/src/fftw3/rdft/scalar/r2cb/r2cb_12.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Oct 10 06:59:24 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 38 FP additions, 16 FP multiplications, |
32 | | * (or, 22 additions, 0 multiplications, 16 fused multiply/add), |
33 | | * 25 stack variables, 2 constants, and 24 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/r2cb.h" |
36 | | |
37 | | static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
38 | | { |
39 | | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
40 | | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
41 | | { |
42 | | INT i; |
43 | | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { |
44 | | E T8, Tb, Tk, Tz, Tu, Tv, Tn, Ty, T3, Tp, Tf, T6, Tq, Ti; |
45 | | { |
46 | | E T9, Ta, Tl, Tm; |
47 | | T8 = Cr[WS(csr, 3)]; |
48 | | T9 = Cr[WS(csr, 5)]; |
49 | | Ta = Cr[WS(csr, 1)]; |
50 | | Tb = T9 + Ta; |
51 | | Tk = FNMS(KP2_000000000, T8, Tb); |
52 | | Tz = T9 - Ta; |
53 | | Tu = Ci[WS(csi, 3)]; |
54 | | Tl = Ci[WS(csi, 5)]; |
55 | | Tm = Ci[WS(csi, 1)]; |
56 | | Tv = Tl + Tm; |
57 | | Tn = Tl - Tm; |
58 | | Ty = FMA(KP2_000000000, Tu, Tv); |
59 | | } |
60 | | { |
61 | | E Te, T1, T2, Td; |
62 | | Te = Ci[WS(csi, 4)]; |
63 | | T1 = Cr[0]; |
64 | | T2 = Cr[WS(csr, 4)]; |
65 | | Td = T1 - T2; |
66 | | T3 = FMA(KP2_000000000, T2, T1); |
67 | | Tp = FNMS(KP1_732050807, Te, Td); |
68 | | Tf = FMA(KP1_732050807, Te, Td); |
69 | | } |
70 | | { |
71 | | E Th, T4, T5, Tg; |
72 | | Th = Ci[WS(csi, 2)]; |
73 | | T4 = Cr[WS(csr, 6)]; |
74 | | T5 = Cr[WS(csr, 2)]; |
75 | | Tg = T4 - T5; |
76 | | T6 = FMA(KP2_000000000, T5, T4); |
77 | | Tq = FMA(KP1_732050807, Th, Tg); |
78 | | Ti = FNMS(KP1_732050807, Th, Tg); |
79 | | } |
80 | | { |
81 | | E T7, Tc, Tx, TA; |
82 | | T7 = T3 + T6; |
83 | | Tc = T8 + Tb; |
84 | | R0[WS(rs, 3)] = FNMS(KP2_000000000, Tc, T7); |
85 | | R0[0] = FMA(KP2_000000000, Tc, T7); |
86 | | { |
87 | | E Tj, To, TB, TC; |
88 | | Tj = Tf + Ti; |
89 | | To = FMA(KP1_732050807, Tn, Tk); |
90 | | R0[WS(rs, 1)] = Tj + To; |
91 | | R0[WS(rs, 4)] = Tj - To; |
92 | | TB = Tf - Ti; |
93 | | TC = FNMS(KP1_732050807, Tz, Ty); |
94 | | R1[WS(rs, 2)] = TB - TC; |
95 | | R1[WS(rs, 5)] = TB + TC; |
96 | | } |
97 | | Tx = Tp - Tq; |
98 | | TA = FMA(KP1_732050807, Tz, Ty); |
99 | | R1[0] = Tx - TA; |
100 | | R1[WS(rs, 3)] = Tx + TA; |
101 | | { |
102 | | E Tt, Tw, Tr, Ts; |
103 | | Tt = T3 - T6; |
104 | | Tw = Tu - Tv; |
105 | | R1[WS(rs, 4)] = FNMS(KP2_000000000, Tw, Tt); |
106 | | R1[WS(rs, 1)] = FMA(KP2_000000000, Tw, Tt); |
107 | | Tr = Tp + Tq; |
108 | | Ts = FNMS(KP1_732050807, Tn, Tk); |
109 | | R0[WS(rs, 5)] = Tr + Ts; |
110 | | R0[WS(rs, 2)] = Tr - Ts; |
111 | | } |
112 | | } |
113 | | } |
114 | | } |
115 | | } |
116 | | |
117 | | static const kr2c_desc desc = { 12, "r2cb_12", { 22, 0, 16, 0 }, &GENUS }; |
118 | | |
119 | | void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc); |
120 | | } |
121 | | |
122 | | #else |
123 | | |
124 | | /* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */ |
125 | | |
126 | | /* |
127 | | * This function contains 38 FP additions, 10 FP multiplications, |
128 | | * (or, 34 additions, 6 multiplications, 4 fused multiply/add), |
129 | | * 25 stack variables, 2 constants, and 24 memory accesses |
130 | | */ |
131 | | #include "rdft/scalar/r2cb.h" |
132 | | |
133 | | static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs) |
134 | 0 | { |
135 | 0 | DK(KP1_732050807, +1.732050807568877293527446341505872366942805254); |
136 | 0 | DK(KP2_000000000, +2.000000000000000000000000000000000000000000000); |
137 | 0 | { |
138 | 0 | INT i; |
139 | 0 | for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) { |
140 | 0 | E T8, Tb, Tm, TA, Tw, Tx, Tp, TB, T3, Tr, Tg, T6, Ts, Tk; |
141 | 0 | { |
142 | 0 | E T9, Ta, Tn, To; |
143 | 0 | T8 = Cr[WS(csr, 3)]; |
144 | 0 | T9 = Cr[WS(csr, 5)]; |
145 | 0 | Ta = Cr[WS(csr, 1)]; |
146 | 0 | Tb = T9 + Ta; |
147 | 0 | Tm = FMS(KP2_000000000, T8, Tb); |
148 | 0 | TA = KP1_732050807 * (T9 - Ta); |
149 | 0 | Tw = Ci[WS(csi, 3)]; |
150 | 0 | Tn = Ci[WS(csi, 5)]; |
151 | 0 | To = Ci[WS(csi, 1)]; |
152 | 0 | Tx = Tn + To; |
153 | 0 | Tp = KP1_732050807 * (Tn - To); |
154 | 0 | TB = FMA(KP2_000000000, Tw, Tx); |
155 | 0 | } |
156 | 0 | { |
157 | 0 | E Tf, T1, T2, Td, Te; |
158 | 0 | Te = Ci[WS(csi, 4)]; |
159 | 0 | Tf = KP1_732050807 * Te; |
160 | 0 | T1 = Cr[0]; |
161 | 0 | T2 = Cr[WS(csr, 4)]; |
162 | 0 | Td = T1 - T2; |
163 | 0 | T3 = FMA(KP2_000000000, T2, T1); |
164 | 0 | Tr = Td - Tf; |
165 | 0 | Tg = Td + Tf; |
166 | 0 | } |
167 | 0 | { |
168 | 0 | E Tj, T4, T5, Th, Ti; |
169 | 0 | Ti = Ci[WS(csi, 2)]; |
170 | 0 | Tj = KP1_732050807 * Ti; |
171 | 0 | T4 = Cr[WS(csr, 6)]; |
172 | 0 | T5 = Cr[WS(csr, 2)]; |
173 | 0 | Th = T4 - T5; |
174 | 0 | T6 = FMA(KP2_000000000, T5, T4); |
175 | 0 | Ts = Th + Tj; |
176 | 0 | Tk = Th - Tj; |
177 | 0 | } |
178 | 0 | { |
179 | 0 | E T7, Tc, Tz, TC; |
180 | 0 | T7 = T3 + T6; |
181 | 0 | Tc = KP2_000000000 * (T8 + Tb); |
182 | 0 | R0[WS(rs, 3)] = T7 - Tc; |
183 | 0 | R0[0] = T7 + Tc; |
184 | 0 | { |
185 | 0 | E Tl, Tq, TD, TE; |
186 | 0 | Tl = Tg + Tk; |
187 | 0 | Tq = Tm - Tp; |
188 | 0 | R0[WS(rs, 1)] = Tl - Tq; |
189 | 0 | R0[WS(rs, 4)] = Tl + Tq; |
190 | 0 | TD = Tg - Tk; |
191 | 0 | TE = TB - TA; |
192 | 0 | R1[WS(rs, 2)] = TD - TE; |
193 | 0 | R1[WS(rs, 5)] = TD + TE; |
194 | 0 | } |
195 | 0 | Tz = Tr - Ts; |
196 | 0 | TC = TA + TB; |
197 | 0 | R1[0] = Tz - TC; |
198 | 0 | R1[WS(rs, 3)] = Tz + TC; |
199 | 0 | { |
200 | 0 | E Tv, Ty, Tt, Tu; |
201 | 0 | Tv = T3 - T6; |
202 | 0 | Ty = KP2_000000000 * (Tw - Tx); |
203 | 0 | R1[WS(rs, 4)] = Tv - Ty; |
204 | 0 | R1[WS(rs, 1)] = Tv + Ty; |
205 | 0 | Tt = Tr + Ts; |
206 | 0 | Tu = Tm + Tp; |
207 | 0 | R0[WS(rs, 5)] = Tt - Tu; |
208 | 0 | R0[WS(rs, 2)] = Tt + Tu; |
209 | 0 | } |
210 | 0 | } |
211 | 0 | } |
212 | 0 | } |
213 | 0 | } |
214 | | |
215 | | static const kr2c_desc desc = { 12, "r2cb_12", { 34, 6, 4, 0 }, &GENUS }; |
216 | | |
217 | 1 | void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc); |
218 | 1 | } |
219 | | |
220 | | #endif |