Coverage Report

Created: 2025-08-29 06:46

/src/fftw3/rdft/scalar/r2cf/hf2_8.c
Line
Count
Source (jump to first uncovered line)
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Aug 29 06:45:00 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hf2_8 -include rdft/scalar/hf.h */
29
30
/*
31
 * This function contains 74 FP additions, 50 FP multiplications,
32
 * (or, 44 additions, 20 multiplications, 30 fused multiply/add),
33
 * 48 stack variables, 1 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/hf.h"
36
37
static void hf2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
40
     {
41
    INT m;
42
    for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
43
         E T2, T3, Tl, Tn, T5, T6, Tf, T7, Ts, Tb, To, Ti, TC, TG;
44
         {
45
        E T4, Tm, Tr, Ta, TB, TF;
46
        T2 = W[0];
47
        T3 = W[2];
48
        T4 = T2 * T3;
49
        Tl = W[4];
50
        Tm = T2 * Tl;
51
        Tn = W[5];
52
        Tr = T2 * Tn;
53
        T5 = W[1];
54
        T6 = W[3];
55
        Ta = T2 * T6;
56
        Tf = FMA(T5, T6, T4);
57
        T7 = FNMS(T5, T6, T4);
58
        Ts = FNMS(T5, Tl, Tr);
59
        Tb = FMA(T5, T3, Ta);
60
        To = FMA(T5, Tn, Tm);
61
        TB = Tf * Tl;
62
        TF = Tf * Tn;
63
        Ti = FNMS(T5, T3, Ta);
64
        TC = FMA(Ti, Tn, TB);
65
        TG = FNMS(Ti, Tl, TF);
66
         }
67
         {
68
        E T1, T1s, Td, T1r, Tu, TY, Tk, TW, TN, TR, T18, T1a, T1c, T1d, TA;
69
        E TI, T11, T13, T15, T16;
70
        T1 = cr[0];
71
        T1s = ci[0];
72
        {
73
       E T8, T9, Tc, T1q;
74
       T8 = cr[WS(rs, 4)];
75
       T9 = T7 * T8;
76
       Tc = ci[WS(rs, 4)];
77
       T1q = T7 * Tc;
78
       Td = FMA(Tb, Tc, T9);
79
       T1r = FNMS(Tb, T8, T1q);
80
        }
81
        {
82
       E Tp, Tq, Tt, TX;
83
       Tp = cr[WS(rs, 6)];
84
       Tq = To * Tp;
85
       Tt = ci[WS(rs, 6)];
86
       TX = To * Tt;
87
       Tu = FMA(Ts, Tt, Tq);
88
       TY = FNMS(Ts, Tp, TX);
89
        }
90
        {
91
       E Tg, Th, Tj, TV;
92
       Tg = cr[WS(rs, 2)];
93
       Th = Tf * Tg;
94
       Tj = ci[WS(rs, 2)];
95
       TV = Tf * Tj;
96
       Tk = FMA(Ti, Tj, Th);
97
       TW = FNMS(Ti, Tg, TV);
98
        }
99
        {
100
       E TK, TL, TM, T19, TO, TP, TQ, T1b;
101
       TK = cr[WS(rs, 7)];
102
       TL = Tl * TK;
103
       TM = ci[WS(rs, 7)];
104
       T19 = Tl * TM;
105
       TO = cr[WS(rs, 3)];
106
       TP = T3 * TO;
107
       TQ = ci[WS(rs, 3)];
108
       T1b = T3 * TQ;
109
       TN = FMA(Tn, TM, TL);
110
       TR = FMA(T6, TQ, TP);
111
       T18 = TN - TR;
112
       T1a = FNMS(Tn, TK, T19);
113
       T1c = FNMS(T6, TO, T1b);
114
       T1d = T1a - T1c;
115
        }
116
        {
117
       E Tx, Ty, Tz, T12, TD, TE, TH, T14;
118
       Tx = cr[WS(rs, 1)];
119
       Ty = T2 * Tx;
120
       Tz = ci[WS(rs, 1)];
121
       T12 = T2 * Tz;
122
       TD = cr[WS(rs, 5)];
123
       TE = TC * TD;
124
       TH = ci[WS(rs, 5)];
125
       T14 = TC * TH;
126
       TA = FMA(T5, Tz, Ty);
127
       TI = FMA(TG, TH, TE);
128
       T11 = TA - TI;
129
       T13 = FNMS(T5, Tx, T12);
130
       T15 = FNMS(TG, TD, T14);
131
       T16 = T13 - T15;
132
        }
133
        {
134
       E T10, T1g, T1z, T1B, T1f, T1A, T1j, T1C;
135
       {
136
            E TU, TZ, T1x, T1y;
137
            TU = T1 - Td;
138
            TZ = TW - TY;
139
            T10 = TU + TZ;
140
            T1g = TU - TZ;
141
            T1x = Tk - Tu;
142
            T1y = T1s - T1r;
143
            T1z = T1x + T1y;
144
            T1B = T1y - T1x;
145
       }
146
       {
147
            E T17, T1e, T1h, T1i;
148
            T17 = T11 + T16;
149
            T1e = T18 - T1d;
150
            T1f = T17 + T1e;
151
            T1A = T1e - T17;
152
            T1h = T11 - T16;
153
            T1i = T18 + T1d;
154
            T1j = T1h + T1i;
155
            T1C = T1i - T1h;
156
       }
157
       ci[WS(rs, 2)] = FNMS(KP707106781, T1f, T10);
158
       cr[WS(rs, 5)] = FMS(KP707106781, T1C, T1B);
159
       ci[WS(rs, 6)] = FMA(KP707106781, T1C, T1B);
160
       cr[WS(rs, 1)] = FMA(KP707106781, T1f, T10);
161
       cr[WS(rs, 3)] = FNMS(KP707106781, T1j, T1g);
162
       cr[WS(rs, 7)] = FMS(KP707106781, T1A, T1z);
163
       ci[WS(rs, 4)] = FMA(KP707106781, T1A, T1z);
164
       ci[0] = FMA(KP707106781, T1j, T1g);
165
        }
166
        {
167
       E Tw, T1k, T1u, T1w, TT, T1v, T1n, T1o;
168
       {
169
            E Te, Tv, T1p, T1t;
170
            Te = T1 + Td;
171
            Tv = Tk + Tu;
172
            Tw = Te + Tv;
173
            T1k = Te - Tv;
174
            T1p = TW + TY;
175
            T1t = T1r + T1s;
176
            T1u = T1p + T1t;
177
            T1w = T1t - T1p;
178
       }
179
       {
180
            E TJ, TS, T1l, T1m;
181
            TJ = TA + TI;
182
            TS = TN + TR;
183
            TT = TJ + TS;
184
            T1v = TS - TJ;
185
            T1l = T1a + T1c;
186
            T1m = T13 + T15;
187
            T1n = T1l - T1m;
188
            T1o = T1m + T1l;
189
       }
190
       ci[WS(rs, 3)] = Tw - TT;
191
       cr[WS(rs, 6)] = T1v - T1w;
192
       ci[WS(rs, 5)] = T1v + T1w;
193
       cr[0] = Tw + TT;
194
       cr[WS(rs, 2)] = T1k - T1n;
195
       cr[WS(rs, 4)] = T1o - T1u;
196
       ci[WS(rs, 7)] = T1o + T1u;
197
       ci[WS(rs, 1)] = T1k + T1n;
198
        }
199
         }
200
    }
201
     }
202
}
203
204
static const tw_instr twinstr[] = {
205
     { TW_CEXP, 1, 1 },
206
     { TW_CEXP, 1, 3 },
207
     { TW_CEXP, 1, 7 },
208
     { TW_NEXT, 1, 0 }
209
};
210
211
static const hc2hc_desc desc = { 8, "hf2_8", twinstr, &GENUS, { 44, 20, 30, 0 } };
212
213
void X(codelet_hf2_8) (planner *p) {
214
     X(khc2hc_register) (p, hf2_8, &desc);
215
}
216
#else
217
218
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -twiddle-log3 -precompute-twiddles -n 8 -dit -name hf2_8 -include rdft/scalar/hf.h */
219
220
/*
221
 * This function contains 74 FP additions, 44 FP multiplications,
222
 * (or, 56 additions, 26 multiplications, 18 fused multiply/add),
223
 * 42 stack variables, 1 constants, and 32 memory accesses
224
 */
225
#include "rdft/scalar/hf.h"
226
227
static void hf2_8(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
228
0
{
229
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
230
0
     {
231
0
    INT m;
232
0
    for (m = mb, W = W + ((mb - 1) * 6); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 6, MAKE_VOLATILE_STRIDE(16, rs)) {
233
0
         E T2, T5, T3, T6, T8, Tc, Tg, Ti, Tl, Tm, Tn, Tz, Tp, Tx;
234
0
         {
235
0
        E T4, Tb, T7, Ta;
236
0
        T2 = W[0];
237
0
        T5 = W[1];
238
0
        T3 = W[2];
239
0
        T6 = W[3];
240
0
        T4 = T2 * T3;
241
0
        Tb = T5 * T3;
242
0
        T7 = T5 * T6;
243
0
        Ta = T2 * T6;
244
0
        T8 = T4 - T7;
245
0
        Tc = Ta + Tb;
246
0
        Tg = T4 + T7;
247
0
        Ti = Ta - Tb;
248
0
        Tl = W[4];
249
0
        Tm = W[5];
250
0
        Tn = FMA(T2, Tl, T5 * Tm);
251
0
        Tz = FNMS(Ti, Tl, Tg * Tm);
252
0
        Tp = FNMS(T5, Tl, T2 * Tm);
253
0
        Tx = FMA(Tg, Tl, Ti * Tm);
254
0
         }
255
0
         {
256
0
        E Tf, T1j, TL, T1d, TJ, T16, TV, TY, Ts, T1i, TO, T1a, TC, T17, TQ;
257
0
        E TT;
258
0
        {
259
0
       E T1, T1c, Te, T1b, T9, Td;
260
0
       T1 = cr[0];
261
0
       T1c = ci[0];
262
0
       T9 = cr[WS(rs, 4)];
263
0
       Td = ci[WS(rs, 4)];
264
0
       Te = FMA(T8, T9, Tc * Td);
265
0
       T1b = FNMS(Tc, T9, T8 * Td);
266
0
       Tf = T1 + Te;
267
0
       T1j = T1c - T1b;
268
0
       TL = T1 - Te;
269
0
       T1d = T1b + T1c;
270
0
        }
271
0
        {
272
0
       E TF, TW, TI, TX;
273
0
       {
274
0
            E TD, TE, TG, TH;
275
0
            TD = cr[WS(rs, 7)];
276
0
            TE = ci[WS(rs, 7)];
277
0
            TF = FMA(Tl, TD, Tm * TE);
278
0
            TW = FNMS(Tm, TD, Tl * TE);
279
0
            TG = cr[WS(rs, 3)];
280
0
            TH = ci[WS(rs, 3)];
281
0
            TI = FMA(T3, TG, T6 * TH);
282
0
            TX = FNMS(T6, TG, T3 * TH);
283
0
       }
284
0
       TJ = TF + TI;
285
0
       T16 = TW + TX;
286
0
       TV = TF - TI;
287
0
       TY = TW - TX;
288
0
        }
289
0
        {
290
0
       E Tk, TM, Tr, TN;
291
0
       {
292
0
            E Th, Tj, To, Tq;
293
0
            Th = cr[WS(rs, 2)];
294
0
            Tj = ci[WS(rs, 2)];
295
0
            Tk = FMA(Tg, Th, Ti * Tj);
296
0
            TM = FNMS(Ti, Th, Tg * Tj);
297
0
            To = cr[WS(rs, 6)];
298
0
            Tq = ci[WS(rs, 6)];
299
0
            Tr = FMA(Tn, To, Tp * Tq);
300
0
            TN = FNMS(Tp, To, Tn * Tq);
301
0
       }
302
0
       Ts = Tk + Tr;
303
0
       T1i = Tk - Tr;
304
0
       TO = TM - TN;
305
0
       T1a = TM + TN;
306
0
        }
307
0
        {
308
0
       E Tw, TR, TB, TS;
309
0
       {
310
0
            E Tu, Tv, Ty, TA;
311
0
            Tu = cr[WS(rs, 1)];
312
0
            Tv = ci[WS(rs, 1)];
313
0
            Tw = FMA(T2, Tu, T5 * Tv);
314
0
            TR = FNMS(T5, Tu, T2 * Tv);
315
0
            Ty = cr[WS(rs, 5)];
316
0
            TA = ci[WS(rs, 5)];
317
0
            TB = FMA(Tx, Ty, Tz * TA);
318
0
            TS = FNMS(Tz, Ty, Tx * TA);
319
0
       }
320
0
       TC = Tw + TB;
321
0
       T17 = TR + TS;
322
0
       TQ = Tw - TB;
323
0
       TT = TR - TS;
324
0
        }
325
0
        {
326
0
       E Tt, TK, T1f, T1g;
327
0
       Tt = Tf + Ts;
328
0
       TK = TC + TJ;
329
0
       ci[WS(rs, 3)] = Tt - TK;
330
0
       cr[0] = Tt + TK;
331
0
       T1f = TJ - TC;
332
0
       T1g = T1d - T1a;
333
0
       cr[WS(rs, 6)] = T1f - T1g;
334
0
       ci[WS(rs, 5)] = T1f + T1g;
335
0
       {
336
0
            E T11, T1m, T14, T1l, T12, T13;
337
0
            T11 = TL - TO;
338
0
            T1m = T1j - T1i;
339
0
            T12 = TQ - TT;
340
0
            T13 = TV + TY;
341
0
            T14 = KP707106781 * (T12 + T13);
342
0
            T1l = KP707106781 * (T13 - T12);
343
0
            cr[WS(rs, 3)] = T11 - T14;
344
0
            ci[WS(rs, 6)] = T1l + T1m;
345
0
            ci[0] = T11 + T14;
346
0
            cr[WS(rs, 5)] = T1l - T1m;
347
0
       }
348
0
        }
349
0
        {
350
0
       E T19, T1e, T15, T18;
351
0
       T19 = T17 + T16;
352
0
       T1e = T1a + T1d;
353
0
       cr[WS(rs, 4)] = T19 - T1e;
354
0
       ci[WS(rs, 7)] = T19 + T1e;
355
0
       T15 = Tf - Ts;
356
0
       T18 = T16 - T17;
357
0
       cr[WS(rs, 2)] = T15 - T18;
358
0
       ci[WS(rs, 1)] = T15 + T18;
359
0
       {
360
0
            E TP, T1k, T10, T1h, TU, TZ;
361
0
            TP = TL + TO;
362
0
            T1k = T1i + T1j;
363
0
            TU = TQ + TT;
364
0
            TZ = TV - TY;
365
0
            T10 = KP707106781 * (TU + TZ);
366
0
            T1h = KP707106781 * (TZ - TU);
367
0
            ci[WS(rs, 2)] = TP - T10;
368
0
            ci[WS(rs, 4)] = T1h + T1k;
369
0
            cr[WS(rs, 1)] = TP + T10;
370
0
            cr[WS(rs, 7)] = T1h - T1k;
371
0
       }
372
0
        }
373
0
         }
374
0
    }
375
0
     }
376
0
}
377
378
static const tw_instr twinstr[] = {
379
     { TW_CEXP, 1, 1 },
380
     { TW_CEXP, 1, 3 },
381
     { TW_CEXP, 1, 7 },
382
     { TW_NEXT, 1, 0 }
383
};
384
385
static const hc2hc_desc desc = { 8, "hf2_8", twinstr, &GENUS, { 56, 26, 18, 0 } };
386
387
1
void X(codelet_hf2_8) (planner *p) {
388
1
     X(khc2hc_register) (p, hf2_8, &desc);
389
1
}
390
#endif