Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cf/hf_9.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Oct 10 06:58:47 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_hc2hc.native -fma -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include rdft/scalar/hf.h */
29
30
/*
31
 * This function contains 96 FP additions, 88 FP multiplications,
32
 * (or, 24 additions, 16 multiplications, 72 fused multiply/add),
33
 * 55 stack variables, 10 constants, and 36 memory accesses
34
 */
35
#include "rdft/scalar/hf.h"
36
37
static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
38
{
39
     DK(KP852868531, +0.852868531952443209628250963940074071936020296);
40
     DK(KP492403876, +0.492403876506104029683371512294761506835321626);
41
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
42
     DK(KP777861913, +0.777861913430206160028177977318626690410586096);
43
     DK(KP839099631, +0.839099631177280011763127298123181364687434283);
44
     DK(KP954188894, +0.954188894138671133499268364187245676532219158);
45
     DK(KP363970234, +0.363970234266202361351047882776834043890471784);
46
     DK(KP176326980, +0.176326980708464973471090386868618986121633062);
47
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
48
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
49
     {
50
    INT m;
51
    for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
52
         E T1, T1P, Te, T1S, T10, T1Q, T1a, T1d, Ty, T18, Tl, T13, T19, T1c, T1l;
53
         E T1r, TS, T1p, TF, T1o, T1g, T1q;
54
         T1 = cr[0];
55
         T1P = ci[0];
56
         {
57
        E T3, T6, T4, TW, T9, Tc, Ta, TY, T2, T8;
58
        T3 = cr[WS(rs, 3)];
59
        T6 = ci[WS(rs, 3)];
60
        T2 = W[4];
61
        T4 = T2 * T3;
62
        TW = T2 * T6;
63
        T9 = cr[WS(rs, 6)];
64
        Tc = ci[WS(rs, 6)];
65
        T8 = W[10];
66
        Ta = T8 * T9;
67
        TY = T8 * Tc;
68
        {
69
       E T7, TX, Td, TZ, T5, Tb;
70
       T5 = W[5];
71
       T7 = FMA(T5, T6, T4);
72
       TX = FNMS(T5, T3, TW);
73
       Tb = W[11];
74
       Td = FMA(Tb, Tc, Ta);
75
       TZ = FNMS(Tb, T9, TY);
76
       Te = T7 + Td;
77
       T1S = Td - T7;
78
       T10 = TX - TZ;
79
       T1Q = TX + TZ;
80
        }
81
         }
82
         {
83
        E Th, Tk, Ti, T12, Tx, T17, Tr, T15, Tg, Tj;
84
        Th = cr[WS(rs, 1)];
85
        Tk = ci[WS(rs, 1)];
86
        Tg = W[0];
87
        Ti = Tg * Th;
88
        T12 = Tg * Tk;
89
        {
90
       E Tt, Tw, Tu, T16, Ts, Tv;
91
       Tt = cr[WS(rs, 7)];
92
       Tw = ci[WS(rs, 7)];
93
       Ts = W[12];
94
       Tu = Ts * Tt;
95
       T16 = Ts * Tw;
96
       Tv = W[13];
97
       Tx = FMA(Tv, Tw, Tu);
98
       T17 = FNMS(Tv, Tt, T16);
99
        }
100
        {
101
       E Tn, Tq, To, T14, Tm, Tp;
102
       Tn = cr[WS(rs, 4)];
103
       Tq = ci[WS(rs, 4)];
104
       Tm = W[6];
105
       To = Tm * Tn;
106
       T14 = Tm * Tq;
107
       Tp = W[7];
108
       Tr = FMA(Tp, Tq, To);
109
       T15 = FNMS(Tp, Tn, T14);
110
        }
111
        T1a = Tr - Tx;
112
        T1d = T15 - T17;
113
        Ty = Tr + Tx;
114
        T18 = T15 + T17;
115
        Tj = W[1];
116
        Tl = FMA(Tj, Tk, Ti);
117
        T13 = FNMS(Tj, Th, T12);
118
        T19 = FNMS(KP500000000, T18, T13);
119
        T1c = FNMS(KP500000000, Ty, Tl);
120
         }
121
         {
122
        E TB, TE, TC, T1n, TR, T1k, TL, T1i, TA, TD;
123
        TB = cr[WS(rs, 2)];
124
        TE = ci[WS(rs, 2)];
125
        TA = W[2];
126
        TC = TA * TB;
127
        T1n = TA * TE;
128
        {
129
       E TN, TQ, TO, T1j, TM, TP;
130
       TN = cr[WS(rs, 8)];
131
       TQ = ci[WS(rs, 8)];
132
       TM = W[14];
133
       TO = TM * TN;
134
       T1j = TM * TQ;
135
       TP = W[15];
136
       TR = FMA(TP, TQ, TO);
137
       T1k = FNMS(TP, TN, T1j);
138
        }
139
        {
140
       E TH, TK, TI, T1h, TG, TJ;
141
       TH = cr[WS(rs, 5)];
142
       TK = ci[WS(rs, 5)];
143
       TG = W[8];
144
       TI = TG * TH;
145
       T1h = TG * TK;
146
       TJ = W[9];
147
       TL = FMA(TJ, TK, TI);
148
       T1i = FNMS(TJ, TH, T1h);
149
        }
150
        T1l = T1i - T1k;
151
        T1r = TR - TL;
152
        TS = TL + TR;
153
        T1p = T1i + T1k;
154
        TD = W[3];
155
        TF = FMA(TD, TE, TC);
156
        T1o = FNMS(TD, TB, T1n);
157
        T1g = FNMS(KP500000000, TS, TF);
158
        T1q = FNMS(KP500000000, T1p, T1o);
159
         }
160
         {
161
        E Tf, T21, TU, T24, T1O, T22, T1L, T23;
162
        Tf = T1 + Te;
163
        T21 = T1Q + T1P;
164
        {
165
       E Tz, TT, T1M, T1N;
166
       Tz = Tl + Ty;
167
       TT = TF + TS;
168
       TU = Tz + TT;
169
       T24 = TT - Tz;
170
       T1M = T13 + T18;
171
       T1N = T1o + T1p;
172
       T1O = T1M - T1N;
173
       T22 = T1M + T1N;
174
        }
175
        cr[0] = Tf + TU;
176
        ci[WS(rs, 8)] = T22 + T21;
177
        T1L = FNMS(KP500000000, TU, Tf);
178
        ci[WS(rs, 2)] = FNMS(KP866025403, T1O, T1L);
179
        cr[WS(rs, 3)] = FMA(KP866025403, T1O, T1L);
180
        T23 = FNMS(KP500000000, T22, T21);
181
        cr[WS(rs, 6)] = FMS(KP866025403, T24, T23);
182
        ci[WS(rs, 5)] = FMA(KP866025403, T24, T23);
183
         }
184
         {
185
        E T11, T1z, T1T, T1X, T1f, T1w, T1t, T1x, T1u, T1Y, T1C, T1I, T1F, T1J, T1G;
186
        E T1U, TV, T1R;
187
        TV = FNMS(KP500000000, Te, T1);
188
        T11 = FNMS(KP866025403, T10, TV);
189
        T1z = FMA(KP866025403, T10, TV);
190
        T1R = FNMS(KP500000000, T1Q, T1P);
191
        T1T = FMA(KP866025403, T1S, T1R);
192
        T1X = FNMS(KP866025403, T1S, T1R);
193
        {
194
       E T1b, T1e, T1m, T1s;
195
       T1b = FMA(KP866025403, T1a, T19);
196
       T1e = FNMS(KP866025403, T1d, T1c);
197
       T1f = FMA(KP176326980, T1e, T1b);
198
       T1w = FNMS(KP176326980, T1b, T1e);
199
       T1m = FNMS(KP866025403, T1l, T1g);
200
       T1s = FNMS(KP866025403, T1r, T1q);
201
       T1t = FNMS(KP363970234, T1s, T1m);
202
       T1x = FMA(KP363970234, T1m, T1s);
203
        }
204
        T1u = FNMS(KP954188894, T1t, T1f);
205
        T1Y = FMA(KP954188894, T1x, T1w);
206
        {
207
       E T1A, T1B, T1D, T1E;
208
       T1A = FMA(KP866025403, T1r, T1q);
209
       T1B = FMA(KP866025403, T1l, T1g);
210
       T1C = FMA(KP176326980, T1B, T1A);
211
       T1I = FNMS(KP176326980, T1A, T1B);
212
       T1D = FMA(KP866025403, T1d, T1c);
213
       T1E = FNMS(KP866025403, T1a, T19);
214
       T1F = FMA(KP839099631, T1E, T1D);
215
       T1J = FNMS(KP839099631, T1D, T1E);
216
        }
217
        T1G = FMA(KP777861913, T1F, T1C);
218
        T1U = FNMS(KP777861913, T1J, T1I);
219
        cr[WS(rs, 2)] = FMA(KP984807753, T1u, T11);
220
        ci[WS(rs, 7)] = FNMS(KP984807753, T1U, T1T);
221
        ci[WS(rs, 6)] = FNMS(KP984807753, T1Y, T1X);
222
        cr[WS(rs, 1)] = FMA(KP984807753, T1G, T1z);
223
        {
224
       E T1V, T1W, T1H, T1K;
225
       T1V = FMA(KP492403876, T1U, T1T);
226
       T1W = FNMS(KP777861913, T1F, T1C);
227
       cr[WS(rs, 7)] = FMS(KP852868531, T1W, T1V);
228
       ci[WS(rs, 4)] = FMA(KP852868531, T1W, T1V);
229
       T1H = FNMS(KP492403876, T1G, T1z);
230
       T1K = FMA(KP777861913, T1J, T1I);
231
       ci[WS(rs, 1)] = FNMS(KP852868531, T1K, T1H);
232
       cr[WS(rs, 4)] = FMA(KP852868531, T1K, T1H);
233
        }
234
        {
235
       E T1v, T1y, T1Z, T20;
236
       T1v = FNMS(KP492403876, T1u, T11);
237
       T1y = FNMS(KP954188894, T1x, T1w);
238
       ci[WS(rs, 3)] = FNMS(KP852868531, T1y, T1v);
239
       ci[0] = FMA(KP852868531, T1y, T1v);
240
       T1Z = FMA(KP492403876, T1Y, T1X);
241
       T20 = FMA(KP954188894, T1t, T1f);
242
       cr[WS(rs, 5)] = FMS(KP852868531, T20, T1Z);
243
       cr[WS(rs, 8)] = -(FMA(KP852868531, T20, T1Z));
244
        }
245
         }
246
    }
247
     }
248
}
249
250
static const tw_instr twinstr[] = {
251
     { TW_FULL, 1, 9 },
252
     { TW_NEXT, 1, 0 }
253
};
254
255
static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, { 24, 16, 72, 0 } };
256
257
void X(codelet_hf_9) (planner *p) {
258
     X(khc2hc_register) (p, hf_9, &desc);
259
}
260
#else
261
262
/* Generated by: ../../../genfft/gen_hc2hc.native -compact -variables 4 -pipeline-latency 4 -n 9 -dit -name hf_9 -include rdft/scalar/hf.h */
263
264
/*
265
 * This function contains 96 FP additions, 72 FP multiplications,
266
 * (or, 60 additions, 36 multiplications, 36 fused multiply/add),
267
 * 41 stack variables, 8 constants, and 36 memory accesses
268
 */
269
#include "rdft/scalar/hf.h"
270
271
static void hf_9(R *cr, R *ci, const R *W, stride rs, INT mb, INT me, INT ms)
272
0
{
273
0
     DK(KP642787609, +0.642787609686539326322643409907263432907559884);
274
0
     DK(KP766044443, +0.766044443118978035202392650555416673935832457);
275
0
     DK(KP939692620, +0.939692620785908384054109277324731469936208134);
276
0
     DK(KP342020143, +0.342020143325668733044099614682259580763083368);
277
0
     DK(KP984807753, +0.984807753012208059366743024589523013670643252);
278
0
     DK(KP173648177, +0.173648177666930348851716626769314796000375677);
279
0
     DK(KP500000000, +0.500000000000000000000000000000000000000000000);
280
0
     DK(KP866025403, +0.866025403784438646763723170752936183471402627);
281
0
     {
282
0
    INT m;
283
0
    for (m = mb, W = W + ((mb - 1) * 16); m < me; m = m + 1, cr = cr + ms, ci = ci - ms, W = W + 16, MAKE_VOLATILE_STRIDE(18, rs)) {
284
0
         E T1, T1B, TQ, T1A, Tc, TN, T1C, T1D, TL, T1x, T19, T1o, T1c, T1n, Tu;
285
0
         E T1w, TW, T1k, T11, T1l;
286
0
         {
287
0
        E T6, TO, Tb, TP;
288
0
        T1 = cr[0];
289
0
        T1B = ci[0];
290
0
        {
291
0
       E T3, T5, T2, T4;
292
0
       T3 = cr[WS(rs, 3)];
293
0
       T5 = ci[WS(rs, 3)];
294
0
       T2 = W[4];
295
0
       T4 = W[5];
296
0
       T6 = FMA(T2, T3, T4 * T5);
297
0
       TO = FNMS(T4, T3, T2 * T5);
298
0
        }
299
0
        {
300
0
       E T8, Ta, T7, T9;
301
0
       T8 = cr[WS(rs, 6)];
302
0
       Ta = ci[WS(rs, 6)];
303
0
       T7 = W[10];
304
0
       T9 = W[11];
305
0
       Tb = FMA(T7, T8, T9 * Ta);
306
0
       TP = FNMS(T9, T8, T7 * Ta);
307
0
        }
308
0
        TQ = KP866025403 * (TO - TP);
309
0
        T1A = KP866025403 * (Tb - T6);
310
0
        Tc = T6 + Tb;
311
0
        TN = FNMS(KP500000000, Tc, T1);
312
0
        T1C = TO + TP;
313
0
        T1D = FNMS(KP500000000, T1C, T1B);
314
0
         }
315
0
         {
316
0
        E Tz, T13, TE, T14, TJ, T15, TK, T16;
317
0
        {
318
0
       E Tw, Ty, Tv, Tx;
319
0
       Tw = cr[WS(rs, 2)];
320
0
       Ty = ci[WS(rs, 2)];
321
0
       Tv = W[2];
322
0
       Tx = W[3];
323
0
       Tz = FMA(Tv, Tw, Tx * Ty);
324
0
       T13 = FNMS(Tx, Tw, Tv * Ty);
325
0
        }
326
0
        {
327
0
       E TB, TD, TA, TC;
328
0
       TB = cr[WS(rs, 5)];
329
0
       TD = ci[WS(rs, 5)];
330
0
       TA = W[8];
331
0
       TC = W[9];
332
0
       TE = FMA(TA, TB, TC * TD);
333
0
       T14 = FNMS(TC, TB, TA * TD);
334
0
        }
335
0
        {
336
0
       E TG, TI, TF, TH;
337
0
       TG = cr[WS(rs, 8)];
338
0
       TI = ci[WS(rs, 8)];
339
0
       TF = W[14];
340
0
       TH = W[15];
341
0
       TJ = FMA(TF, TG, TH * TI);
342
0
       T15 = FNMS(TH, TG, TF * TI);
343
0
        }
344
0
        TK = TE + TJ;
345
0
        T16 = T14 + T15;
346
0
        TL = Tz + TK;
347
0
        T1x = T13 + T16;
348
0
        {
349
0
       E T17, T18, T1a, T1b;
350
0
       T17 = FNMS(KP500000000, T16, T13);
351
0
       T18 = KP866025403 * (TJ - TE);
352
0
       T19 = T17 - T18;
353
0
       T1o = T18 + T17;
354
0
       T1a = FNMS(KP500000000, TK, Tz);
355
0
       T1b = KP866025403 * (T14 - T15);
356
0
       T1c = T1a - T1b;
357
0
       T1n = T1a + T1b;
358
0
        }
359
0
         }
360
0
         {
361
0
        E Ti, TX, Tn, TT, Ts, TU, Tt, TY;
362
0
        {
363
0
       E Tf, Th, Te, Tg;
364
0
       Tf = cr[WS(rs, 1)];
365
0
       Th = ci[WS(rs, 1)];
366
0
       Te = W[0];
367
0
       Tg = W[1];
368
0
       Ti = FMA(Te, Tf, Tg * Th);
369
0
       TX = FNMS(Tg, Tf, Te * Th);
370
0
        }
371
0
        {
372
0
       E Tk, Tm, Tj, Tl;
373
0
       Tk = cr[WS(rs, 4)];
374
0
       Tm = ci[WS(rs, 4)];
375
0
       Tj = W[6];
376
0
       Tl = W[7];
377
0
       Tn = FMA(Tj, Tk, Tl * Tm);
378
0
       TT = FNMS(Tl, Tk, Tj * Tm);
379
0
        }
380
0
        {
381
0
       E Tp, Tr, To, Tq;
382
0
       Tp = cr[WS(rs, 7)];
383
0
       Tr = ci[WS(rs, 7)];
384
0
       To = W[12];
385
0
       Tq = W[13];
386
0
       Ts = FMA(To, Tp, Tq * Tr);
387
0
       TU = FNMS(Tq, Tp, To * Tr);
388
0
        }
389
0
        Tt = Tn + Ts;
390
0
        TY = TT + TU;
391
0
        Tu = Ti + Tt;
392
0
        T1w = TX + TY;
393
0
        {
394
0
       E TS, TV, TZ, T10;
395
0
       TS = FNMS(KP500000000, Tt, Ti);
396
0
       TV = KP866025403 * (TT - TU);
397
0
       TW = TS - TV;
398
0
       T1k = TS + TV;
399
0
       TZ = FNMS(KP500000000, TY, TX);
400
0
       T10 = KP866025403 * (Ts - Tn);
401
0
       T11 = TZ - T10;
402
0
       T1l = T10 + TZ;
403
0
        }
404
0
         }
405
0
         {
406
0
        E T1y, Td, TM, T1v;
407
0
        T1y = KP866025403 * (T1w - T1x);
408
0
        Td = T1 + Tc;
409
0
        TM = Tu + TL;
410
0
        T1v = FNMS(KP500000000, TM, Td);
411
0
        cr[0] = Td + TM;
412
0
        cr[WS(rs, 3)] = T1v + T1y;
413
0
        ci[WS(rs, 2)] = T1v - T1y;
414
0
         }
415
0
         {
416
0
        E TR, T1I, T1e, T1K, T1i, T1H, T1f, T1J;
417
0
        TR = TN - TQ;
418
0
        T1I = T1D - T1A;
419
0
        {
420
0
       E T12, T1d, T1g, T1h;
421
0
       T12 = FMA(KP173648177, TW, KP984807753 * T11);
422
0
       T1d = FNMS(KP939692620, T1c, KP342020143 * T19);
423
0
       T1e = T12 + T1d;
424
0
       T1K = KP866025403 * (T1d - T12);
425
0
       T1g = FNMS(KP984807753, TW, KP173648177 * T11);
426
0
       T1h = FMA(KP342020143, T1c, KP939692620 * T19);
427
0
       T1i = KP866025403 * (T1g + T1h);
428
0
       T1H = T1g - T1h;
429
0
        }
430
0
        cr[WS(rs, 2)] = TR + T1e;
431
0
        ci[WS(rs, 6)] = T1H + T1I;
432
0
        T1f = FNMS(KP500000000, T1e, TR);
433
0
        ci[0] = T1f - T1i;
434
0
        ci[WS(rs, 3)] = T1f + T1i;
435
0
        T1J = FMS(KP500000000, T1H, T1I);
436
0
        cr[WS(rs, 5)] = T1J - T1K;
437
0
        cr[WS(rs, 8)] = T1K + T1J;
438
0
         }
439
0
         {
440
0
        E T1L, T1M, T1N, T1O;
441
0
        T1L = KP866025403 * (TL - Tu);
442
0
        T1M = T1C + T1B;
443
0
        T1N = T1w + T1x;
444
0
        T1O = FNMS(KP500000000, T1N, T1M);
445
0
        cr[WS(rs, 6)] = T1L - T1O;
446
0
        ci[WS(rs, 8)] = T1N + T1M;
447
0
        ci[WS(rs, 5)] = T1L + T1O;
448
0
         }
449
0
         {
450
0
        E T1j, T1E, T1q, T1z, T1u, T1F, T1r, T1G;
451
0
        T1j = TN + TQ;
452
0
        T1E = T1A + T1D;
453
0
        {
454
0
       E T1m, T1p, T1s, T1t;
455
0
       T1m = FMA(KP766044443, T1k, KP642787609 * T1l);
456
0
       T1p = FMA(KP173648177, T1n, KP984807753 * T1o);
457
0
       T1q = T1m + T1p;
458
0
       T1z = KP866025403 * (T1p - T1m);
459
0
       T1s = FNMS(KP642787609, T1k, KP766044443 * T1l);
460
0
       T1t = FNMS(KP984807753, T1n, KP173648177 * T1o);
461
0
       T1u = KP866025403 * (T1s - T1t);
462
0
       T1F = T1s + T1t;
463
0
        }
464
0
        cr[WS(rs, 1)] = T1j + T1q;
465
0
        T1r = FNMS(KP500000000, T1q, T1j);
466
0
        ci[WS(rs, 1)] = T1r - T1u;
467
0
        cr[WS(rs, 4)] = T1r + T1u;
468
0
        ci[WS(rs, 7)] = T1F + T1E;
469
0
        T1G = FNMS(KP500000000, T1F, T1E);
470
0
        cr[WS(rs, 7)] = T1z - T1G;
471
0
        ci[WS(rs, 4)] = T1z + T1G;
472
0
         }
473
0
    }
474
0
     }
475
0
}
476
477
static const tw_instr twinstr[] = {
478
     { TW_FULL, 1, 9 },
479
     { TW_NEXT, 1, 0 }
480
};
481
482
static const hc2hc_desc desc = { 9, "hf_9", twinstr, &GENUS, { 60, 36, 36, 0 } };
483
484
1
void X(codelet_hf_9) (planner *p) {
485
1
     X(khc2hc_register) (p, hf_9, &desc);
486
1
}
487
#endif