/src/fftw3/dft/scalar/codelets/t1_6.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Oct 10 06:56:59 UTC 2025 */ |
23 | | |
24 | | #include "dft/codelet-dft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_twiddle.native -fma -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 46 FP additions, 32 FP multiplications, |
32 | | * (or, 24 additions, 10 multiplications, 22 fused multiply/add), |
33 | | * 31 stack variables, 2 constants, and 24 memory accesses |
34 | | */ |
35 | | #include "dft/scalar/t.h" |
36 | | |
37 | | static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
40 | | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT m; |
43 | | for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) { |
44 | | E T1, TX, T7, TW, Tl, TR, TB, TJ, Ty, TS, TC, TO; |
45 | | T1 = ri[0]; |
46 | | TX = ii[0]; |
47 | | { |
48 | | E T3, T6, T4, TV, T2, T5; |
49 | | T3 = ri[WS(rs, 3)]; |
50 | | T6 = ii[WS(rs, 3)]; |
51 | | T2 = W[4]; |
52 | | T4 = T2 * T3; |
53 | | TV = T2 * T6; |
54 | | T5 = W[5]; |
55 | | T7 = FMA(T5, T6, T4); |
56 | | TW = FNMS(T5, T3, TV); |
57 | | } |
58 | | { |
59 | | E Ta, Td, Tb, TF, Tg, Tj, Th, TH, T9, Tf; |
60 | | Ta = ri[WS(rs, 2)]; |
61 | | Td = ii[WS(rs, 2)]; |
62 | | T9 = W[2]; |
63 | | Tb = T9 * Ta; |
64 | | TF = T9 * Td; |
65 | | Tg = ri[WS(rs, 5)]; |
66 | | Tj = ii[WS(rs, 5)]; |
67 | | Tf = W[8]; |
68 | | Th = Tf * Tg; |
69 | | TH = Tf * Tj; |
70 | | { |
71 | | E Te, TG, Tk, TI, Tc, Ti; |
72 | | Tc = W[3]; |
73 | | Te = FMA(Tc, Td, Tb); |
74 | | TG = FNMS(Tc, Ta, TF); |
75 | | Ti = W[9]; |
76 | | Tk = FMA(Ti, Tj, Th); |
77 | | TI = FNMS(Ti, Tg, TH); |
78 | | Tl = Te - Tk; |
79 | | TR = TG + TI; |
80 | | TB = Te + Tk; |
81 | | TJ = TG - TI; |
82 | | } |
83 | | } |
84 | | { |
85 | | E Tn, Tq, To, TK, Tt, Tw, Tu, TM, Tm, Ts; |
86 | | Tn = ri[WS(rs, 4)]; |
87 | | Tq = ii[WS(rs, 4)]; |
88 | | Tm = W[6]; |
89 | | To = Tm * Tn; |
90 | | TK = Tm * Tq; |
91 | | Tt = ri[WS(rs, 1)]; |
92 | | Tw = ii[WS(rs, 1)]; |
93 | | Ts = W[0]; |
94 | | Tu = Ts * Tt; |
95 | | TM = Ts * Tw; |
96 | | { |
97 | | E Tr, TL, Tx, TN, Tp, Tv; |
98 | | Tp = W[7]; |
99 | | Tr = FMA(Tp, Tq, To); |
100 | | TL = FNMS(Tp, Tn, TK); |
101 | | Tv = W[1]; |
102 | | Tx = FMA(Tv, Tw, Tu); |
103 | | TN = FNMS(Tv, Tt, TM); |
104 | | Ty = Tr - Tx; |
105 | | TS = TL + TN; |
106 | | TC = Tr + Tx; |
107 | | TO = TL - TN; |
108 | | } |
109 | | } |
110 | | { |
111 | | E TP, T8, Tz, TE; |
112 | | TP = TJ - TO; |
113 | | T8 = T1 - T7; |
114 | | Tz = Tl + Ty; |
115 | | TE = FNMS(KP500000000, Tz, T8); |
116 | | ri[WS(rs, 3)] = T8 + Tz; |
117 | | ri[WS(rs, 1)] = FMA(KP866025403, TP, TE); |
118 | | ri[WS(rs, 5)] = FNMS(KP866025403, TP, TE); |
119 | | } |
120 | | { |
121 | | E T14, T11, T12, T13; |
122 | | T14 = Ty - Tl; |
123 | | T11 = TX - TW; |
124 | | T12 = TJ + TO; |
125 | | T13 = FNMS(KP500000000, T12, T11); |
126 | | ii[WS(rs, 1)] = FMA(KP866025403, T14, T13); |
127 | | ii[WS(rs, 3)] = T12 + T11; |
128 | | ii[WS(rs, 5)] = FNMS(KP866025403, T14, T13); |
129 | | } |
130 | | { |
131 | | E TT, TA, TD, TQ; |
132 | | TT = TR - TS; |
133 | | TA = T1 + T7; |
134 | | TD = TB + TC; |
135 | | TQ = FNMS(KP500000000, TD, TA); |
136 | | ri[0] = TA + TD; |
137 | | ri[WS(rs, 4)] = FMA(KP866025403, TT, TQ); |
138 | | ri[WS(rs, 2)] = FNMS(KP866025403, TT, TQ); |
139 | | } |
140 | | { |
141 | | E T10, TU, TY, TZ; |
142 | | T10 = TC - TB; |
143 | | TU = TR + TS; |
144 | | TY = TW + TX; |
145 | | TZ = FNMS(KP500000000, TU, TY); |
146 | | ii[0] = TU + TY; |
147 | | ii[WS(rs, 4)] = FMA(KP866025403, T10, TZ); |
148 | | ii[WS(rs, 2)] = FNMS(KP866025403, T10, TZ); |
149 | | } |
150 | | } |
151 | | } |
152 | | } |
153 | | |
154 | | static const tw_instr twinstr[] = { |
155 | | { TW_FULL, 0, 6 }, |
156 | | { TW_NEXT, 1, 0 } |
157 | | }; |
158 | | |
159 | | static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, { 24, 10, 22, 0 }, 0, 0, 0 }; |
160 | | |
161 | | void X(codelet_t1_6) (planner *p) { |
162 | | X(kdft_dit_register) (p, t1_6, &desc); |
163 | | } |
164 | | #else |
165 | | |
166 | | /* Generated by: ../../../genfft/gen_twiddle.native -compact -variables 4 -pipeline-latency 4 -n 6 -name t1_6 -include dft/scalar/t.h */ |
167 | | |
168 | | /* |
169 | | * This function contains 46 FP additions, 28 FP multiplications, |
170 | | * (or, 32 additions, 14 multiplications, 14 fused multiply/add), |
171 | | * 23 stack variables, 2 constants, and 24 memory accesses |
172 | | */ |
173 | | #include "dft/scalar/t.h" |
174 | | |
175 | | static void t1_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms) |
176 | 61 | { |
177 | 61 | DK(KP500000000, +0.500000000000000000000000000000000000000000000); |
178 | 61 | DK(KP866025403, +0.866025403784438646763723170752936183471402627); |
179 | 61 | { |
180 | 61 | INT m; |
181 | 528 | for (m = mb, W = W + (mb * 10); m < me; m = m + 1, ri = ri + ms, ii = ii + ms, W = W + 10, MAKE_VOLATILE_STRIDE(12, rs)) { |
182 | 467 | E T7, TS, Tv, TO, Tt, TJ, Tx, TF, Ti, TI, Tw, TC; |
183 | 467 | { |
184 | 467 | E T1, TN, T6, TM; |
185 | 467 | T1 = ri[0]; |
186 | 467 | TN = ii[0]; |
187 | 467 | { |
188 | 467 | E T3, T5, T2, T4; |
189 | 467 | T3 = ri[WS(rs, 3)]; |
190 | 467 | T5 = ii[WS(rs, 3)]; |
191 | 467 | T2 = W[4]; |
192 | 467 | T4 = W[5]; |
193 | 467 | T6 = FMA(T2, T3, T4 * T5); |
194 | 467 | TM = FNMS(T4, T3, T2 * T5); |
195 | 467 | } |
196 | 467 | T7 = T1 - T6; |
197 | 467 | TS = TN - TM; |
198 | 467 | Tv = T1 + T6; |
199 | 467 | TO = TM + TN; |
200 | 467 | } |
201 | 467 | { |
202 | 467 | E Tn, TD, Ts, TE; |
203 | 467 | { |
204 | 467 | E Tk, Tm, Tj, Tl; |
205 | 467 | Tk = ri[WS(rs, 4)]; |
206 | 467 | Tm = ii[WS(rs, 4)]; |
207 | 467 | Tj = W[6]; |
208 | 467 | Tl = W[7]; |
209 | 467 | Tn = FMA(Tj, Tk, Tl * Tm); |
210 | 467 | TD = FNMS(Tl, Tk, Tj * Tm); |
211 | 467 | } |
212 | 467 | { |
213 | 467 | E Tp, Tr, To, Tq; |
214 | 467 | Tp = ri[WS(rs, 1)]; |
215 | 467 | Tr = ii[WS(rs, 1)]; |
216 | 467 | To = W[0]; |
217 | 467 | Tq = W[1]; |
218 | 467 | Ts = FMA(To, Tp, Tq * Tr); |
219 | 467 | TE = FNMS(Tq, Tp, To * Tr); |
220 | 467 | } |
221 | 467 | Tt = Tn - Ts; |
222 | 467 | TJ = TD + TE; |
223 | 467 | Tx = Tn + Ts; |
224 | 467 | TF = TD - TE; |
225 | 467 | } |
226 | 467 | { |
227 | 467 | E Tc, TA, Th, TB; |
228 | 467 | { |
229 | 467 | E T9, Tb, T8, Ta; |
230 | 467 | T9 = ri[WS(rs, 2)]; |
231 | 467 | Tb = ii[WS(rs, 2)]; |
232 | 467 | T8 = W[2]; |
233 | 467 | Ta = W[3]; |
234 | 467 | Tc = FMA(T8, T9, Ta * Tb); |
235 | 467 | TA = FNMS(Ta, T9, T8 * Tb); |
236 | 467 | } |
237 | 467 | { |
238 | 467 | E Te, Tg, Td, Tf; |
239 | 467 | Te = ri[WS(rs, 5)]; |
240 | 467 | Tg = ii[WS(rs, 5)]; |
241 | 467 | Td = W[8]; |
242 | 467 | Tf = W[9]; |
243 | 467 | Th = FMA(Td, Te, Tf * Tg); |
244 | 467 | TB = FNMS(Tf, Te, Td * Tg); |
245 | 467 | } |
246 | 467 | Ti = Tc - Th; |
247 | 467 | TI = TA + TB; |
248 | 467 | Tw = Tc + Th; |
249 | 467 | TC = TA - TB; |
250 | 467 | } |
251 | 467 | { |
252 | 467 | E TG, Tu, Tz, TR, TT, TU; |
253 | 467 | TG = KP866025403 * (TC - TF); |
254 | 467 | Tu = Ti + Tt; |
255 | 467 | Tz = FNMS(KP500000000, Tu, T7); |
256 | 467 | ri[WS(rs, 3)] = T7 + Tu; |
257 | 467 | ri[WS(rs, 1)] = Tz + TG; |
258 | 467 | ri[WS(rs, 5)] = Tz - TG; |
259 | 467 | TR = KP866025403 * (Tt - Ti); |
260 | 467 | TT = TC + TF; |
261 | 467 | TU = FNMS(KP500000000, TT, TS); |
262 | 467 | ii[WS(rs, 1)] = TR + TU; |
263 | 467 | ii[WS(rs, 3)] = TT + TS; |
264 | 467 | ii[WS(rs, 5)] = TU - TR; |
265 | 467 | } |
266 | 467 | { |
267 | 467 | E TK, Ty, TH, TQ, TL, TP; |
268 | 467 | TK = KP866025403 * (TI - TJ); |
269 | 467 | Ty = Tw + Tx; |
270 | 467 | TH = FNMS(KP500000000, Ty, Tv); |
271 | 467 | ri[0] = Tv + Ty; |
272 | 467 | ri[WS(rs, 4)] = TH + TK; |
273 | 467 | ri[WS(rs, 2)] = TH - TK; |
274 | 467 | TQ = KP866025403 * (Tx - Tw); |
275 | 467 | TL = TI + TJ; |
276 | 467 | TP = FNMS(KP500000000, TL, TO); |
277 | 467 | ii[0] = TL + TO; |
278 | 467 | ii[WS(rs, 4)] = TQ + TP; |
279 | 467 | ii[WS(rs, 2)] = TP - TQ; |
280 | 467 | } |
281 | 467 | } |
282 | 61 | } |
283 | 61 | } |
284 | | |
285 | | static const tw_instr twinstr[] = { |
286 | | { TW_FULL, 0, 6 }, |
287 | | { TW_NEXT, 1, 0 } |
288 | | }; |
289 | | |
290 | | static const ct_desc desc = { 6, "t1_6", twinstr, &GENUS, { 32, 14, 14, 0 }, 0, 0, 0 }; |
291 | | |
292 | 1 | void X(codelet_t1_6) (planner *p) { |
293 | 1 | X(kdft_dit_register) (p, t1_6, &desc); |
294 | 1 | } |
295 | | #endif |