/src/fftw3/dft/scalar/codelets/n1_3.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Oct 10 06:56:56 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 3 -name n1_3 -include dft/scalar/n.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 12 FP additions, 6 FP multiplications, |
32 | | * (or, 6 additions, 0 multiplications, 6 fused multiply/add), |
33 | | * 15 stack variables, 2 constants, and 12 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/n.h" |
36 | | |
37 | | static void n1_3(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT i; |
43 | | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) { |
44 | | E T1, T9, T4, Tc, T8, Ta, T5, Tb; |
45 | | T1 = ri[0]; |
46 | | T9 = ii[0]; |
47 | | { |
48 | | E T2, T3, T6, T7; |
49 | | T2 = ri[WS(is, 1)]; |
50 | | T3 = ri[WS(is, 2)]; |
51 | | T4 = T2 + T3; |
52 | | Tc = T3 - T2; |
53 | | T6 = ii[WS(is, 1)]; |
54 | | T7 = ii[WS(is, 2)]; |
55 | | T8 = T6 - T7; |
56 | | Ta = T6 + T7; |
57 | | } |
58 | | ro[0] = T1 + T4; |
59 | | io[0] = T9 + Ta; |
60 | | T5 = FNMS(KP500000000, T4, T1); |
61 | | ro[WS(os, 2)] = FNMS(KP866025403, T8, T5); |
62 | | ro[WS(os, 1)] = FMA(KP866025403, T8, T5); |
63 | | Tb = FNMS(KP500000000, Ta, T9); |
64 | | io[WS(os, 1)] = FMA(KP866025403, Tc, Tb); |
65 | | io[WS(os, 2)] = FNMS(KP866025403, Tc, Tb); |
66 | | } |
67 | | } |
68 | | } |
69 | | |
70 | | static const kdft_desc desc = { 3, "n1_3", { 6, 0, 6, 0 }, &GENUS, 0, 0, 0, 0 }; |
71 | | |
72 | | void X(codelet_n1_3) (planner *p) { X(kdft_register) (p, n1_3, &desc); |
73 | | } |
74 | | |
75 | | #else |
76 | | |
77 | | /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 3 -name n1_3 -include dft/scalar/n.h */ |
78 | | |
79 | | /* |
80 | | * This function contains 12 FP additions, 4 FP multiplications, |
81 | | * (or, 10 additions, 2 multiplications, 2 fused multiply/add), |
82 | | * 15 stack variables, 2 constants, and 12 memory accesses |
83 | | */ |
84 | | #include "dft/scalar/n.h" |
85 | | |
86 | | static void n1_3(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs) |
87 | 3 | { |
88 | 3 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
89 | 3 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
90 | 3 | { |
91 | 3 | INT i; |
92 | 6 | for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(12, is), MAKE_VOLATILE_STRIDE(12, os)) { |
93 | 3 | E T1, Ta, T4, T9, T8, Tb, T5, Tc; |
94 | 3 | T1 = ri[0]; |
95 | 3 | Ta = ii[0]; |
96 | 3 | { |
97 | 3 | E T2, T3, T6, T7; |
98 | 3 | T2 = ri[WS(is, 1)]; |
99 | 3 | T3 = ri[WS(is, 2)]; |
100 | 3 | T4 = T2 + T3; |
101 | 3 | T9 = KP866025403 * (T3 - T2); |
102 | 3 | T6 = ii[WS(is, 1)]; |
103 | 3 | T7 = ii[WS(is, 2)]; |
104 | 3 | T8 = KP866025403 * (T6 - T7); |
105 | 3 | Tb = T6 + T7; |
106 | 3 | } |
107 | 3 | ro[0] = T1 + T4; |
108 | 3 | io[0] = Ta + Tb; |
109 | 3 | T5 = FNMS(KP500000000, T4, T1); |
110 | 3 | ro[WS(os, 2)] = T5 - T8; |
111 | 3 | ro[WS(os, 1)] = T5 + T8; |
112 | 3 | Tc = FNMS(KP500000000, Tb, Ta); |
113 | 3 | io[WS(os, 1)] = T9 + Tc; |
114 | 3 | io[WS(os, 2)] = Tc - T9; |
115 | 3 | } |
116 | 3 | } |
117 | 3 | } |
118 | | |
119 | | static const kdft_desc desc = { 3, "n1_3", { 10, 2, 2, 0 }, &GENUS, 0, 0, 0, 0 }; |
120 | | |
121 | 1 | void X(codelet_n1_3) (planner *p) { X(kdft_register) (p, n1_3, &desc); |
122 | 1 | } |
123 | | |
124 | | #endif |