Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cb/r2cb_12.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Oct 10 06:59:24 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cb.native -fma -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */
29
30
/*
31
 * This function contains 38 FP additions, 16 FP multiplications,
32
 * (or, 22 additions, 0 multiplications, 16 fused multiply/add),
33
 * 25 stack variables, 2 constants, and 24 memory accesses
34
 */
35
#include "rdft/scalar/r2cb.h"
36
37
static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
40
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
41
     {
42
    INT i;
43
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
44
         E T8, Tb, Tk, Tz, Tu, Tv, Tn, Ty, T3, Tp, Tf, T6, Tq, Ti;
45
         {
46
        E T9, Ta, Tl, Tm;
47
        T8 = Cr[WS(csr, 3)];
48
        T9 = Cr[WS(csr, 5)];
49
        Ta = Cr[WS(csr, 1)];
50
        Tb = T9 + Ta;
51
        Tk = FNMS(KP2_000000000, T8, Tb);
52
        Tz = T9 - Ta;
53
        Tu = Ci[WS(csi, 3)];
54
        Tl = Ci[WS(csi, 5)];
55
        Tm = Ci[WS(csi, 1)];
56
        Tv = Tl + Tm;
57
        Tn = Tl - Tm;
58
        Ty = FMA(KP2_000000000, Tu, Tv);
59
         }
60
         {
61
        E Te, T1, T2, Td;
62
        Te = Ci[WS(csi, 4)];
63
        T1 = Cr[0];
64
        T2 = Cr[WS(csr, 4)];
65
        Td = T1 - T2;
66
        T3 = FMA(KP2_000000000, T2, T1);
67
        Tp = FNMS(KP1_732050807, Te, Td);
68
        Tf = FMA(KP1_732050807, Te, Td);
69
         }
70
         {
71
        E Th, T4, T5, Tg;
72
        Th = Ci[WS(csi, 2)];
73
        T4 = Cr[WS(csr, 6)];
74
        T5 = Cr[WS(csr, 2)];
75
        Tg = T4 - T5;
76
        T6 = FMA(KP2_000000000, T5, T4);
77
        Tq = FMA(KP1_732050807, Th, Tg);
78
        Ti = FNMS(KP1_732050807, Th, Tg);
79
         }
80
         {
81
        E T7, Tc, Tx, TA;
82
        T7 = T3 + T6;
83
        Tc = T8 + Tb;
84
        R0[WS(rs, 3)] = FNMS(KP2_000000000, Tc, T7);
85
        R0[0] = FMA(KP2_000000000, Tc, T7);
86
        {
87
       E Tj, To, TB, TC;
88
       Tj = Tf + Ti;
89
       To = FMA(KP1_732050807, Tn, Tk);
90
       R0[WS(rs, 1)] = Tj + To;
91
       R0[WS(rs, 4)] = Tj - To;
92
       TB = Tf - Ti;
93
       TC = FNMS(KP1_732050807, Tz, Ty);
94
       R1[WS(rs, 2)] = TB - TC;
95
       R1[WS(rs, 5)] = TB + TC;
96
        }
97
        Tx = Tp - Tq;
98
        TA = FMA(KP1_732050807, Tz, Ty);
99
        R1[0] = Tx - TA;
100
        R1[WS(rs, 3)] = Tx + TA;
101
        {
102
       E Tt, Tw, Tr, Ts;
103
       Tt = T3 - T6;
104
       Tw = Tu - Tv;
105
       R1[WS(rs, 4)] = FNMS(KP2_000000000, Tw, Tt);
106
       R1[WS(rs, 1)] = FMA(KP2_000000000, Tw, Tt);
107
       Tr = Tp + Tq;
108
       Ts = FNMS(KP1_732050807, Tn, Tk);
109
       R0[WS(rs, 5)] = Tr + Ts;
110
       R0[WS(rs, 2)] = Tr - Ts;
111
        }
112
         }
113
    }
114
     }
115
}
116
117
static const kr2c_desc desc = { 12, "r2cb_12", { 22, 0, 16, 0 }, &GENUS };
118
119
void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc);
120
}
121
122
#else
123
124
/* Generated by: ../../../genfft/gen_r2cb.native -compact -variables 4 -pipeline-latency 4 -sign 1 -n 12 -name r2cb_12 -include rdft/scalar/r2cb.h */
125
126
/*
127
 * This function contains 38 FP additions, 10 FP multiplications,
128
 * (or, 34 additions, 6 multiplications, 4 fused multiply/add),
129
 * 25 stack variables, 2 constants, and 24 memory accesses
130
 */
131
#include "rdft/scalar/r2cb.h"
132
133
static void r2cb_12(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
134
0
{
135
0
     DK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
136
0
     DK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
137
0
     {
138
0
    INT i;
139
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ovs, R1 = R1 + ovs, Cr = Cr + ivs, Ci = Ci + ivs, MAKE_VOLATILE_STRIDE(48, rs), MAKE_VOLATILE_STRIDE(48, csr), MAKE_VOLATILE_STRIDE(48, csi)) {
140
0
         E T8, Tb, Tm, TA, Tw, Tx, Tp, TB, T3, Tr, Tg, T6, Ts, Tk;
141
0
         {
142
0
        E T9, Ta, Tn, To;
143
0
        T8 = Cr[WS(csr, 3)];
144
0
        T9 = Cr[WS(csr, 5)];
145
0
        Ta = Cr[WS(csr, 1)];
146
0
        Tb = T9 + Ta;
147
0
        Tm = FMS(KP2_000000000, T8, Tb);
148
0
        TA = KP1_732050807 * (T9 - Ta);
149
0
        Tw = Ci[WS(csi, 3)];
150
0
        Tn = Ci[WS(csi, 5)];
151
0
        To = Ci[WS(csi, 1)];
152
0
        Tx = Tn + To;
153
0
        Tp = KP1_732050807 * (Tn - To);
154
0
        TB = FMA(KP2_000000000, Tw, Tx);
155
0
         }
156
0
         {
157
0
        E Tf, T1, T2, Td, Te;
158
0
        Te = Ci[WS(csi, 4)];
159
0
        Tf = KP1_732050807 * Te;
160
0
        T1 = Cr[0];
161
0
        T2 = Cr[WS(csr, 4)];
162
0
        Td = T1 - T2;
163
0
        T3 = FMA(KP2_000000000, T2, T1);
164
0
        Tr = Td - Tf;
165
0
        Tg = Td + Tf;
166
0
         }
167
0
         {
168
0
        E Tj, T4, T5, Th, Ti;
169
0
        Ti = Ci[WS(csi, 2)];
170
0
        Tj = KP1_732050807 * Ti;
171
0
        T4 = Cr[WS(csr, 6)];
172
0
        T5 = Cr[WS(csr, 2)];
173
0
        Th = T4 - T5;
174
0
        T6 = FMA(KP2_000000000, T5, T4);
175
0
        Ts = Th + Tj;
176
0
        Tk = Th - Tj;
177
0
         }
178
0
         {
179
0
        E T7, Tc, Tz, TC;
180
0
        T7 = T3 + T6;
181
0
        Tc = KP2_000000000 * (T8 + Tb);
182
0
        R0[WS(rs, 3)] = T7 - Tc;
183
0
        R0[0] = T7 + Tc;
184
0
        {
185
0
       E Tl, Tq, TD, TE;
186
0
       Tl = Tg + Tk;
187
0
       Tq = Tm - Tp;
188
0
       R0[WS(rs, 1)] = Tl - Tq;
189
0
       R0[WS(rs, 4)] = Tl + Tq;
190
0
       TD = Tg - Tk;
191
0
       TE = TB - TA;
192
0
       R1[WS(rs, 2)] = TD - TE;
193
0
       R1[WS(rs, 5)] = TD + TE;
194
0
        }
195
0
        Tz = Tr - Ts;
196
0
        TC = TA + TB;
197
0
        R1[0] = Tz - TC;
198
0
        R1[WS(rs, 3)] = Tz + TC;
199
0
        {
200
0
       E Tv, Ty, Tt, Tu;
201
0
       Tv = T3 - T6;
202
0
       Ty = KP2_000000000 * (Tw - Tx);
203
0
       R1[WS(rs, 4)] = Tv - Ty;
204
0
       R1[WS(rs, 1)] = Tv + Ty;
205
0
       Tt = Tr + Ts;
206
0
       Tu = Tm + Tp;
207
0
       R0[WS(rs, 5)] = Tt - Tu;
208
0
       R0[WS(rs, 2)] = Tt + Tu;
209
0
        }
210
0
         }
211
0
    }
212
0
     }
213
0
}
214
215
static const kr2c_desc desc = { 12, "r2cb_12", { 34, 6, 4, 0 }, &GENUS };
216
217
1
void X(codelet_r2cb_12) (planner *p) { X(kr2c_register) (p, r2cb_12, &desc);
218
1
}
219
220
#endif