Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/ct-hc2c.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
#include "ct-hc2c.h"
22
#include "dft/dft.h"
23
24
typedef struct {
25
     plan_rdft2 super;
26
     plan *cld;
27
     plan *cldw;
28
     INT r;
29
} P;
30
31
static void apply_dit(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
32
0
{
33
0
     const P *ego = (const P *) ego_;
34
0
     plan_rdft *cld;
35
0
     plan_hc2c *cldw;
36
0
     UNUSED(r1);
37
38
0
     cld = (plan_rdft *) ego->cld;
39
0
     cld->apply(ego->cld, r0, cr);
40
41
0
     cldw = (plan_hc2c *) ego->cldw;
42
0
     cldw->apply(ego->cldw, cr, ci);
43
0
}
44
45
static void apply_dif(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
46
0
{
47
0
     const P *ego = (const P *) ego_;
48
0
     plan_rdft *cld;
49
0
     plan_hc2c *cldw;
50
0
     UNUSED(r1);
51
52
0
     cldw = (plan_hc2c *) ego->cldw;
53
0
     cldw->apply(ego->cldw, cr, ci);
54
55
0
     cld = (plan_rdft *) ego->cld;
56
0
     cld->apply(ego->cld, cr, r0);
57
0
}
58
59
static void apply_dit_dft(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
60
0
{
61
0
     const P *ego = (const P *) ego_;
62
0
     plan_dft *cld;
63
0
     plan_hc2c *cldw;
64
65
0
     cld = (plan_dft *) ego->cld;
66
0
     cld->apply(ego->cld, r0, r1, cr, ci);
67
68
0
     cldw = (plan_hc2c *) ego->cldw;
69
0
     cldw->apply(ego->cldw, cr, ci);
70
0
}
71
72
static void apply_dif_dft(const plan *ego_, R *r0, R *r1, R *cr, R *ci)
73
0
{
74
0
     const P *ego = (const P *) ego_;
75
0
     plan_dft *cld;
76
0
     plan_hc2c *cldw;
77
78
0
     cldw = (plan_hc2c *) ego->cldw;
79
0
     cldw->apply(ego->cldw, cr, ci);
80
81
0
     cld = (plan_dft *) ego->cld;
82
0
     cld->apply(ego->cld, ci, cr, r1, r0);
83
0
}
84
85
static void awake(plan *ego_, enum wakefulness wakefulness)
86
0
{
87
0
     P *ego = (P *) ego_;
88
0
     X(plan_awake)(ego->cld, wakefulness);
89
0
     X(plan_awake)(ego->cldw, wakefulness);
90
0
}
91
92
static void destroy(plan *ego_)
93
0
{
94
0
     P *ego = (P *) ego_;
95
0
     X(plan_destroy_internal)(ego->cldw);
96
0
     X(plan_destroy_internal)(ego->cld);
97
0
}
98
99
static void print(const plan *ego_, printer *p)
100
0
{
101
0
     const P *ego = (const P *) ego_;
102
0
     p->print(p, "(rdft2-ct-%s/%D%(%p%)%(%p%))",
103
0
        (ego->super.apply == apply_dit || 
104
0
         ego->super.apply == apply_dit_dft)
105
0
        ? "dit" : "dif",
106
0
        ego->r, ego->cldw, ego->cld);
107
0
}
108
109
static int applicable0(const hc2c_solver *ego, const problem *p_, planner *plnr)
110
0
{
111
0
     const problem_rdft2 *p = (const problem_rdft2 *) p_;
112
0
     INT r;
113
114
0
     return (1
115
0
       && p->sz->rnk == 1
116
0
       && p->vecsz->rnk <= 1 
117
118
0
       && (/* either the problem is R2HC, which is solved by DIT */
119
0
      (p->kind == R2HC)
120
0
      ||
121
      /* or the problem is HC2R, in which case it is solved
122
         by DIF, which destroys the input */
123
0
      (p->kind == HC2R && 
124
0
       (p->r0 == p->cr || !NO_DESTROY_INPUTP(plnr))))
125
      
126
0
       && ((r = X(choose_radix)(ego->r, p->sz->dims[0].n)) > 0)
127
0
       && p->sz->dims[0].n > r);
128
0
}
129
130
static int hc2c_applicable(const hc2c_solver *ego, const problem *p_,
131
                           planner *plnr)
132
0
{
133
0
     const problem_rdft2 *p;
134
135
0
     if (!applicable0(ego, p_, plnr))
136
0
          return 0;
137
138
0
     p = (const problem_rdft2 *) p_;
139
140
0
     return (0
141
0
       || p->vecsz->rnk == 0
142
0
       || !NO_VRECURSEP(plnr)
143
0
    );
144
0
}
145
146
static plan *mkplan(const solver *ego_, const problem *p_, planner *plnr)
147
0
{
148
0
     const hc2c_solver *ego = (const hc2c_solver *) ego_;
149
0
     const problem_rdft2 *p;
150
0
     P *pln = 0;
151
0
     plan *cld = 0, *cldw = 0;
152
0
     INT n, r, m, v, ivs, ovs;
153
0
     iodim *d;
154
155
0
     static const plan_adt padt = {
156
0
    X(rdft2_solve), awake, print, destroy
157
0
     };
158
159
0
     if (!hc2c_applicable(ego, p_, plnr))
160
0
          return (plan *) 0;
161
162
0
     p = (const problem_rdft2 *) p_;
163
0
     d = p->sz->dims;
164
0
     n = d[0].n;
165
0
     r = X(choose_radix)(ego->r, n);
166
0
     A((r % 2) == 0);
167
0
     m = n / r;
168
169
0
     X(tensor_tornk1)(p->vecsz, &v, &ivs, &ovs);
170
171
0
     switch (p->kind) {
172
0
   case R2HC:
173
0
        cldw = ego->mkcldw(ego, R2HC, 
174
0
         r, m * d[0].os, 
175
0
         m, d[0].os,
176
0
         v, ovs,
177
0
         p->cr, p->ci, plnr);
178
0
        if (!cldw) goto nada;
179
180
0
        switch (ego->hc2ckind) {
181
0
      case HC2C_VIA_RDFT:
182
0
           cld = X(mkplan_d)(
183
0
          plnr, 
184
0
          X(mkproblem_rdft_1_d)(
185
0
         X(mktensor_1d)(m, (r/2)*d[0].is, d[0].os),
186
0
         X(mktensor_3d)(
187
0
              2, p->r1 - p->r0, p->ci - p->cr,
188
0
              r / 2, d[0].is, m * d[0].os,
189
0
              v, ivs, ovs),
190
0
         p->r0, p->cr, R2HC) 
191
0
          );
192
0
           if (!cld) goto nada;
193
194
0
           pln = MKPLAN_RDFT2(P, &padt, apply_dit);
195
0
           break;
196
197
0
      case HC2C_VIA_DFT:
198
0
           cld = X(mkplan_d)(
199
0
          plnr, 
200
0
          X(mkproblem_dft_d)(
201
0
         X(mktensor_1d)(m, (r/2)*d[0].is, d[0].os),
202
0
         X(mktensor_2d)(
203
0
              r / 2, d[0].is, m * d[0].os,
204
0
              v, ivs, ovs),
205
0
         p->r0, p->r1, p->cr, p->ci) 
206
0
          );
207
0
           if (!cld) goto nada;
208
209
0
           pln = MKPLAN_RDFT2(P, &padt, apply_dit_dft);
210
0
           break;
211
0
        }
212
0
        break;
213
214
0
   case HC2R:
215
0
        cldw = ego->mkcldw(ego, HC2R, 
216
0
         r, m * d[0].is, 
217
0
         m, d[0].is,
218
0
         v, ivs,
219
0
         p->cr, p->ci, plnr);
220
0
        if (!cldw) goto nada;
221
222
0
        switch (ego->hc2ckind) {
223
0
      case HC2C_VIA_RDFT:
224
0
           cld = X(mkplan_d)(
225
0
          plnr, 
226
0
          X(mkproblem_rdft_1_d)(
227
0
         X(mktensor_1d)(m, d[0].is, (r/2)*d[0].os),
228
0
         X(mktensor_3d)(
229
0
              2, p->ci - p->cr, p->r1 - p->r0, 
230
0
              r / 2, m * d[0].is, d[0].os,
231
0
              v, ivs, ovs),
232
0
         p->cr, p->r0, HC2R) 
233
0
          );
234
0
           if (!cld) goto nada;
235
236
0
           pln = MKPLAN_RDFT2(P, &padt, apply_dif);
237
0
           break;
238
239
0
      case HC2C_VIA_DFT:
240
0
           cld = X(mkplan_d)(
241
0
          plnr, 
242
0
          X(mkproblem_dft_d)(
243
0
         X(mktensor_1d)(m, d[0].is, (r/2)*d[0].os),
244
0
         X(mktensor_2d)(
245
0
              r / 2, m * d[0].is, d[0].os,
246
0
              v, ivs, ovs),
247
0
         p->ci, p->cr, p->r1, p->r0) 
248
0
          );
249
0
           if (!cld) goto nada;
250
251
0
           pln = MKPLAN_RDFT2(P, &padt, apply_dif_dft);
252
0
           break;
253
0
        }
254
0
        break;
255
256
0
   default: 
257
0
        A(0);
258
0
     }
259
260
0
     pln->cld = cld;
261
0
     pln->cldw = cldw;
262
0
     pln->r = r;
263
0
     X(ops_add)(&cld->ops, &cldw->ops, &pln->super.super.ops);
264
265
     /* inherit could_prune_now_p attribute from cldw */
266
0
     pln->super.super.could_prune_now_p = cldw->could_prune_now_p;
267
268
0
     return &(pln->super.super);
269
270
0
 nada:
271
0
     X(plan_destroy_internal)(cldw);
272
0
     X(plan_destroy_internal)(cld);
273
0
     return (plan *) 0;
274
0
}
275
276
hc2c_solver *X(mksolver_hc2c)(size_t size, INT r, 
277
            hc2c_kind hc2ckind,
278
            hc2c_mkinferior mkcldw)
279
112
{
280
112
     static const solver_adt sadt = { PROBLEM_RDFT2, mkplan, 0 };
281
112
     hc2c_solver *slv = (hc2c_solver *)X(mksolver)(size, &sadt);
282
112
     slv->r = r;
283
112
     slv->hc2ckind = hc2ckind;
284
112
     slv->mkcldw = mkcldw;
285
112
     return slv;
286
112
}
287
288
plan *X(mkplan_hc2c)(size_t size, const plan_adt *adt, hc2capply apply)
289
0
{
290
0
     plan_hc2c *ego;
291
292
0
     ego = (plan_hc2c *) X(mkplan)(size, adt);
293
0
     ego->apply = apply;
294
295
0
     return &(ego->super);
296
0
}