T1c, T1e, T19, T1f;
131
        Te = T3 - Td;
132
        T1d = TQ + TS;
133
        {
134
       E Tv, TK, T1a, T1b;
135
       Tv = Tk + Tu;
136
       TK = TB + TJ;
137
       TL = Tv + TK;
138
       T1g = Tv - TK;
139
       T1a = TV + TX;
140
       T1b = T10 + T12;
141
       T1c = T1a - T1b;
142
       T1e = T1a + T1b;
143
        }
144
        Ip[0] = KP500000000 * (Te + TL);
145
        Rp[0] = KP500000000 * (T1d + T1e);
146
        T19 = FNMS(KP500000000, TL, Te);
147
        Ip[WS(rs, 2)] = KP500000000 * (FMA(KP866025403, T1c, T19));
148
        Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP866025403, T1c, T19)));
149
        T1f = FNMS(KP500000000, T1e, T1d);
150
        Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP866025403, T1g, T1f));
151
        Rm[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T1g, T1f));
152
         }
153
         {
154
        E TP, TT, TO, T16, T14, T18, T15, T17;
155
        TP = Td + T3;
156
        TT = TQ - TS;
157
        {
158
       E TM, TN, TY, T13;
159
       TM = Tu - Tk;
160
       TN = TJ - TB;
161
       TO = TM + TN;
162
       T16 = TN - TM;
163
       TY = TV - TX;
164
       T13 = T10 - T12;
165
       T14 = TY + T13;
166
       T18 = T13 - TY;
167
        }
168
        Im[WS(rs, 2)] = KP500000000 * (TO - TP);
169
        Rm[WS(rs, 2)] = KP500000000 * (TT + T14);
170
        T15 = FNMS(KP500000000, T14, TT);
171
        Rp[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T16, T15));
172
        Rm[0] = KP500000000 * (FNMS(KP866025403, T16, T15));
173
        T17 = FMA(KP500000000, TO, TP);
174
        Ip[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T18, T17));
175
        Im[0] = -(KP500000000 * (FNMS(KP866025403, T18, T17)));
176
         }
177
    }
178
     }
179
}
180
181
static const tw_instr twinstr[] = {
182
     { TW_FULL, 1, 6 },
183
     { TW_NEXT, 1, 0 }
184
};
185
186
static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, { 36, 22, 22, 0 } };
187
188
void X(codelet_hc2cfdft_6) (planner *p) {
189
     X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
190
}
191
#else
192
193
/* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */
194
195
/*
196
 * This function contains 58 FP additions, 36 FP multiplications,
197
 * (or, 44 additions, 22 multiplications, 14 fused multiply/add),
198
 * 40 stack variables, 3 constants, and 24 memory accesses
199
 */
200
#include "rdft/scalar/hc2cf.h"
201
202
static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms)
203
0
{
204
0
     DK(KP250000000, +0.250000000000000000000000000000000000000000000);
205
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
206
0
     DK(KP433012701, +0.433012701892219323381861585376468091735701313);
207
0
     {
208
0
    INT m;
209
0
    for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) {
210
0
         E T3, TM, Tc, TN, Ts, T10, TI, TR, TF, T11, TH, TU;
211
0
         {
212
0
        E T1, T2, TD, Tz, TA, TB, T7, Tf, Tb, Th, Tq, Tw, Tm, Tu, T4;
213
0
        E T8;
214
0
        {
215
0
       E T5, T6, T9, Ta;
216
0
       T1 = Ip[0];
217
0
       T2 = Im[0];
218
0
       TD = T1 + T2;
219
0
       Tz = Rm[0];
220
0
       TA = Rp[0];
221
0
       TB = Tz - TA;
222
0
       T5 = Ip[WS(rs, 1)];
223
0
       T6 = Im[WS(rs, 1)];
224
0
       T7 = T5 + T6;
225
0
       Tf = T5 - T6;
226
0
       T9 = Rp[WS(rs, 1)];
227
0
       Ta = Rm[WS(rs, 1)];
228
0
       Tb = T9 - Ta;
229
0
       Th = T9 + Ta;
230
0
       {
231
0
            E To, Tp, Tk, Tl;
232
0
            To = Rp[WS(rs, 2)];
233
0
            Tp = Rm[WS(rs, 2)];
234
0
            Tq = To - Tp;
235
0
            Tw = To + Tp;
236
0
            Tk = Ip[WS(rs, 2)];
237
0
            Tl = Im[WS(rs, 2)];
238
0
            Tm = Tk + Tl;
239
0
            Tu = Tk - Tl;
240
0
       }
241
0
        }
242
0
        T3 = T1 - T2;
243
0
        TM = TA + Tz;
244
0
        T4 = W[5];
245
0
        T8 = W[4];
246
0
        Tc = FMA(T4, T7, T8 * Tb);
247
0
        TN = FNMS(T4, Tb, T8 * T7);
248
0
        {
249
0
       E Ti, TP, Tr, TQ;
250
0
       {
251
0
            E Te, Tg, Tj, Tn;
252
0
            Te = W[2];
253
0
            Tg = W[3];
254
0
            Ti = FNMS(Tg, Th, Te * Tf);
255
0
            TP = FMA(Tg, Tf, Te * Th);
256
0
            Tj = W[9];
257
0
            Tn = W[8];
258
0
            Tr = FMA(Tj, Tm, Tn * Tq);
259
0
            TQ = FNMS(Tj, Tq, Tn * Tm);
260
0
       }
261
0
       Ts = Ti - Tr;
262
0
       T10 = TP + TQ;
263
0
       TI = Ti + Tr;
264
0
       TR = TP - TQ;
265
0
        }
266
0
        {
267
0
       E Tx, TS, TE, TT;
268
0
       {
269
0
            E Tt, Tv, Ty, TC;
270
0
            Tt = W[6];
271
0
            Tv = W[7];
272
0
            Tx = FNMS(Tv, Tw, Tt * Tu);
273
0
            TS = FMA(Tv, Tu, Tt * Tw);
274
0
            Ty = W[0];
275
0
            TC = W[1];
276
0
            TE = FNMS(TC, TD, Ty * TB);
277
0
            TT = FMA(TC, TB, Ty * TD);
278
0
       }
279
0
       TF = Tx + TE;
280
0
       T11 = TS + TT;
281
0
       TH = TE - Tx;
282
0
       TU = TS - TT;
283
0
        }
284
0
         }
285
0
         {
286
0
        E T12, Td, TG, TZ;
287
0
        T12 = KP433012701 * (T10 - T11);
288
0
        Td = T3 - Tc;
289
0
        TG = Ts + TF;
290
0
        TZ = FNMS(KP250000000, TG, KP500000000 * Td);
291
0
        Ip[0] = KP500000000 * (Td + TG);
292
0
        Im[WS(rs, 1)] = T12 - TZ;
293
0
        Ip[WS(rs, 2)] = TZ + T12;
294
0
         }
295
0
         {
296
0
        E T16, T13, T14, T15;
297
0
        T16 = KP433012701 * (Ts - TF);
298
0
        T13 = TM + TN;
299
0
        T14 = T10 + T11;
300
0
        T15 = FNMS(KP250000000, T14, KP500000000 * T13);
301
0
        Rp[WS(rs, 2)] = T15 - T16;
302
0
        Rp[0] = KP500000000 * (T13 + T14);
303
0
        Rm[WS(rs, 1)] = T16 + T15;
304
0
         }
305
0
         {
306
0
        E TY, TJ, TK, TX;
307
0
        TY = KP433012701 * (TU - TR);
308
0
        TJ = TH - TI;
309
0
        TK = Tc + T3;
310
0
        TX = FMA(KP500000000, TK, KP250000000 * TJ);
311
0
        Im[WS(rs, 2)] = KP500000000 * (TJ - TK);
312
0
        Im[0] = TY - TX;
313
0
        Ip[WS(rs, 1)] = TX + TY;
314
0
         }
315
0
         {
316
0
        E TL, TO, TV, TW;
317
0
        TL = KP433012701 * (TI + TH);
318
0
        TO = TM - TN;
319
0
        TV = TR + TU;
320
0
        TW = FNMS(KP250000000, TV, KP500000000 * TO);
321
0
        Rp[WS(rs, 1)] = TL + TW;
322
0
        Rm[WS(rs, 2)] = KP500000000 * (TO + TV);
323
0
        Rm[0] = TW - TL;
324
0
         }
325
0
    }
326
0
     }
327
0
}
328
329
static const tw_instr twinstr[] = {
330
     { TW_FULL, 1, 6 },
331
     { TW_NEXT, 1, 0 }
332
};
333
334
static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, { 44, 22, 14, 0 } };
335
336
1
void X(codelet_hc2cfdft_6) (planner *p) {
337
1
     X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT);
338
1
}
339
#endif