Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/r2cbIII_16.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Oct 10 06:59:38 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include rdft/scalar/r2cbIII.h */
29
30
/*
31
 * This function contains 66 FP additions, 36 FP multiplications,
32
 * (or, 46 additions, 16 multiplications, 20 fused multiply/add),
33
 * 40 stack variables, 9 constants, and 32 memory accesses
34
 */
35
#include "rdft/scalar/r2cbIII.h"
36
37
static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
40
     DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
41
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
42
     DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
43
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
44
     DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
45
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
46
     DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
47
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
48
     {
49
    INT i;
50
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
51
         E T7, TW, T13, Tj, TA, TK, TP, TH, Te, TX, T12, To, Tt, TC, TS;
52
         E TB, TT, TY;
53
         {
54
        E T3, Tf, Tz, TU, T6, Tw, Ti, TV;
55
        {
56
       E T1, T2, Tx, Ty;
57
       T1 = Cr[0];
58
       T2 = Cr[WS(csr, 7)];
59
       T3 = T1 + T2;
60
       Tf = T1 - T2;
61
       Tx = Ci[0];
62
       Ty = Ci[WS(csi, 7)];
63
       Tz = Tx + Ty;
64
       TU = Ty - Tx;
65
        }
66
        {
67
       E T4, T5, Tg, Th;
68
       T4 = Cr[WS(csr, 4)];
69
       T5 = Cr[WS(csr, 3)];
70
       T6 = T4 + T5;
71
       Tw = T4 - T5;
72
       Tg = Ci[WS(csi, 4)];
73
       Th = Ci[WS(csi, 3)];
74
       Ti = Tg + Th;
75
       TV = Th - Tg;
76
        }
77
        T7 = T3 + T6;
78
        TW = TU - TV;
79
        T13 = TV + TU;
80
        Tj = Tf - Ti;
81
        TA = Tw + Tz;
82
        TK = Tw - Tz;
83
        TP = T3 - T6;
84
        TH = Tf + Ti;
85
         }
86
         {
87
        E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ;
88
        {
89
       E T8, T9, Tl, Tm;
90
       T8 = Cr[WS(csr, 2)];
91
       T9 = Cr[WS(csr, 5)];
92
       Ta = T8 + T9;
93
       Tk = T8 - T9;
94
       Tl = Ci[WS(csi, 2)];
95
       Tm = Ci[WS(csi, 5)];
96
       Tn = Tl + Tm;
97
       TR = Tl - Tm;
98
        }
99
        {
100
       E Tb, Tc, Tq, Tr;
101
       Tb = Cr[WS(csr, 1)];
102
       Tc = Cr[WS(csr, 6)];
103
       Td = Tb + Tc;
104
       Tp = Tb - Tc;
105
       Tq = Ci[WS(csi, 1)];
106
       Tr = Ci[WS(csi, 6)];
107
       Ts = Tq + Tr;
108
       TQ = Tr - Tq;
109
        }
110
        Te = Ta + Td;
111
        TX = Ta - Td;
112
        T12 = TR + TQ;
113
        To = Tk - Tn;
114
        Tt = Tp - Ts;
115
        TC = Tk + Tn;
116
        TS = TQ - TR;
117
        TB = Tp + Ts;
118
         }
119
         R0[0] = KP2_000000000 * (T7 + Te);
120
         R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12);
121
         TT = TP + TS;
122
         TY = TW - TX;
123
         R0[WS(rs, 1)] = KP1_847759065 * (FMA(KP414213562, TY, TT));
124
         R0[WS(rs, 5)] = KP1_847759065 * (FNMS(KP414213562, TT, TY));
125
         {
126
        E T11, T14, TZ, T10;
127
        T11 = T7 - Te;
128
        T14 = T12 + T13;
129
        R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14);
130
        R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11);
131
        TZ = TX + TW;
132
        T10 = TP - TS;
133
        R0[WS(rs, 3)] = KP1_847759065 * (FMA(KP414213562, T10, TZ));
134
        R0[WS(rs, 7)] = -(KP1_847759065 * (FNMS(KP414213562, TZ, T10)));
135
         }
136
         {
137
        E TJ, TO, TM, TN, TI, TL;
138
        TI = TC + TB;
139
        TJ = FNMS(KP707106781, TI, TH);
140
        TO = FMA(KP707106781, TI, TH);
141
        TL = To - Tt;
142
        TM = FNMS(KP707106781, TL, TK);
143
        TN = FMA(KP707106781, TL, TK);
144
        R1[WS(rs, 1)] = KP1_662939224 * (FMA(KP668178637, TM, TJ));
145
        R1[WS(rs, 7)] = -(KP1_961570560 * (FNMS(KP198912367, TN, TO)));
146
        R1[WS(rs, 5)] = KP1_662939224 * (FNMS(KP668178637, TJ, TM));
147
        R1[WS(rs, 3)] = KP1_961570560 * (FMA(KP198912367, TO, TN));
148
         }
149
         {
150
        E Tv, TG, TE, TF, Tu, TD;
151
        Tu = To + Tt;
152
        Tv = FMA(KP707106781, Tu, Tj);
153
        TG = FNMS(KP707106781, Tu, Tj);
154
        TD = TB - TC;
155
        TE = FNMS(KP707106781, TD, TA);
156
        TF = FMA(KP707106781, TD, TA);
157
        R1[0] = KP1_961570560 * (FNMS(KP198912367, TE, Tv));
158
        R1[WS(rs, 6)] = -(KP1_662939224 * (FMA(KP668178637, TF, TG)));
159
        R1[WS(rs, 4)] = -(KP1_961570560 * (FMA(KP198912367, Tv, TE)));
160
        R1[WS(rs, 2)] = -(KP1_662939224 * (FNMS(KP668178637, TG, TF)));
161
         }
162
    }
163
     }
164
}
165
166
static const kr2c_desc desc = { 16, "r2cbIII_16", { 46, 16, 20, 0 }, &GENUS };
167
168
void X(codelet_r2cbIII_16) (planner *p) { X(kr2c_register) (p, r2cbIII_16, &desc);
169
}
170
171
#else
172
173
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 16 -name r2cbIII_16 -dft-III -include rdft/scalar/r2cbIII.h */
174
175
/*
176
 * This function contains 66 FP additions, 32 FP multiplications,
177
 * (or, 54 additions, 20 multiplications, 12 fused multiply/add),
178
 * 40 stack variables, 9 constants, and 32 memory accesses
179
 */
180
#include "rdft/scalar/r2cbIII.h"
181
182
static void r2cbIII_16(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
183
0
{
184
0
     DK(KP1_961570560, +1.961570560806460898252364472268478073947867462);
185
0
     DK(KP390180644, +0.390180644032256535696569736954044481855383236);
186
0
     DK(KP1_111140466, +1.111140466039204449485661627897065748749874382);
187
0
     DK(KP1_662939224, +1.662939224605090474157576755235811513477121624);
188
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
189
0
     DK(KP1_414213562, +1.414213562373095048801688724209698078569671875);
190
0
     DK(KP765366864, +0.765366864730179543456919968060797733522689125);
191
0
     DK(KP1_847759065, +1.847759065022573512256366378793576573644833252);
192
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
193
0
     {
194
0
    INT i;
195
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(64, rs), MAKE_VOLATILE_STRIDE(64, csr), MAKE_VOLATILE_STRIDE(64, csi)) {
196
0
         E T7, TW, T13, Tj, TD, TK, TP, TH, Te, TX, T12, To, Tt, Tx, TS;
197
0
         E Tw, TT, TY;
198
0
         {
199
0
        E T3, Tf, TC, TV, T6, Tz, Ti, TU;
200
0
        {
201
0
       E T1, T2, TA, TB;
202
0
       T1 = Cr[0];
203
0
       T2 = Cr[WS(csr, 7)];
204
0
       T3 = T1 + T2;
205
0
       Tf = T1 - T2;
206
0
       TA = Ci[0];
207
0
       TB = Ci[WS(csi, 7)];
208
0
       TC = TA + TB;
209
0
       TV = TB - TA;
210
0
        }
211
0
        {
212
0
       E T4, T5, Tg, Th;
213
0
       T4 = Cr[WS(csr, 4)];
214
0
       T5 = Cr[WS(csr, 3)];
215
0
       T6 = T4 + T5;
216
0
       Tz = T4 - T5;
217
0
       Tg = Ci[WS(csi, 4)];
218
0
       Th = Ci[WS(csi, 3)];
219
0
       Ti = Tg + Th;
220
0
       TU = Tg - Th;
221
0
        }
222
0
        T7 = T3 + T6;
223
0
        TW = TU + TV;
224
0
        T13 = TV - TU;
225
0
        Tj = Tf - Ti;
226
0
        TD = Tz + TC;
227
0
        TK = Tz - TC;
228
0
        TP = T3 - T6;
229
0
        TH = Tf + Ti;
230
0
         }
231
0
         {
232
0
        E Ta, Tk, Tn, TR, Td, Tp, Ts, TQ;
233
0
        {
234
0
       E T8, T9, Tl, Tm;
235
0
       T8 = Cr[WS(csr, 2)];
236
0
       T9 = Cr[WS(csr, 5)];
237
0
       Ta = T8 + T9;
238
0
       Tk = T8 - T9;
239
0
       Tl = Ci[WS(csi, 2)];
240
0
       Tm = Ci[WS(csi, 5)];
241
0
       Tn = Tl + Tm;
242
0
       TR = Tl - Tm;
243
0
        }
244
0
        {
245
0
       E Tb, Tc, Tq, Tr;
246
0
       Tb = Cr[WS(csr, 1)];
247
0
       Tc = Cr[WS(csr, 6)];
248
0
       Td = Tb + Tc;
249
0
       Tp = Tb - Tc;
250
0
       Tq = Ci[WS(csi, 1)];
251
0
       Tr = Ci[WS(csi, 6)];
252
0
       Ts = Tq + Tr;
253
0
       TQ = Tr - Tq;
254
0
        }
255
0
        Te = Ta + Td;
256
0
        TX = Ta - Td;
257
0
        T12 = TR + TQ;
258
0
        To = Tk - Tn;
259
0
        Tt = Tp - Ts;
260
0
        Tx = Tp + Ts;
261
0
        TS = TQ - TR;
262
0
        Tw = Tk + Tn;
263
0
         }
264
0
         R0[0] = KP2_000000000 * (T7 + Te);
265
0
         R0[WS(rs, 4)] = KP2_000000000 * (T13 - T12);
266
0
         TT = TP + TS;
267
0
         TY = TW - TX;
268
0
         R0[WS(rs, 1)] = FMA(KP1_847759065, TT, KP765366864 * TY);
269
0
         R0[WS(rs, 5)] = FNMS(KP765366864, TT, KP1_847759065 * TY);
270
0
         {
271
0
        E T11, T14, TZ, T10;
272
0
        T11 = T7 - Te;
273
0
        T14 = T12 + T13;
274
0
        R0[WS(rs, 2)] = KP1_414213562 * (T11 + T14);
275
0
        R0[WS(rs, 6)] = KP1_414213562 * (T14 - T11);
276
0
        TZ = TP - TS;
277
0
        T10 = TX + TW;
278
0
        R0[WS(rs, 3)] = FMA(KP765366864, TZ, KP1_847759065 * T10);
279
0
        R0[WS(rs, 7)] = FNMS(KP1_847759065, TZ, KP765366864 * T10);
280
0
         }
281
0
         {
282
0
        E TJ, TN, TM, TO, TI, TL;
283
0
        TI = KP707106781 * (Tw + Tx);
284
0
        TJ = TH - TI;
285
0
        TN = TH + TI;
286
0
        TL = KP707106781 * (To - Tt);
287
0
        TM = TK - TL;
288
0
        TO = TL + TK;
289
0
        R1[WS(rs, 1)] = FMA(KP1_662939224, TJ, KP1_111140466 * TM);
290
0
        R1[WS(rs, 7)] = FNMS(KP1_961570560, TN, KP390180644 * TO);
291
0
        R1[WS(rs, 5)] = FNMS(KP1_111140466, TJ, KP1_662939224 * TM);
292
0
        R1[WS(rs, 3)] = FMA(KP390180644, TN, KP1_961570560 * TO);
293
0
         }
294
0
         {
295
0
        E Tv, TF, TE, TG, Tu, Ty;
296
0
        Tu = KP707106781 * (To + Tt);
297
0
        Tv = Tj + Tu;
298
0
        TF = Tj - Tu;
299
0
        Ty = KP707106781 * (Tw - Tx);
300
0
        TE = Ty + TD;
301
0
        TG = Ty - TD;
302
0
        R1[0] = FNMS(KP390180644, TE, KP1_961570560 * Tv);
303
0
        R1[WS(rs, 6)] = FNMS(KP1_662939224, TF, KP1_111140466 * TG);
304
0
        R1[WS(rs, 4)] = -(FMA(KP390180644, Tv, KP1_961570560 * TE));
305
0
        R1[WS(rs, 2)] = FMA(KP1_111140466, TF, KP1_662939224 * TG);
306
0
         }
307
0
    }
308
0
     }
309
0
}
310
311
static const kr2c_desc desc = { 16, "r2cbIII_16", { 54, 20, 12, 0 }, &GENUS };
312
313
1
void X(codelet_r2cbIII_16) (planner *p) { X(kr2c_register) (p, r2cbIII_16, &desc);
314
1
}
315
316
#endif