/src/fftw3/rdft/scalar/r2cf/hf_10.c
Line | Count | Source |
1 | | /* |
2 | | * Copyright (c) 2003, 2007-14 Matteo Frigo |
3 | | * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology |
4 | | * |
5 | | * This program is free software; you can redistribute it and/or modify |
6 | | * it under the terms of the GNU General Public License as published by |
7 | | * the Free Software Foundation; either version 2 of the License, or |
8 | | * (at your option) any later version. |
9 | | * |
10 | | * This program is distributed in the hope that it will be useful, |
11 | | * but WITHOUT ANY WARRANTY; without even the implied warranty of |
12 | | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
13 | | * GNU General Public License for more details. |
14 | | * |
15 | | * You should have received a copy of the GNU General Public License |
16 | | * along with this program; if not, write to the Free Software |
17 | | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
18 | | * |
19 | | */ |
20 | | |
21 | | /* This file was automatically generated --- DO NOT EDIT */ |
22 | | /* Generated on Fri Oct 10 06:58:47 UTC 2025 */ |
23 | | |
24 | | #include "rdft/codelet-rdft.h" |
25 | | |
26 | | #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA) |
27 | | |
28 | | /* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hf_10 -include rdft/scalar/hf.h */ |
29 | | |
30 | | /* |
31 | | * This function contains 102 FP additions, 72 FP multiplications, |
32 | | * (or, 48 additions, 18 multiplications, 54 fused multiply/add), |
33 | | * 47 stack variables, 4 constants, and 40 memory accesses |
34 | | */ |
35 | | #include "rdft/scalar/hf.h" |
36 | | |
37 | | static void hf_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
38 | | { |
39 | | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
40 | | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
41 | | DK(KP618033988, +0.618033988749894848204586834365638117720309180); |
42 | | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
43 | | { |
44 | | INT m; |
45 | | for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { |
46 | | E T8, T23, T12, T1U, TM, TZ, T10, T1F, T1G, T25, T16, T17, T18, T1s, T1x; |
47 | | E T1P, Tl, Ty, Tz, T1I, T1J, T24, T13, T14, T15, T1h, T1m, T1O; |
48 | | { |
49 | | E T1, T1R, T3, T6, T4, T1S, T2, T7, T1T, T5; |
50 | | T1 = cr[0]; |
51 | | T1R = ci[0]; |
52 | | T3 = cr[WS(rs, 5)]; |
53 | | T6 = ci[WS(rs, 5)]; |
54 | | T2 = W[8]; |
55 | | T4 = T2 * T3; |
56 | | T1S = T2 * T6; |
57 | | T5 = W[9]; |
58 | | T7 = FMA(T5, T6, T4); |
59 | | T1T = FNMS(T5, T3, T1S); |
60 | | T8 = T1 - T7; |
61 | | T23 = T1T + T1R; |
62 | | T12 = T1 + T7; |
63 | | T1U = T1R - T1T; |
64 | | } |
65 | | { |
66 | | E TF, T1w, TY, T1p, TL, T1u, TS, T1r; |
67 | | { |
68 | | E TB, TE, TC, T1v, TA, TD; |
69 | | TB = cr[WS(rs, 4)]; |
70 | | TE = ci[WS(rs, 4)]; |
71 | | TA = W[6]; |
72 | | TC = TA * TB; |
73 | | T1v = TA * TE; |
74 | | TD = W[7]; |
75 | | TF = FMA(TD, TE, TC); |
76 | | T1w = FNMS(TD, TB, T1v); |
77 | | } |
78 | | { |
79 | | E TU, TX, TV, T1o, TT, TW; |
80 | | TU = cr[WS(rs, 1)]; |
81 | | TX = ci[WS(rs, 1)]; |
82 | | TT = W[0]; |
83 | | TV = TT * TU; |
84 | | T1o = TT * TX; |
85 | | TW = W[1]; |
86 | | TY = FMA(TW, TX, TV); |
87 | | T1p = FNMS(TW, TU, T1o); |
88 | | } |
89 | | { |
90 | | E TH, TK, TI, T1t, TG, TJ; |
91 | | TH = cr[WS(rs, 9)]; |
92 | | TK = ci[WS(rs, 9)]; |
93 | | TG = W[16]; |
94 | | TI = TG * TH; |
95 | | T1t = TG * TK; |
96 | | TJ = W[17]; |
97 | | TL = FMA(TJ, TK, TI); |
98 | | T1u = FNMS(TJ, TH, T1t); |
99 | | } |
100 | | { |
101 | | E TO, TR, TP, T1q, TN, TQ; |
102 | | TO = cr[WS(rs, 6)]; |
103 | | TR = ci[WS(rs, 6)]; |
104 | | TN = W[10]; |
105 | | TP = TN * TO; |
106 | | T1q = TN * TR; |
107 | | TQ = W[11]; |
108 | | TS = FMA(TQ, TR, TP); |
109 | | T1r = FNMS(TQ, TO, T1q); |
110 | | } |
111 | | TM = TF - TL; |
112 | | TZ = TS - TY; |
113 | | T10 = TM + TZ; |
114 | | T1F = T1w + T1u; |
115 | | T1G = T1r + T1p; |
116 | | T25 = T1F + T1G; |
117 | | T16 = TF + TL; |
118 | | T17 = TS + TY; |
119 | | T18 = T16 + T17; |
120 | | T1s = T1p - T1r; |
121 | | T1x = T1u - T1w; |
122 | | T1P = T1x + T1s; |
123 | | } |
124 | | { |
125 | | E Te, T1l, Tx, T1e, Tk, T1j, Tr, T1g; |
126 | | { |
127 | | E Ta, Td, Tb, T1k, T9, Tc; |
128 | | Ta = cr[WS(rs, 2)]; |
129 | | Td = ci[WS(rs, 2)]; |
130 | | T9 = W[2]; |
131 | | Tb = T9 * Ta; |
132 | | T1k = T9 * Td; |
133 | | Tc = W[3]; |
134 | | Te = FMA(Tc, Td, Tb); |
135 | | T1l = FNMS(Tc, Ta, T1k); |
136 | | } |
137 | | { |
138 | | E Tt, Tw, Tu, T1d, Ts, Tv; |
139 | | Tt = cr[WS(rs, 3)]; |
140 | | Tw = ci[WS(rs, 3)]; |
141 | | Ts = W[4]; |
142 | | Tu = Ts * Tt; |
143 | | T1d = Ts * Tw; |
144 | | Tv = W[5]; |
145 | | Tx = FMA(Tv, Tw, Tu); |
146 | | T1e = FNMS(Tv, Tt, T1d); |
147 | | } |
148 | | { |
149 | | E Tg, Tj, Th, T1i, Tf, Ti; |
150 | | Tg = cr[WS(rs, 7)]; |
151 | | Tj = ci[WS(rs, 7)]; |
152 | | Tf = W[12]; |
153 | | Th = Tf * Tg; |
154 | | T1i = Tf * Tj; |
155 | | Ti = W[13]; |
156 | | Tk = FMA(Ti, Tj, Th); |
157 | | T1j = FNMS(Ti, Tg, T1i); |
158 | | } |
159 | | { |
160 | | E Tn, Tq, To, T1f, Tm, Tp; |
161 | | Tn = cr[WS(rs, 8)]; |
162 | | Tq = ci[WS(rs, 8)]; |
163 | | Tm = W[14]; |
164 | | To = Tm * Tn; |
165 | | T1f = Tm * Tq; |
166 | | Tp = W[15]; |
167 | | Tr = FMA(Tp, Tq, To); |
168 | | T1g = FNMS(Tp, Tn, T1f); |
169 | | } |
170 | | Tl = Te - Tk; |
171 | | Ty = Tr - Tx; |
172 | | Tz = Tl + Ty; |
173 | | T1I = T1l + T1j; |
174 | | T1J = T1g + T1e; |
175 | | T24 = T1I + T1J; |
176 | | T13 = Te + Tk; |
177 | | T14 = Tr + Tx; |
178 | | T15 = T13 + T14; |
179 | | T1h = T1e - T1g; |
180 | | T1m = T1j - T1l; |
181 | | T1O = T1m + T1h; |
182 | | } |
183 | | { |
184 | | E T1b, T11, T1a, T1z, T1B, T1n, T1y, T1A, T1c; |
185 | | T1b = Tz - T10; |
186 | | T11 = Tz + T10; |
187 | | T1a = FNMS(KP250000000, T11, T8); |
188 | | T1n = T1h - T1m; |
189 | | T1y = T1s - T1x; |
190 | | T1z = FMA(KP618033988, T1y, T1n); |
191 | | T1B = FNMS(KP618033988, T1n, T1y); |
192 | | ci[WS(rs, 4)] = T8 + T11; |
193 | | T1A = FNMS(KP559016994, T1b, T1a); |
194 | | ci[WS(rs, 2)] = FNMS(KP951056516, T1B, T1A); |
195 | | cr[WS(rs, 3)] = FMA(KP951056516, T1B, T1A); |
196 | | T1c = FMA(KP559016994, T1b, T1a); |
197 | | ci[0] = FNMS(KP951056516, T1z, T1c); |
198 | | cr[WS(rs, 1)] = FMA(KP951056516, T1z, T1c); |
199 | | } |
200 | | { |
201 | | E T1D, T19, T1C, T1L, T1N, T1H, T1K, T1M, T1E; |
202 | | T1D = T15 - T18; |
203 | | T19 = T15 + T18; |
204 | | T1C = FNMS(KP250000000, T19, T12); |
205 | | T1H = T1F - T1G; |
206 | | T1K = T1I - T1J; |
207 | | T1L = FNMS(KP618033988, T1K, T1H); |
208 | | T1N = FMA(KP618033988, T1H, T1K); |
209 | | cr[0] = T12 + T19; |
210 | | T1M = FMA(KP559016994, T1D, T1C); |
211 | | cr[WS(rs, 4)] = FNMS(KP951056516, T1N, T1M); |
212 | | ci[WS(rs, 3)] = FMA(KP951056516, T1N, T1M); |
213 | | T1E = FNMS(KP559016994, T1D, T1C); |
214 | | cr[WS(rs, 2)] = FNMS(KP951056516, T1L, T1E); |
215 | | ci[WS(rs, 1)] = FMA(KP951056516, T1L, T1E); |
216 | | } |
217 | | { |
218 | | E T1W, T1Q, T1V, T20, T22, T1Y, T1Z, T21, T1X; |
219 | | T1W = T1P - T1O; |
220 | | T1Q = T1O + T1P; |
221 | | T1V = FMA(KP250000000, T1Q, T1U); |
222 | | T1Y = TZ - TM; |
223 | | T1Z = Ty - Tl; |
224 | | T20 = FNMS(KP618033988, T1Z, T1Y); |
225 | | T22 = FMA(KP618033988, T1Y, T1Z); |
226 | | cr[WS(rs, 5)] = T1Q - T1U; |
227 | | T21 = FMA(KP559016994, T1W, T1V); |
228 | | cr[WS(rs, 9)] = FMS(KP951056516, T22, T21); |
229 | | ci[WS(rs, 8)] = FMA(KP951056516, T22, T21); |
230 | | T1X = FNMS(KP559016994, T1W, T1V); |
231 | | cr[WS(rs, 7)] = FMS(KP951056516, T20, T1X); |
232 | | ci[WS(rs, 6)] = FMA(KP951056516, T20, T1X); |
233 | | } |
234 | | { |
235 | | E T28, T26, T27, T2c, T2e, T2a, T2b, T2d, T29; |
236 | | T28 = T24 - T25; |
237 | | T26 = T24 + T25; |
238 | | T27 = FNMS(KP250000000, T26, T23); |
239 | | T2a = T13 - T14; |
240 | | T2b = T16 - T17; |
241 | | T2c = FMA(KP618033988, T2b, T2a); |
242 | | T2e = FNMS(KP618033988, T2a, T2b); |
243 | | ci[WS(rs, 9)] = T26 + T23; |
244 | | T2d = FNMS(KP559016994, T28, T27); |
245 | | cr[WS(rs, 8)] = FMS(KP951056516, T2e, T2d); |
246 | | ci[WS(rs, 7)] = FMA(KP951056516, T2e, T2d); |
247 | | T29 = FMA(KP559016994, T28, T27); |
248 | | cr[WS(rs, 6)] = FMS(KP951056516, T2c, T29); |
249 | | ci[WS(rs, 5)] = FMA(KP951056516, T2c, T29); |
250 | | } |
251 | | } |
252 | | } |
253 | | } |
254 | | |
255 | | static const tw_instr twinstr[] = { |
256 | | { TW_FULL, 1, 10 }, |
257 | | { TW_NEXT, 1, 0 } |
258 | | }; |
259 | | |
260 | | static const hc2hc_desc desc = { 10, "hf_10", twinstr, &GENUS, { 48, 18, 54, 0 } }; |
261 | | |
262 | | void X(codelet_hf_10) (planner *p) { |
263 | | X(khc2hc_register) (p, hf_10, &desc); |
264 | | } |
265 | | #else |
266 | | |
267 | | /* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 10 -dit -name hf_10 -include rdft/scalar/hf.h */ |
268 | | |
269 | | /* |
270 | | * This function contains 102 FP additions, 60 FP multiplications, |
271 | | * (or, 72 additions, 30 multiplications, 30 fused multiply/add), |
272 | | * 45 stack variables, 4 constants, and 40 memory accesses |
273 | | */ |
274 | | #include "rdft/scalar/hf.h" |
275 | | |
276 | | static void hf_10(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms) |
277 | 0 | { |
278 | 0 | DK(KP587785252, +0.587785252292473129168705954639072768597652438); |
279 | 0 | DK(KP951056516, +0.951056516295153572116439333379382143405698634); |
280 | 0 | DK(KP250000000, +0.250000000000000000000000000000000000000000000); |
281 | 0 | DK(KP559016994, +0.559016994374947424102293417182819058860154590); |
282 | 0 | { |
283 | 0 | INT m; |
284 | 0 | for (m = mb, W = W + ((mb - 1) * 18); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 18, MAKE_VOLATILE_STRIDE(20, rs)) { |
285 | 0 | E T7, T1R, TT, T1C, TF, TQ, TR, T1o, T1p, T1P, TX, TY, TZ, T1d, T1g; |
286 | 0 | E T1x, Ti, Tt, Tu, T1r, T1s, T1O, TU, TV, TW, T16, T19, T1y; |
287 | 0 | { |
288 | 0 | E T1, T1A, T6, T1B; |
289 | 0 | T1 = cr[0]; |
290 | 0 | T1A = ci[0]; |
291 | 0 | { |
292 | 0 | E T3, T5, T2, T4; |
293 | 0 | T3 = cr[WS(rs, 5)]; |
294 | 0 | T5 = ci[WS(rs, 5)]; |
295 | 0 | T2 = W[8]; |
296 | 0 | T4 = W[9]; |
297 | 0 | T6 = FMA(T2, T3, T4 * T5); |
298 | 0 | T1B = FNMS(T4, T3, T2 * T5); |
299 | 0 | } |
300 | 0 | T7 = T1 - T6; |
301 | 0 | T1R = T1B + T1A; |
302 | 0 | TT = T1 + T6; |
303 | 0 | T1C = T1A - T1B; |
304 | 0 | } |
305 | 0 | { |
306 | 0 | E Tz, T1b, TP, T1e, TE, T1c, TK, T1f; |
307 | 0 | { |
308 | 0 | E Tw, Ty, Tv, Tx; |
309 | 0 | Tw = cr[WS(rs, 4)]; |
310 | 0 | Ty = ci[WS(rs, 4)]; |
311 | 0 | Tv = W[6]; |
312 | 0 | Tx = W[7]; |
313 | 0 | Tz = FMA(Tv, Tw, Tx * Ty); |
314 | 0 | T1b = FNMS(Tx, Tw, Tv * Ty); |
315 | 0 | } |
316 | 0 | { |
317 | 0 | E TM, TO, TL, TN; |
318 | 0 | TM = cr[WS(rs, 1)]; |
319 | 0 | TO = ci[WS(rs, 1)]; |
320 | 0 | TL = W[0]; |
321 | 0 | TN = W[1]; |
322 | 0 | TP = FMA(TL, TM, TN * TO); |
323 | 0 | T1e = FNMS(TN, TM, TL * TO); |
324 | 0 | } |
325 | 0 | { |
326 | 0 | E TB, TD, TA, TC; |
327 | 0 | TB = cr[WS(rs, 9)]; |
328 | 0 | TD = ci[WS(rs, 9)]; |
329 | 0 | TA = W[16]; |
330 | 0 | TC = W[17]; |
331 | 0 | TE = FMA(TA, TB, TC * TD); |
332 | 0 | T1c = FNMS(TC, TB, TA * TD); |
333 | 0 | } |
334 | 0 | { |
335 | 0 | E TH, TJ, TG, TI; |
336 | 0 | TH = cr[WS(rs, 6)]; |
337 | 0 | TJ = ci[WS(rs, 6)]; |
338 | 0 | TG = W[10]; |
339 | 0 | TI = W[11]; |
340 | 0 | TK = FMA(TG, TH, TI * TJ); |
341 | 0 | T1f = FNMS(TI, TH, TG * TJ); |
342 | 0 | } |
343 | 0 | TF = Tz - TE; |
344 | 0 | TQ = TK - TP; |
345 | 0 | TR = TF + TQ; |
346 | 0 | T1o = T1b + T1c; |
347 | 0 | T1p = T1f + T1e; |
348 | 0 | T1P = T1o + T1p; |
349 | 0 | TX = Tz + TE; |
350 | 0 | TY = TK + TP; |
351 | 0 | TZ = TX + TY; |
352 | 0 | T1d = T1b - T1c; |
353 | 0 | T1g = T1e - T1f; |
354 | 0 | T1x = T1g - T1d; |
355 | 0 | } |
356 | 0 | { |
357 | 0 | E Tc, T14, Ts, T18, Th, T15, Tn, T17; |
358 | 0 | { |
359 | 0 | E T9, Tb, T8, Ta; |
360 | 0 | T9 = cr[WS(rs, 2)]; |
361 | 0 | Tb = ci[WS(rs, 2)]; |
362 | 0 | T8 = W[2]; |
363 | 0 | Ta = W[3]; |
364 | 0 | Tc = FMA(T8, T9, Ta * Tb); |
365 | 0 | T14 = FNMS(Ta, T9, T8 * Tb); |
366 | 0 | } |
367 | 0 | { |
368 | 0 | E Tp, Tr, To, Tq; |
369 | 0 | Tp = cr[WS(rs, 3)]; |
370 | 0 | Tr = ci[WS(rs, 3)]; |
371 | 0 | To = W[4]; |
372 | 0 | Tq = W[5]; |
373 | 0 | Ts = FMA(To, Tp, Tq * Tr); |
374 | 0 | T18 = FNMS(Tq, Tp, To * Tr); |
375 | 0 | } |
376 | 0 | { |
377 | 0 | E Te, Tg, Td, Tf; |
378 | 0 | Te = cr[WS(rs, 7)]; |
379 | 0 | Tg = ci[WS(rs, 7)]; |
380 | 0 | Td = W[12]; |
381 | 0 | Tf = W[13]; |
382 | 0 | Th = FMA(Td, Te, Tf * Tg); |
383 | 0 | T15 = FNMS(Tf, Te, Td * Tg); |
384 | 0 | } |
385 | 0 | { |
386 | 0 | E Tk, Tm, Tj, Tl; |
387 | 0 | Tk = cr[WS(rs, 8)]; |
388 | 0 | Tm = ci[WS(rs, 8)]; |
389 | 0 | Tj = W[14]; |
390 | 0 | Tl = W[15]; |
391 | 0 | Tn = FMA(Tj, Tk, Tl * Tm); |
392 | 0 | T17 = FNMS(Tl, Tk, Tj * Tm); |
393 | 0 | } |
394 | 0 | Ti = Tc - Th; |
395 | 0 | Tt = Tn - Ts; |
396 | 0 | Tu = Ti + Tt; |
397 | 0 | T1r = T14 + T15; |
398 | 0 | T1s = T17 + T18; |
399 | 0 | T1O = T1r + T1s; |
400 | 0 | TU = Tc + Th; |
401 | 0 | TV = Tn + Ts; |
402 | 0 | TW = TU + TV; |
403 | 0 | T16 = T14 - T15; |
404 | 0 | T19 = T17 - T18; |
405 | 0 | T1y = T16 + T19; |
406 | 0 | } |
407 | 0 | { |
408 | 0 | E T11, TS, T12, T1i, T1k, T1a, T1h, T1j, T13; |
409 | 0 | T11 = KP559016994 * (Tu - TR); |
410 | 0 | TS = Tu + TR; |
411 | 0 | T12 = FNMS(KP250000000, TS, T7); |
412 | 0 | T1a = T16 - T19; |
413 | 0 | T1h = T1d + T1g; |
414 | 0 | T1i = FMA(KP951056516, T1a, KP587785252 * T1h); |
415 | 0 | T1k = FNMS(KP587785252, T1a, KP951056516 * T1h); |
416 | 0 | ci[WS(rs, 4)] = T7 + TS; |
417 | 0 | T1j = T12 - T11; |
418 | 0 | ci[WS(rs, 2)] = T1j - T1k; |
419 | 0 | cr[WS(rs, 3)] = T1j + T1k; |
420 | 0 | T13 = T11 + T12; |
421 | 0 | ci[0] = T13 - T1i; |
422 | 0 | cr[WS(rs, 1)] = T13 + T1i; |
423 | 0 | } |
424 | 0 | { |
425 | 0 | E T1m, T10, T1l, T1u, T1w, T1q, T1t, T1v, T1n; |
426 | 0 | T1m = KP559016994 * (TW - TZ); |
427 | 0 | T10 = TW + TZ; |
428 | 0 | T1l = FNMS(KP250000000, T10, TT); |
429 | 0 | T1q = T1o - T1p; |
430 | 0 | T1t = T1r - T1s; |
431 | 0 | T1u = FNMS(KP587785252, T1t, KP951056516 * T1q); |
432 | 0 | T1w = FMA(KP951056516, T1t, KP587785252 * T1q); |
433 | 0 | cr[0] = TT + T10; |
434 | 0 | T1v = T1m + T1l; |
435 | 0 | cr[WS(rs, 4)] = T1v - T1w; |
436 | 0 | ci[WS(rs, 3)] = T1v + T1w; |
437 | 0 | T1n = T1l - T1m; |
438 | 0 | cr[WS(rs, 2)] = T1n - T1u; |
439 | 0 | ci[WS(rs, 1)] = T1n + T1u; |
440 | 0 | } |
441 | 0 | { |
442 | 0 | E T1H, T1z, T1G, T1F, T1J, T1D, T1E, T1K, T1I; |
443 | 0 | T1H = KP559016994 * (T1y + T1x); |
444 | 0 | T1z = T1x - T1y; |
445 | 0 | T1G = FMA(KP250000000, T1z, T1C); |
446 | 0 | T1D = Ti - Tt; |
447 | 0 | T1E = TQ - TF; |
448 | 0 | T1F = FMA(KP587785252, T1D, KP951056516 * T1E); |
449 | 0 | T1J = FNMS(KP951056516, T1D, KP587785252 * T1E); |
450 | 0 | cr[WS(rs, 5)] = T1z - T1C; |
451 | 0 | T1K = T1H + T1G; |
452 | 0 | cr[WS(rs, 9)] = T1J - T1K; |
453 | 0 | ci[WS(rs, 8)] = T1J + T1K; |
454 | 0 | T1I = T1G - T1H; |
455 | 0 | cr[WS(rs, 7)] = T1F - T1I; |
456 | 0 | ci[WS(rs, 6)] = T1F + T1I; |
457 | 0 | } |
458 | 0 | { |
459 | 0 | E T1Q, T1S, T1T, T1N, T1V, T1L, T1M, T1W, T1U; |
460 | 0 | T1Q = KP559016994 * (T1O - T1P); |
461 | 0 | T1S = T1O + T1P; |
462 | 0 | T1T = FNMS(KP250000000, T1S, T1R); |
463 | 0 | T1L = TU - TV; |
464 | 0 | T1M = TX - TY; |
465 | 0 | T1N = FMA(KP951056516, T1L, KP587785252 * T1M); |
466 | 0 | T1V = FNMS(KP587785252, T1L, KP951056516 * T1M); |
467 | 0 | ci[WS(rs, 9)] = T1S + T1R; |
468 | 0 | T1W = T1T - T1Q; |
469 | 0 | cr[WS(rs, 8)] = T1V - T1W; |
470 | 0 | ci[WS(rs, 7)] = T1V + T1W; |
471 | 0 | T1U = T1Q + T1T; |
472 | 0 | cr[WS(rs, 6)] = T1N - T1U; |
473 | 0 | ci[WS(rs, 5)] = T1N + T1U; |
474 | 0 | } |
475 | 0 | } |
476 | 0 | } |
477 | 0 | } |
478 | | |
479 | | static const tw_instr twinstr[] = { |
480 | | { TW_FULL, 1, 10 }, |
481 | | { TW_NEXT, 1, 0 } |
482 | | }; |
483 | | |
484 | | static const hc2hc_desc desc = { 10, "hf_10", twinstr, &GENUS, { 72, 30, 30, 0 } }; |
485 | | |
486 | 1 | void X(codelet_hf_10) (planner *p) { |
487 | 1 | X(khc2hc_register) (p, hf_10, &desc); |
488 | 1 | } |
489 | | #endif |