/src/fftw3/rdft/scalar/r2cf/hc2cfdft_6.c
Line | Count | Source (jump to first uncovered line) |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Aug 29 06:45:20 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 58 FP additions, 44 FP multiplications, |
32 | | * (or, 36 additions, 22 multiplications, 22 fused multiply/add), |
33 | | * 27 stack variables, 2 constants, and 24 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hc2cf.h" |
36 | | |
37 | | static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { |
44 | | E T3, TQ, TJ, T12, Tu, TX, TB, T10, Td, TS, Tk, TV; |
45 | | { |
46 | | E T1, T2, TI, TD, TE, TF; |
47 | | T1 = Ip[0]; |
48 | | T2 = Im[0]; |
49 | | TI = T1 + T2; |
50 | | TD = Rm[0]; |
51 | | TE = Rp[0]; |
52 | | TF = TD - TE; |
53 | | T3 = T1 - T2; |
54 | | TQ = TE + TD; |
55 | | { |
56 | | E TC, TG, TH, T11; |
57 | | TC = W[0]; |
58 | | TG = TC * TF; |
59 | | TH = W[1]; |
60 | | T11 = TH * TF; |
61 | | TJ = FNMS(TH, TI, TG); |
62 | | T12 = FMA(TC, TI, T11); |
63 | | } |
64 | | } |
65 | | { |
66 | | E To, TA, Tt, Tx; |
67 | | { |
68 | | E Tm, Tn, Tr, Ts; |
69 | | Tm = Rm[WS(rs, 2)]; |
70 | | Tn = Rp[WS(rs, 2)]; |
71 | | To = Tm - Tn; |
72 | | TA = Tn + Tm; |
73 | | Tr = Ip[WS(rs, 2)]; |
74 | | Ts = Im[WS(rs, 2)]; |
75 | | Tt = Tr + Ts; |
76 | | Tx = Tr - Ts; |
77 | | } |
78 | | { |
79 | | E Tp, TW, Tl, Tq; |
80 | | Tl = W[8]; |
81 | | Tp = Tl * To; |
82 | | TW = Tl * Tt; |
83 | | Tq = W[9]; |
84 | | Tu = FNMS(Tq, Tt, Tp); |
85 | | TX = FMA(Tq, To, TW); |
86 | | } |
87 | | { |
88 | | E Tw, Ty, Tz, TZ; |
89 | | Tw = W[6]; |
90 | | Ty = Tw * Tx; |
91 | | Tz = W[7]; |
92 | | TZ = Tz * Tx; |
93 | | TB = FNMS(Tz, TA, Ty); |
94 | | T10 = FMA(Tw, TA, TZ); |
95 | | } |
96 | | } |
97 | | { |
98 | | E T7, Tg, Tc, Tj; |
99 | | { |
100 | | E T5, T6, Ta, Tb; |
101 | | T5 = Ip[WS(rs, 1)]; |
102 | | T6 = Im[WS(rs, 1)]; |
103 | | T7 = T5 + T6; |
104 | | Tg = T5 - T6; |
105 | | Ta = Rp[WS(rs, 1)]; |
106 | | Tb = Rm[WS(rs, 1)]; |
107 | | Tc = Ta - Tb; |
108 | | Tj = Ta + Tb; |
109 | | } |
110 | | { |
111 | | E T4, T8, T9, TR; |
112 | | T4 = W[5]; |
113 | | T8 = T4 * T7; |
114 | | T9 = W[4]; |
115 | | TR = T9 * T7; |
116 | | Td = FMA(T9, Tc, T8); |
117 | | TS = FNMS(T4, Tc, TR); |
118 | | } |
119 | | { |
120 | | E Tf, Th, Ti, TU; |
121 | | Tf = W[2]; |
122 | | Th = Tf * Tg; |
123 | | Ti = W[3]; |
124 | | TU = Ti * Tg; |
125 | | Tk = FNMS(Ti, Tj, Th); |
126 | | TV = FMA(Tf, Tj, TU); |
127 | | } |
128 | | } |
129 | | { |
130 | | E Te, T1d, TL, T1g, T1c, T1e, T19, T1f; |
131 | | Te = T3 - Td; |
132 | | T1d = TQ + TS; |
133 | | { |
134 | | E Tv, TK, T1a, T1b; |
135 | | Tv = Tk + Tu; |
136 | | TK = TB + TJ; |
137 | | TL = Tv + TK; |
138 | | T1g = Tv - TK; |
139 | | T1a = TV + TX; |
140 | | T1b = T10 + T12; |
141 | | T1c = T1a - T1b; |
142 | | T1e = T1a + T1b; |
143 | | } |
144 | | Ip[0] = KP500000000 * (Te + TL); |
145 | | Rp[0] = KP500000000 * (T1d + T1e); |
146 | | T19 = FNMS(KP500000000, TL, Te); |
147 | | Ip[WS(rs, 2)] = KP500000000 * (FMA(KP866025403, T1c, T19)); |
148 | | Im[WS(rs, 1)] = -(KP500000000 * (FNMS(KP866025403, T1c, T19))); |
149 | | T1f = FNMS(KP500000000, T1e, T1d); |
150 | | Rp[WS(rs, 2)] = KP500000000 * (FNMS(KP866025403, T1g, T1f)); |
151 | | Rm[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T1g, T1f)); |
152 | | } |
153 | | { |
154 | | E TP, TT, TO, T16, T14, T18, T15, T17; |
155 | | TP = Td + T3; |
156 | | TT = TQ - TS; |
157 | | { |
158 | | E TM, TN, TY, T13; |
159 | | TM = Tu - Tk; |
160 | | TN = TJ - TB; |
161 | | TO = TM + TN; |
162 | | T16 = TN - TM; |
163 | | TY = TV - TX; |
164 | | T13 = T10 - T12; |
165 | | T14 = TY + T13; |
166 | | T18 = T13 - TY; |
167 | | } |
168 | | Im[WS(rs, 2)] = KP500000000 * (TO - TP); |
169 | | Rm[WS(rs, 2)] = KP500000000 * (TT + T14); |
170 | | T15 = FNMS(KP500000000, T14, TT); |
171 | | Rp[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T16, T15)); |
172 | | Rm[0] = KP500000000 * (FNMS(KP866025403, T16, T15)); |
173 | | T17 = FMA(KP500000000, TO, TP); |
174 | | Ip[WS(rs, 1)] = KP500000000 * (FMA(KP866025403, T18, T17)); |
175 | | Im[0] = -(KP500000000 * (FNMS(KP866025403, T18, T17))); |
176 | | } |
177 | | } |
178 | | } |
179 | | } |
180 | | |
181 | | static const tw_instr twinstr[] = { |
182 | | { TW_FULL, 1, 6 }, |
183 | | { TW_NEXT, 1, 0 } |
184 | | }; |
185 | | |
186 | | static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, { 36, 22, 22, 0 } }; |
187 | | |
188 | | void X(codelet_hc2cfdft_6) (planner *p) { |
189 | | X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT); |
190 | | } |
191 | | #else |
192 | | |
193 | | /* Generated by: ../../../genfft/gen_hc2cdft.native -compact -variables 4 -pipeline-latency 4 -n 6 -dit -name hc2cfdft_6 -include rdft/scalar/hc2cf.h */ |
194 | | |
195 | | /* |
196 | | * This function contains 58 FP additions, 36 FP multiplications, |
197 | | * (or, 44 additions, 22 multiplications, 14 fused multiply/add), |
198 | | * 40 stack variables, 3 constants, and 24 memory accesses |
199 | | */ |
200 | | #include "rdft/scalar/hc2cf.h" |
201 | | |
202 | | static void hc2cfdft_6(R *Rp, R *Ip, R *Rm, R *Im, const R *W, stride rs, INT mb, INT me, INT ms) |
203 | 0 | { |
204 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
205 | 0 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
206 | 0 | DK(KP433012701, +0.433012701892219323381861585376468091735701313); |
207 | 0 | { |
208 | 0 | INT m; |
209 | 0 | for (m = mb, W = W + ((mb - 1) * 10); m < me; m = m + 1, Rp = Rp + ms, Ip = Ip + ms, Rm = Rm - ms, Im = Im - ms, W = W + 10, MAKE_VOLATILE_STRIDE(24, rs)) { |
210 | 0 | E T3, TM, Tc, TN, Ts, T10, TI, TR, TF, T11, TH, TU; |
211 | 0 | { |
212 | 0 | E T1, T2, TD, Tz, TA, TB, T7, Tf, Tb, Th, Tq, Tw, Tm, Tu, T4; |
213 | 0 | E T8; |
214 | 0 | { |
215 | 0 | E T5, T6, T9, Ta; |
216 | 0 | T1 = Ip[0]; |
217 | 0 | T2 = Im[0]; |
218 | 0 | TD = T1 + T2; |
219 | 0 | Tz = Rm[0]; |
220 | 0 | TA = Rp[0]; |
221 | 0 | TB = Tz - TA; |
222 | 0 | T5 = Ip[WS(rs, 1)]; |
223 | 0 | T6 = Im[WS(rs, 1)]; |
224 | 0 | T7 = T5 + T6; |
225 | 0 | Tf = T5 - T6; |
226 | 0 | T9 = Rp[WS(rs, 1)]; |
227 | 0 | Ta = Rm[WS(rs, 1)]; |
228 | 0 | Tb = T9 - Ta; |
229 | 0 | Th = T9 + Ta; |
230 | 0 | { |
231 | 0 | E To, Tp, Tk, Tl; |
232 | 0 | To = Rp[WS(rs, 2)]; |
233 | 0 | Tp = Rm[WS(rs, 2)]; |
234 | 0 | Tq = To - Tp; |
235 | 0 | Tw = To + Tp; |
236 | 0 | Tk = Ip[WS(rs, 2)]; |
237 | 0 | Tl = Im[WS(rs, 2)]; |
238 | 0 | Tm = Tk + Tl; |
239 | 0 | Tu = Tk - Tl; |
240 | 0 | } |
241 | 0 | } |
242 | 0 | T3 = T1 - T2; |
243 | 0 | TM = TA + Tz; |
244 | 0 | T4 = W[5]; |
245 | 0 | T8 = W[4]; |
246 | 0 | Tc = FMA(T4, T7, T8 * Tb); |
247 | 0 | TN = FNMS(T4, Tb, T8 * T7); |
248 | 0 | { |
249 | 0 | E Ti, TP, Tr, TQ; |
250 | 0 | { |
251 | 0 | E Te, Tg, Tj, Tn; |
252 | 0 | Te = W[2]; |
253 | 0 | Tg = W[3]; |
254 | 0 | Ti = FNMS(Tg, Th, Te * Tf); |
255 | 0 | TP = FMA(Tg, Tf, Te * Th); |
256 | 0 | Tj = W[9]; |
257 | 0 | Tn = W[8]; |
258 | 0 | Tr = FMA(Tj, Tm, Tn * Tq); |
259 | 0 | TQ = FNMS(Tj, Tq, Tn * Tm); |
260 | 0 | } |
261 | 0 | Ts = Ti - Tr; |
262 | 0 | T10 = TP + TQ; |
263 | 0 | TI = Ti + Tr; |
264 | 0 | TR = TP - TQ; |
265 | 0 | } |
266 | 0 | { |
267 | 0 | E Tx, TS, TE, TT; |
268 | 0 | { |
269 | 0 | E Tt, Tv, Ty, TC; |
270 | 0 | Tt = W[6]; |
271 | 0 | Tv = W[7]; |
272 | 0 | Tx = FNMS(Tv, Tw, Tt * Tu); |
273 | 0 | TS = FMA(Tv, Tu, Tt * Tw); |
274 | 0 | Ty = W[0]; |
275 | 0 | TC = W[1]; |
276 | 0 | TE = FNMS(TC, TD, Ty * TB); |
277 | 0 | TT = FMA(TC, TB, Ty * TD); |
278 | 0 | } |
279 | 0 | TF = Tx + TE; |
280 | 0 | T11 = TS + TT; |
281 | 0 | TH = TE - Tx; |
282 | 0 | TU = TS - TT; |
283 | 0 | } |
284 | 0 | } |
285 | 0 | { |
286 | 0 | E T12, Td, TG, TZ; |
287 | 0 | T12 = KP433012701 * (T10 - T11); |
288 | 0 | Td = T3 - Tc; |
289 | 0 | TG = Ts + TF; |
290 | 0 | TZ = FNMS(KP250000000, TG, KP500000000 * Td); |
291 | 0 | Ip[0] = KP500000000 * (Td + TG); |
292 | 0 | Im[WS(rs, 1)] = T12 - TZ; |
293 | 0 | Ip[WS(rs, 2)] = TZ + T12; |
294 | 0 | } |
295 | 0 | { |
296 | 0 | E T16, T13, T14, T15; |
297 | 0 | T16 = KP433012701 * (Ts - TF); |
298 | 0 | T13 = TM + TN; |
299 | 0 | T14 = T10 + T11; |
300 | 0 | T15 = FNMS(KP250000000, T14, KP500000000 * T13); |
301 | 0 | Rp[WS(rs, 2)] = T15 - T16; |
302 | 0 | Rp[0] = KP500000000 * (T13 + T14); |
303 | 0 | Rm[WS(rs, 1)] = T16 + T15; |
304 | 0 | } |
305 | 0 | { |
306 | 0 | E TY, TJ, TK, TX; |
307 | 0 | TY = KP433012701 * (TU - TR); |
308 | 0 | TJ = TH - TI; |
309 | 0 | TK = Tc + T3; |
310 | 0 | TX = FMA(KP500000000, TK, KP250000000 * TJ); |
311 | 0 | Im[WS(rs, 2)] = KP500000000 * (TJ - TK); |
312 | 0 | Im[0] = TY - TX; |
313 | 0 | Ip[WS(rs, 1)] = TX + TY; |
314 | 0 | } |
315 | 0 | { |
316 | 0 | E TL, TO, TV, TW; |
317 | 0 | TL = KP433012701 * (TI + TH); |
318 | 0 | TO = TM - TN; |
319 | 0 | TV = TR + TU; |
320 | 0 | TW = FNMS(KP250000000, TV, KP500000000 * TO); |
321 | 0 | Rp[WS(rs, 1)] = TL + TW; |
322 | 0 | Rm[WS(rs, 2)] = KP500000000 * (TO + TV); |
323 | 0 | Rm[0] = TW - TL; |
324 | 0 | } |
325 | 0 | } |
326 | 0 | } |
327 | 0 | } |
328 | | |
329 | | static const tw_instr twinstr[] = { |
330 | | { TW_FULL, 1, 6 }, |
331 | | { TW_NEXT, 1, 0 } |
332 | | }; |
333 | | |
334 | | static const hc2c_desc desc = { 6, "hc2cfdft_6", twinstr, &GENUS, { 44, 22, 14, 0 } }; |
335 | | |
336 | 1 | void X(codelet_hc2cfdft_6) (planner *p) { |
337 | 1 | X(khc2c_register) (p, hc2cfdft_6, &desc, HC2C_VIA_DFT); |
338 | 1 | } |
339 | | #endif |