Coverage Report

Created: 2025-10-10 07:00

next uncovered line (L), next uncovered region (R), next uncovered branch (B)
/src/fftw3/rdft/scalar/r2cf/r2cf_128.c
Line
Count
Source
1
/*
2
 * Copyright (c) 2003, 2007-14 Matteo Frigo
3
 * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4
 *
5
 * This program is free software; you can redistribute it and/or modify
6
 * it under the terms of the GNU General Public License as published by
7
 * the Free Software Foundation; either version 2 of the License, or
8
 * (at your option) any later version.
9
 *
10
 * This program is distributed in the hope that it will be useful,
11
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13
 * GNU General Public License for more details.
14
 *
15
 * You should have received a copy of the GNU General Public License
16
 * along with this program; if not, write to the Free Software
17
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18
 *
19
 */
20
21
/* This file was automatically generated --- DO NOT EDIT */
22
/* Generated on Fri Oct 10 06:58:45 UTC 2025 */
23
24
#include "rdft/codelet-rdft.h"
25
26
#if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27
28
/* Generated by: ../../../genfft/gen_r2cf.native -fma -compact -variables 4 -pipeline-latency 4 -n 128 -name r2cf_128 -include rdft/scalar/r2cf.h */
29
30
/*
31
 * This function contains 956 FP additions, 516 FP multiplications,
32
 * (or, 440 additions, 0 multiplications, 516 fused multiply/add),
33
 * 186 stack variables, 31 constants, and 256 memory accesses
34
 */
35
#include "rdft/scalar/r2cf.h"
36
37
static void r2cf_128(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
38
{
39
     DK(KP803207531, +0.803207531480644909806676512963141923879569427);
40
     DK(KP989176509, +0.989176509964780973451673738016243063983689533);
41
     DK(KP741650546, +0.741650546272035369581266691172079863842265220);
42
     DK(KP148335987, +0.148335987538347428753676511486911367000625355);
43
     DK(KP740951125, +0.740951125354959091175616897495162729728955309);
44
     DK(KP998795456, +0.998795456205172392714771604759100694443203615);
45
     DK(KP906347169, +0.906347169019147157946142717268914412664134293);
46
     DK(KP049126849, +0.049126849769467254105343321271313617079695752);
47
     DK(KP970031253, +0.970031253194543992603984207286100251456865962);
48
     DK(KP857728610, +0.857728610000272069902269984284770137042490799);
49
     DK(KP250486960, +0.250486960191305461595702160124721208578685568);
50
     DK(KP599376933, +0.599376933681923766271389869014404232837890546);
51
     DK(KP941544065, +0.941544065183020778412509402599502357185589796);
52
     DK(KP903989293, +0.903989293123443331586200297230537048710132025);
53
     DK(KP357805721, +0.357805721314524104672487743774474392487532769);
54
     DK(KP472964775, +0.472964775891319928124438237972992463904131113);
55
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
56
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
57
     DK(KP098491403, +0.098491403357164253077197521291327432293052451);
58
     DK(KP820678790, +0.820678790828660330972281985331011598767386482);
59
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
60
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
61
     DK(KP534511135, +0.534511135950791641089685961295362908582039528);
62
     DK(KP303346683, +0.303346683607342391675883946941299872384187453);
63
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
64
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
65
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
66
     DK(KP668178637, +0.668178637919298919997757686523080761552472251);
67
     DK(KP198912367, +0.198912367379658006911597622644676228597850501);
68
     DK(KP414213562, +0.414213562373095048801688724209698078569671875);
69
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
70
     {
71
    INT i;
72
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(512, rs), MAKE_VOLATILE_STRIDE(512, csr), MAKE_VOLATILE_STRIDE(512, csi)) {
73
         E TcD, TdR, T27, T7r, T5P, T8v, Tf, Ta5, Tu, Tbn, TcG, TdS, T2e, T8w, T5S;
74
         E T7s, TK, Ta6, TcK, TdU, T2o, T5U, T7w, T8y, TZ, Ta7, TcN, TdV, T2x, T5V;
75
         E T7z, T8z, T1g, Taa, TcU, Tex, TcX, Tew, T1v, Tab, T2M, T6A, T7E, T9b, T7H;
76
         E T9a, T2T, T6z, T4X, T6L, Tdz, TeL, TdK, TeO, T5G, T6O, T8d, T9p, TaV, Tc3;
77
         E Tbi, Tc4, T8o, T9s, T3I, T6E, Tde, TeE, Tdp, TeH, T4r, T6H, T7U, T9i, Tao;
78
         E TbW, TaL, TbX, T85, T9l, T1L, Tad, Td3, TeA, Td6, Tez, T20, Tae, T37, T6x;
79
         E T7L, T9e, T7O, T9d, T3e, T6w, TbZ, Tc0, T3Z, T4s, Tds, TeF, T4g, T4t, T80;
80
         E T87, Tdl, TeI, T7X, T86, TaD, TaM, Tc6, Tc7, T5e, T5H, TdN, TeM, T5v, T5I;
81
         E T8j, T8q, TdG, TeP, T8g, T8p, Tba, Tbj;
82
         {
83
        E T3, T23, Td, T25, T6, T5N, Ta, T24;
84
        {
85
       E T1, T2, Tb, Tc;
86
       T1 = R0[0];
87
       T2 = R0[WS(rs, 32)];
88
       T3 = T1 + T2;
89
       T23 = T1 - T2;
90
       Tb = R0[WS(rs, 56)];
91
       Tc = R0[WS(rs, 24)];
92
       Td = Tb + Tc;
93
       T25 = Tb - Tc;
94
        }
95
        {
96
       E T4, T5, T8, T9;
97
       T4 = R0[WS(rs, 16)];
98
       T5 = R0[WS(rs, 48)];
99
       T6 = T4 + T5;
100
       T5N = T4 - T5;
101
       T8 = R0[WS(rs, 8)];
102
       T9 = R0[WS(rs, 40)];
103
       Ta = T8 + T9;
104
       T24 = T8 - T9;
105
        }
106
        TcD = T3 - T6;
107
        TdR = Td - Ta;
108
        {
109
       E T26, T5O, T7, Te;
110
       T26 = T24 + T25;
111
       T27 = FMA(KP707106781, T26, T23);
112
       T7r = FNMS(KP707106781, T26, T23);
113
       T5O = T25 - T24;
114
       T5P = FNMS(KP707106781, T5O, T5N);
115
       T8v = FMA(KP707106781, T5O, T5N);
116
       T7 = T3 + T6;
117
       Te = Ta + Td;
118
       Tf = T7 + Te;
119
       Ta5 = T7 - Te;
120
        }
121
         }
122
         {
123
        E Ti, T28, Ts, T2c, Tl, T29, Tp, T2b;
124
        {
125
       E Tg, Th, Tq, Tr;
126
       Tg = R0[WS(rs, 4)];
127
       Th = R0[WS(rs, 36)];
128
       Ti = Tg + Th;
129
       T28 = Tg - Th;
130
       Tq = R0[WS(rs, 12)];
131
       Tr = R0[WS(rs, 44)];
132
       Ts = Tq + Tr;
133
       T2c = Tq - Tr;
134
        }
135
        {
136
       E Tj, Tk, Tn, To;
137
       Tj = R0[WS(rs, 20)];
138
       Tk = R0[WS(rs, 52)];
139
       Tl = Tj + Tk;
140
       T29 = Tj - Tk;
141
       Tn = R0[WS(rs, 60)];
142
       To = R0[WS(rs, 28)];
143
       Tp = Tn + To;
144
       T2b = Tn - To;
145
        }
146
        {
147
       E Tm, Tt, TcE, TcF;
148
       Tm = Ti + Tl;
149
       Tt = Tp + Ts;
150
       Tu = Tm + Tt;
151
       Tbn = Tt - Tm;
152
       TcE = Ti - Tl;
153
       TcF = Tp - Ts;
154
       TcG = TcE + TcF;
155
       TdS = TcF - TcE;
156
        }
157
        {
158
       E T2a, T2d, T5Q, T5R;
159
       T2a = FNMS(KP414213562, T29, T28);
160
       T2d = FMA(KP414213562, T2c, T2b);
161
       T2e = T2a + T2d;
162
       T8w = T2d - T2a;
163
       T5Q = FMA(KP414213562, T28, T29);
164
       T5R = FNMS(KP414213562, T2b, T2c);
165
       T5S = T5Q + T5R;
166
       T7s = T5Q - T5R;
167
        }
168
         }
169
         {
170
        E Ty, T2g, TB, T2l, TF, T2m, TI, T2j;
171
        {
172
       E Tw, Tx, Tz, TA;
173
       Tw = R0[WS(rs, 2)];
174
       Tx = R0[WS(rs, 34)];
175
       Ty = Tw + Tx;
176
       T2g = Tw - Tx;
177
       Tz = R0[WS(rs, 18)];
178
       TA = R0[WS(rs, 50)];
179
       TB = Tz + TA;
180
       T2l = Tz - TA;
181
       {
182
            E TD, TE, T2h, TG, TH, T2i;
183
            TD = R0[WS(rs, 10)];
184
            TE = R0[WS(rs, 42)];
185
            T2h = TD - TE;
186
            TG = R0[WS(rs, 58)];
187
            TH = R0[WS(rs, 26)];
188
            T2i = TG - TH;
189
            TF = TD + TE;
190
            T2m = T2h - T2i;
191
            TI = TG + TH;
192
            T2j = T2h + T2i;
193
       }
194
        }
195
        {
196
       E TC, TJ, TcI, TcJ;
197
       TC = Ty + TB;
198
       TJ = TF + TI;
199
       TK = TC + TJ;
200
       Ta6 = TC - TJ;
201
       TcI = Ty - TB;
202
       TcJ = TI - TF;
203
       TcK = FMA(KP414213562, TcJ, TcI);
204
       TdU = FNMS(KP414213562, TcI, TcJ);
205
        }
206
        {
207
       E T2k, T2n, T7u, T7v;
208
       T2k = FMA(KP707106781, T2j, T2g);
209
       T2n = FMA(KP707106781, T2m, T2l);
210
       T2o = FNMS(KP198912367, T2n, T2k);
211
       T5U = FMA(KP198912367, T2k, T2n);
212
       T7u = FNMS(KP707106781, T2j, T2g);
213
       T7v = FNMS(KP707106781, T2m, T2l);
214
       T7w = FMA(KP668178637, T7v, T7u);
215
       T8y = FNMS(KP668178637, T7u, T7v);
216
        }
217
         }
218
         {
219
        E TN, T2p, TQ, T2u, TU, T2v, TX, T2s;
220
        {
221
       E TL, TM, TO, TP;
222
       TL = R0[WS(rs, 62)];
223
       TM = R0[WS(rs, 30)];
224
       TN = TL + TM;
225
       T2p = TL - TM;
226
       TO = R0[WS(rs, 14)];
227
       TP = R0[WS(rs, 46)];
228
       TQ = TO + TP;
229
       T2u = TO - TP;
230
       {
231
            E TS, TT, T2q, TV, TW, T2r;
232
            TS = R0[WS(rs, 6)];
233
            TT = R0[WS(rs, 38)];
234
            T2q = TS - TT;
235
            TV = R0[WS(rs, 54)];
236
            TW = R0[WS(rs, 22)];
237
            T2r = TV - TW;
238
            TU = TS + TT;
239
            T2v = T2q - T2r;
240
            TX = TV + TW;
241
            T2s = T2q + T2r;
242
       }
243
        }
244
        {
245
       E TR, TY, TcL, TcM;
246
       TR = TN + TQ;
247
       TY = TU + TX;
248
       TZ = TR + TY;
249
       Ta7 = TR - TY;
250
       TcL = TN - TQ;
251
       TcM = TX - TU;
252
       TcN = FNMS(KP414213562, TcM, TcL);
253
       TdV = FMA(KP414213562, TcL, TcM);
254
        }
255
        {
256
       E T2t, T2w, T7x, T7y;
257
       T2t = FMA(KP707106781, T2s, T2p);
258
       T2w = FMA(KP707106781, T2v, T2u);
259
       T2x = FMA(KP198912367, T2w, T2t);
260
       T5V = FNMS(KP198912367, T2t, T2w);
261
       T7x = FNMS(KP707106781, T2s, T2p);
262
       T7y = FNMS(KP707106781, T2v, T2u);
263
       T7z = FNMS(KP668178637, T7y, T7x);
264
       T8z = FMA(KP668178637, T7x, T7y);
265
        }
266
         }
267
         {
268
        E T14, T2A, T17, T2N, T1b, T2O, T1e, T2D, T1j, T1m, T2H, TcR, T2Q, T1q, T1t;
269
        E T2K, TcS, T2R;
270
        {
271
       E T12, T13, T15, T16;
272
       T12 = R0[WS(rs, 1)];
273
       T13 = R0[WS(rs, 33)];
274
       T14 = T12 + T13;
275
       T2A = T12 - T13;
276
       T15 = R0[WS(rs, 17)];
277
       T16 = R0[WS(rs, 49)];
278
       T17 = T15 + T16;
279
       T2N = T15 - T16;
280
        }
281
        {
282
       E T19, T1a, T2B, T1c, T1d, T2C;
283
       T19 = R0[WS(rs, 9)];
284
       T1a = R0[WS(rs, 41)];
285
       T2B = T19 - T1a;
286
       T1c = R0[WS(rs, 57)];
287
       T1d = R0[WS(rs, 25)];
288
       T2C = T1c - T1d;
289
       T1b = T19 + T1a;
290
       T2O = T2B - T2C;
291
       T1e = T1c + T1d;
292
       T2D = T2B + T2C;
293
        }
294
        {
295
       E T2F, T2G, T2I, T2J;
296
       {
297
            E T1h, T1i, T1k, T1l;
298
            T1h = R0[WS(rs, 5)];
299
            T1i = R0[WS(rs, 37)];
300
            T1j = T1h + T1i;
301
            T2F = T1h - T1i;
302
            T1k = R0[WS(rs, 21)];
303
            T1l = R0[WS(rs, 53)];
304
            T1m = T1k + T1l;
305
            T2G = T1k - T1l;
306
       }
307
       T2H = FNMS(KP414213562, T2G, T2F);
308
       TcR = T1j - T1m;
309
       T2Q = FMA(KP414213562, T2F, T2G);
310
       {
311
            E T1o, T1p, T1r, T1s;
312
            T1o = R0[WS(rs, 61)];
313
            T1p = R0[WS(rs, 29)];
314
            T1q = T1o + T1p;
315
            T2I = T1o - T1p;
316
            T1r = R0[WS(rs, 13)];
317
            T1s = R0[WS(rs, 45)];
318
            T1t = T1r + T1s;
319
            T2J = T1r - T1s;
320
       }
321
       T2K = FMA(KP414213562, T2J, T2I);
322
       TcS = T1q - T1t;
323
       T2R = FNMS(KP414213562, T2I, T2J);
324
        }
325
        {
326
       E T18, T1f, TcQ, TcT;
327
       T18 = T14 + T17;
328
       T1f = T1b + T1e;
329
       T1g = T18 + T1f;
330
       Taa = T18 - T1f;
331
       TcQ = T14 - T17;
332
       TcT = TcR + TcS;
333
       TcU = FMA(KP707106781, TcT, TcQ);
334
       Tex = FNMS(KP707106781, TcT, TcQ);
335
        }
336
        {
337
       E TcV, TcW, T1n, T1u;
338
       TcV = T1e - T1b;
339
       TcW = TcS - TcR;
340
       TcX = FMA(KP707106781, TcW, TcV);
341
       Tew = FNMS(KP707106781, TcW, TcV);
342
       T1n = T1j + T1m;
343
       T1u = T1q + T1t;
344
       T1v = T1n + T1u;
345
       Tab = T1u - T1n;
346
        }
347
        {
348
       E T2E, T2L, T7C, T7D;
349
       T2E = FMA(KP707106781, T2D, T2A);
350
       T2L = T2H + T2K;
351
       T2M = FMA(KP923879532, T2L, T2E);
352
       T6A = FNMS(KP923879532, T2L, T2E);
353
       T7C = FNMS(KP707106781, T2D, T2A);
354
       T7D = T2Q - T2R;
355
       T7E = FMA(KP923879532, T7D, T7C);
356
       T9b = FNMS(KP923879532, T7D, T7C);
357
        }
358
        {
359
       E T7F, T7G, T2P, T2S;
360
       T7F = FNMS(KP707106781, T2O, T2N);
361
       T7G = T2K - T2H;
362
       T7H = FMA(KP923879532, T7G, T7F);
363
       T9a = FNMS(KP923879532, T7G, T7F);
364
       T2P = FMA(KP707106781, T2O, T2N);
365
       T2S = T2Q + T2R;
366
       T2T = FMA(KP923879532, T2S, T2P);
367
       T6z = FNMS(KP923879532, T2S, T2P);
368
        }
369
         }
370
         {
371
        E T4z, TaP, T5A, TaQ, T4G, TaT, T5B, TaS, Tbf, Tbg, T4O, Tdw, T5D, Tbc, Tbd;
372
        E T4V, Tdx, T5E;
373
        {
374
       E T4x, T4y, T5y, T5z;
375
       T4x = R1[WS(rs, 63)];
376
       T4y = R1[WS(rs, 31)];
377
       T4z = T4x - T4y;
378
       TaP = T4x + T4y;
379
       T5y = R1[WS(rs, 47)];
380
       T5z = R1[WS(rs, 15)];
381
       T5A = T5y - T5z;
382
       TaQ = T5z + T5y;
383
        }
384
        {
385
       E T4A, T4B, T4C, T4D, T4E, T4F;
386
       T4A = R1[WS(rs, 7)];
387
       T4B = R1[WS(rs, 39)];
388
       T4C = T4A - T4B;
389
       T4D = R1[WS(rs, 55)];
390
       T4E = R1[WS(rs, 23)];
391
       T4F = T4D - T4E;
392
       T4G = T4C + T4F;
393
       TaT = T4D + T4E;
394
       T5B = T4F - T4C;
395
       TaS = T4A + T4B;
396
        }
397
        {
398
       E T4K, T4N, T4R, T4U;
399
       {
400
            E T4I, T4J, T4L, T4M;
401
            T4I = R1[WS(rs, 3)];
402
            T4J = R1[WS(rs, 35)];
403
            T4K = T4I - T4J;
404
            Tbf = T4I + T4J;
405
            T4L = R1[WS(rs, 51)];
406
            T4M = R1[WS(rs, 19)];
407
            T4N = T4L - T4M;
408
            Tbg = T4M + T4L;
409
       }
410
       T4O = FMA(KP414213562, T4N, T4K);
411
       Tdw = Tbf - Tbg;
412
       T5D = FNMS(KP414213562, T4K, T4N);
413
       {
414
            E T4P, T4Q, T4S, T4T;
415
            T4P = R1[WS(rs, 59)];
416
            T4Q = R1[WS(rs, 27)];
417
            T4R = T4P - T4Q;
418
            Tbc = T4P + T4Q;
419
            T4S = R1[WS(rs, 43)];
420
            T4T = R1[WS(rs, 11)];
421
            T4U = T4S - T4T;
422
            Tbd = T4T + T4S;
423
       }
424
       T4V = FNMS(KP414213562, T4U, T4R);
425
       Tdx = Tbc - Tbd;
426
       T5E = FMA(KP414213562, T4R, T4U);
427
        }
428
        {
429
       E T4H, T4W, Tdv, Tdy;
430
       T4H = FMA(KP707106781, T4G, T4z);
431
       T4W = T4O + T4V;
432
       T4X = FMA(KP923879532, T4W, T4H);
433
       T6L = FNMS(KP923879532, T4W, T4H);
434
       Tdv = TaP - TaQ;
435
       Tdy = Tdw + Tdx;
436
       Tdz = FMA(KP707106781, Tdy, Tdv);
437
       TeL = FNMS(KP707106781, Tdy, Tdv);
438
        }
439
        {
440
       E TdI, TdJ, T5C, T5F;
441
       TdI = TaT - TaS;
442
       TdJ = Tdx - Tdw;
443
       TdK = FMA(KP707106781, TdJ, TdI);
444
       TeO = FNMS(KP707106781, TdJ, TdI);
445
       T5C = FMA(KP707106781, T5B, T5A);
446
       T5F = T5D + T5E;
447
       T5G = FMA(KP923879532, T5F, T5C);
448
       T6O = FNMS(KP923879532, T5F, T5C);
449
        }
450
        {
451
       E T8b, T8c, TaR, TaU;
452
       T8b = FNMS(KP707106781, T4G, T4z);
453
       T8c = T5E - T5D;
454
       T8d = FMA(KP923879532, T8c, T8b);
455
       T9p = FNMS(KP923879532, T8c, T8b);
456
       TaR = TaP + TaQ;
457
       TaU = TaS + TaT;
458
       TaV = TaR - TaU;
459
       Tc3 = TaR + TaU;
460
        }
461
        {
462
       E Tbe, Tbh, T8m, T8n;
463
       Tbe = Tbc + Tbd;
464
       Tbh = Tbf + Tbg;
465
       Tbi = Tbe - Tbh;
466
       Tc4 = Tbh + Tbe;
467
       T8m = FNMS(KP707106781, T5B, T5A);
468
       T8n = T4V - T4O;
469
       T8o = FNMS(KP923879532, T8n, T8m);
470
       T9s = FMA(KP923879532, T8n, T8m);
471
        }
472
         }
473
         {
474
        E T3k, Tai, T4l, Taj, T3r, Tam, T4m, Tal, TaI, TaJ, T3z, Tdb, T4o, TaF, TaG;
475
        E T3G, Tdc, T4p;
476
        {
477
       E T3i, T3j, T4j, T4k;
478
       T3i = R1[0];
479
       T3j = R1[WS(rs, 32)];
480
       T3k = T3i - T3j;
481
       Tai = T3i + T3j;
482
       T4j = R1[WS(rs, 16)];
483
       T4k = R1[WS(rs, 48)];
484
       T4l = T4j - T4k;
485
       Taj = T4j + T4k;
486
        }
487
        {
488
       E T3l, T3m, T3n, T3o, T3p, T3q;
489
       T3l = R1[WS(rs, 8)];
490
       T3m = R1[WS(rs, 40)];
491
       T3n = T3l - T3m;
492
       T3o = R1[WS(rs, 56)];
493
       T3p = R1[WS(rs, 24)];
494
       T3q = T3o - T3p;
495
       T3r = T3n + T3q;
496
       Tam = T3o + T3p;
497
       T4m = T3n - T3q;
498
       Tal = T3l + T3m;
499
        }
500
        {
501
       E T3v, T3y, T3C, T3F;
502
       {
503
            E T3t, T3u, T3w, T3x;
504
            T3t = R1[WS(rs, 4)];
505
            T3u = R1[WS(rs, 36)];
506
            T3v = T3t - T3u;
507
            TaI = T3t + T3u;
508
            T3w = R1[WS(rs, 20)];
509
            T3x = R1[WS(rs, 52)];
510
            T3y = T3w - T3x;
511
            TaJ = T3w + T3x;
512
       }
513
       T3z = FNMS(KP414213562, T3y, T3v);
514
       Tdb = TaI - TaJ;
515
       T4o = FMA(KP414213562, T3v, T3y);
516
       {
517
            E T3A, T3B, T3D, T3E;
518
            T3A = R1[WS(rs, 60)];
519
            T3B = R1[WS(rs, 28)];
520
            T3C = T3A - T3B;
521
            TaF = T3A + T3B;
522
            T3D = R1[WS(rs, 12)];
523
            T3E = R1[WS(rs, 44)];
524
            T3F = T3D - T3E;
525
            TaG = T3D + T3E;
526
       }
527
       T3G = FMA(KP414213562, T3F, T3C);
528
       Tdc = TaF - TaG;
529
       T4p = FNMS(KP414213562, T3C, T3F);
530
        }
531
        {
532
       E T3s, T3H, Tda, Tdd;
533
       T3s = FMA(KP707106781, T3r, T3k);
534
       T3H = T3z + T3G;
535
       T3I = FMA(KP923879532, T3H, T3s);
536
       T6E = FNMS(KP923879532, T3H, T3s);
537
       Tda = Tai - Taj;
538
       Tdd = Tdb + Tdc;
539
       Tde = FMA(KP707106781, Tdd, Tda);
540
       TeE = FNMS(KP707106781, Tdd, Tda);
541
        }
542
        {
543
       E Tdn, Tdo, T4n, T4q;
544
       Tdn = Tam - Tal;
545
       Tdo = Tdc - Tdb;
546
       Tdp = FMA(KP707106781, Tdo, Tdn);
547
       TeH = FNMS(KP707106781, Tdo, Tdn);
548
       T4n = FMA(KP707106781, T4m, T4l);
549
       T4q = T4o + T4p;
550
       T4r = FMA(KP923879532, T4q, T4n);
551
       T6H = FNMS(KP923879532, T4q, T4n);
552
        }
553
        {
554
       E T7S, T7T, Tak, Tan;
555
       T7S = FNMS(KP707106781, T3r, T3k);
556
       T7T = T4o - T4p;
557
       T7U = FMA(KP923879532, T7T, T7S);
558
       T9i = FNMS(KP923879532, T7T, T7S);
559
       Tak = Tai + Taj;
560
       Tan = Tal + Tam;
561
       Tao = Tak - Tan;
562
       TbW = Tak + Tan;
563
        }
564
        {
565
       E TaH, TaK, T83, T84;
566
       TaH = TaF + TaG;
567
       TaK = TaI + TaJ;
568
       TaL = TaH - TaK;
569
       TbX = TaK + TaH;
570
       T83 = FNMS(KP707106781, T4m, T4l);
571
       T84 = T3G - T3z;
572
       T85 = FMA(KP923879532, T84, T83);
573
       T9l = FNMS(KP923879532, T84, T83);
574
        }
575
         }
576
         {
577
        E T1z, T2V, T1C, T38, T1G, T39, T1J, T2Y, T1O, T1R, T32, Td0, T3b, T1V, T1Y;
578
        E T35, Td1, T3c;
579
        {
580
       E T1x, T1y, T1A, T1B;
581
       T1x = R0[WS(rs, 63)];
582
       T1y = R0[WS(rs, 31)];
583
       T1z = T1x + T1y;
584
       T2V = T1x - T1y;
585
       T1A = R0[WS(rs, 15)];
586
       T1B = R0[WS(rs, 47)];
587
       T1C = T1A + T1B;
588
       T38 = T1A - T1B;
589
        }
590
        {
591
       E T1E, T1F, T2W, T1H, T1I, T2X;
592
       T1E = R0[WS(rs, 7)];
593
       T1F = R0[WS(rs, 39)];
594
       T2W = T1E - T1F;
595
       T1H = R0[WS(rs, 55)];
596
       T1I = R0[WS(rs, 23)];
597
       T2X = T1H - T1I;
598
       T1G = T1E + T1F;
599
       T39 = T2W - T2X;
600
       T1J = T1H + T1I;
601
       T2Y = T2W + T2X;
602
        }
603
        {
604
       E T30, T31, T33, T34;
605
       {
606
            E T1M, T1N, T1P, T1Q;
607
            T1M = R0[WS(rs, 3)];
608
            T1N = R0[WS(rs, 35)];
609
            T1O = T1M + T1N;
610
            T30 = T1M - T1N;
611
            T1P = R0[WS(rs, 19)];
612
            T1Q = R0[WS(rs, 51)];
613
            T1R = T1P + T1Q;
614
            T31 = T1P - T1Q;
615
       }
616
       T32 = FNMS(KP414213562, T31, T30);
617
       Td0 = T1O - T1R;
618
       T3b = FMA(KP414213562, T30, T31);
619
       {
620
            E T1T, T1U, T1W, T1X;
621
            T1T = R0[WS(rs, 59)];
622
            T1U = R0[WS(rs, 27)];
623
            T1V = T1T + T1U;
624
            T33 = T1T - T1U;
625
            T1W = R0[WS(rs, 11)];
626
            T1X = R0[WS(rs, 43)];
627
            T1Y = T1W + T1X;
628
            T34 = T1W - T1X;
629
       }
630
       T35 = FMA(KP414213562, T34, T33);
631
       Td1 = T1V - T1Y;
632
       T3c = FNMS(KP414213562, T33, T34);
633
        }
634
        {
635
       E T1D, T1K, TcZ, Td2;
636
       T1D = T1z + T1C;
637
       T1K = T1G + T1J;
638
       T1L = T1D + T1K;
639
       Tad = T1D - T1K;
640
       TcZ = T1z - T1C;
641
       Td2 = Td0 + Td1;
642
       Td3 = FMA(KP707106781, Td2, TcZ);
643
       TeA = FNMS(KP707106781, Td2, TcZ);
644
        }
645
        {
646
       E Td4, Td5, T1S, T1Z;
647
       Td4 = T1J - T1G;
648
       Td5 = Td1 - Td0;
649
       Td6 = FMA(KP707106781, Td5, Td4);
650
       Tez = FNMS(KP707106781, Td5, Td4);
651
       T1S = T1O + T1R;
652
       T1Z = T1V + T1Y;
653
       T20 = T1S + T1Z;
654
       Tae = T1Z - T1S;
655
        }
656
        {
657
       E T2Z, T36, T7J, T7K;
658
       T2Z = FMA(KP707106781, T2Y, T2V);
659
       T36 = T32 + T35;
660
       T37 = FMA(KP923879532, T36, T2Z);
661
       T6x = FNMS(KP923879532, T36, T2Z);
662
       T7J = FNMS(KP707106781, T2Y, T2V);
663
       T7K = T3b - T3c;
664
       T7L = FMA(KP923879532, T7K, T7J);
665
       T9e = FNMS(KP923879532, T7K, T7J);
666
        }
667
        {
668
       E T7M, T7N, T3a, T3d;
669
       T7M = FNMS(KP707106781, T39, T38);
670
       T7N = T35 - T32;
671
       T7O = FMA(KP923879532, T7N, T7M);
672
       T9d = FNMS(KP923879532, T7N, T7M);
673
       T3a = FMA(KP707106781, T39, T38);
674
       T3d = T3b + T3c;
675
       T3e = FMA(KP923879532, T3d, T3a);
676
       T6w = FNMS(KP923879532, T3d, T3a);
677
        }
678
         }
679
         {
680
        E T3L, Tdf, T3W, Tar, T42, Tdi, T4d, Tay, T3S, Tdg, T3X, Tau, T49, Tdj, T4e;
681
        E TaB, Tdh, Tdk;
682
        {
683
       E T3J, T3K, Tap, T3U, T3V, Taq;
684
       T3J = R1[WS(rs, 2)];
685
       T3K = R1[WS(rs, 34)];
686
       Tap = T3J + T3K;
687
       T3U = R1[WS(rs, 18)];
688
       T3V = R1[WS(rs, 50)];
689
       Taq = T3U + T3V;
690
       T3L = T3J - T3K;
691
       Tdf = Tap - Taq;
692
       T3W = T3U - T3V;
693
       Tar = Tap + Taq;
694
        }
695
        {
696
       E T40, T41, Taw, T4b, T4c, Tax;
697
       T40 = R1[WS(rs, 62)];
698
       T41 = R1[WS(rs, 30)];
699
       Taw = T40 + T41;
700
       T4b = R1[WS(rs, 14)];
701
       T4c = R1[WS(rs, 46)];
702
       Tax = T4b + T4c;
703
       T42 = T40 - T41;
704
       Tdi = Taw - Tax;
705
       T4d = T4b - T4c;
706
       Tay = Taw + Tax;
707
        }
708
        {
709
       E T3O, Tas, T3R, Tat;
710
       {
711
            E T3M, T3N, T3P, T3Q;
712
            T3M = R1[WS(rs, 10)];
713
            T3N = R1[WS(rs, 42)];
714
            T3O = T3M - T3N;
715
            Tas = T3M + T3N;
716
            T3P = R1[WS(rs, 58)];
717
            T3Q = R1[WS(rs, 26)];
718
            T3R = T3P - T3Q;
719
            Tat = T3P + T3Q;
720
       }
721
       T3S = T3O + T3R;
722
       Tdg = Tat - Tas;
723
       T3X = T3O - T3R;
724
       Tau = Tas + Tat;
725
        }
726
        {
727
       E T45, Taz, T48, TaA;
728
       {
729
            E T43, T44, T46, T47;
730
            T43 = R1[WS(rs, 6)];
731
            T44 = R1[WS(rs, 38)];
732
            T45 = T43 - T44;
733
            Taz = T43 + T44;
734
            T46 = R1[WS(rs, 54)];
735
            T47 = R1[WS(rs, 22)];
736
            T48 = T46 - T47;
737
            TaA = T46 + T47;
738
       }
739
       T49 = T45 + T48;
740
       Tdj = TaA - Taz;
741
       T4e = T45 - T48;
742
       TaB = Taz + TaA;
743
        }
744
        TbZ = Tar + Tau;
745
        Tc0 = Tay + TaB;
746
        {
747
       E T3T, T3Y, Tdq, Tdr;
748
       T3T = FMA(KP707106781, T3S, T3L);
749
       T3Y = FMA(KP707106781, T3X, T3W);
750
       T3Z = FNMS(KP198912367, T3Y, T3T);
751
       T4s = FMA(KP198912367, T3T, T3Y);
752
       Tdq = FNMS(KP414213562, Tdf, Tdg);
753
       Tdr = FMA(KP414213562, Tdi, Tdj);
754
       Tds = Tdq + Tdr;
755
       TeF = Tdr - Tdq;
756
        }
757
        {
758
       E T4a, T4f, T7Y, T7Z;
759
       T4a = FMA(KP707106781, T49, T42);
760
       T4f = FMA(KP707106781, T4e, T4d);
761
       T4g = FMA(KP198912367, T4f, T4a);
762
       T4t = FNMS(KP198912367, T4a, T4f);
763
       T7Y = FNMS(KP707106781, T49, T42);
764
       T7Z = FNMS(KP707106781, T4e, T4d);
765
       T80 = FNMS(KP668178637, T7Z, T7Y);
766
       T87 = FMA(KP668178637, T7Y, T7Z);
767
        }
768
        Tdh = FMA(KP414213562, Tdg, Tdf);
769
        Tdk = FNMS(KP414213562, Tdj, Tdi);
770
        Tdl = Tdh + Tdk;
771
        TeI = Tdh - Tdk;
772
        {
773
       E T7V, T7W, Tav, TaC;
774
       T7V = FNMS(KP707106781, T3S, T3L);
775
       T7W = FNMS(KP707106781, T3X, T3W);
776
       T7X = FMA(KP668178637, T7W, T7V);
777
       T86 = FNMS(KP668178637, T7V, T7W);
778
       Tav = Tar - Tau;
779
       TaC = Tay - TaB;
780
       TaD = Tav + TaC;
781
       TaM = TaC - Tav;
782
        }
783
         }
784
         {
785
        E T50, TdA, T5b, TaY, T5h, TdD, T5s, Tb5, T57, TdB, T5c, Tb1, T5o, TdE, T5t;
786
        E Tb8, TdC, TdF;
787
        {
788
       E T4Y, T4Z, TaW, T59, T5a, TaX;
789
       T4Y = R1[WS(rs, 1)];
790
       T4Z = R1[WS(rs, 33)];
791
       TaW = T4Y + T4Z;
792
       T59 = R1[WS(rs, 49)];
793
       T5a = R1[WS(rs, 17)];
794
       TaX = T5a + T59;
795
       T50 = T4Y - T4Z;
796
       TdA = TaW - TaX;
797
       T5b = T59 - T5a;
798
       TaY = TaW + TaX;
799
        }
800
        {
801
       E T5f, T5g, Tb3, T5q, T5r, Tb4;
802
       T5f = R1[WS(rs, 61)];
803
       T5g = R1[WS(rs, 29)];
804
       Tb3 = T5f + T5g;
805
       T5q = R1[WS(rs, 45)];
806
       T5r = R1[WS(rs, 13)];
807
       Tb4 = T5r + T5q;
808
       T5h = T5f - T5g;
809
       TdD = Tb3 - Tb4;
810
       T5s = T5q - T5r;
811
       Tb5 = Tb3 + Tb4;
812
        }
813
        {
814
       E T53, TaZ, T56, Tb0;
815
       {
816
            E T51, T52, T54, T55;
817
            T51 = R1[WS(rs, 9)];
818
            T52 = R1[WS(rs, 41)];
819
            T53 = T51 - T52;
820
            TaZ = T51 + T52;
821
            T54 = R1[WS(rs, 57)];
822
            T55 = R1[WS(rs, 25)];
823
            T56 = T54 - T55;
824
            Tb0 = T54 + T55;
825
       }
826
       T57 = T53 + T56;
827
       TdB = Tb0 - TaZ;
828
       T5c = T56 - T53;
829
       Tb1 = TaZ + Tb0;
830
        }
831
        {
832
       E T5k, Tb6, T5n, Tb7;
833
       {
834
            E T5i, T5j, T5l, T5m;
835
            T5i = R1[WS(rs, 5)];
836
            T5j = R1[WS(rs, 37)];
837
            T5k = T5i - T5j;
838
            Tb6 = T5i + T5j;
839
            T5l = R1[WS(rs, 53)];
840
            T5m = R1[WS(rs, 21)];
841
            T5n = T5l - T5m;
842
            Tb7 = T5l + T5m;
843
       }
844
       T5o = T5k + T5n;
845
       TdE = Tb7 - Tb6;
846
       T5t = T5n - T5k;
847
       Tb8 = Tb6 + Tb7;
848
        }
849
        Tc6 = TaY + Tb1;
850
        Tc7 = Tb5 + Tb8;
851
        {
852
       E T58, T5d, TdL, TdM;
853
       T58 = FMA(KP707106781, T57, T50);
854
       T5d = FMA(KP707106781, T5c, T5b);
855
       T5e = FMA(KP198912367, T5d, T58);
856
       T5H = FNMS(KP198912367, T58, T5d);
857
       TdL = FNMS(KP414213562, TdA, TdB);
858
       TdM = FMA(KP414213562, TdD, TdE);
859
       TdN = TdL + TdM;
860
       TeM = TdM - TdL;
861
        }
862
        {
863
       E T5p, T5u, T8h, T8i;
864
       T5p = FMA(KP707106781, T5o, T5h);
865
       T5u = FMA(KP707106781, T5t, T5s);
866
       T5v = FNMS(KP198912367, T5u, T5p);
867
       T5I = FMA(KP198912367, T5p, T5u);
868
       T8h = FNMS(KP707106781, T5o, T5h);
869
       T8i = FNMS(KP707106781, T5t, T5s);
870
       T8j = FMA(KP668178637, T8i, T8h);
871
       T8q = FNMS(KP668178637, T8h, T8i);
872
        }
873
        TdC = FMA(KP414213562, TdB, TdA);
874
        TdF = FNMS(KP414213562, TdE, TdD);
875
        TdG = TdC + TdF;
876
        TeP = TdF - TdC;
877
        {
878
       E T8e, T8f, Tb2, Tb9;
879
       T8e = FNMS(KP707106781, T57, T50);
880
       T8f = FNMS(KP707106781, T5c, T5b);
881
       T8g = FNMS(KP668178637, T8f, T8e);
882
       T8p = FMA(KP668178637, T8e, T8f);
883
       Tb2 = TaY - Tb1;
884
       Tb9 = Tb5 - Tb8;
885
       Tba = Tb2 + Tb9;
886
       Tbj = Tb9 - Tb2;
887
        }
888
         }
889
         {
890
        E T11, TbV, Tc9, Tcf, T22, Tcb, Tc2, Tce;
891
        {
892
       E Tv, T10, Tc5, Tc8;
893
       Tv = Tf + Tu;
894
       T10 = TK + TZ;
895
       T11 = Tv + T10;
896
       TbV = Tv - T10;
897
       Tc5 = Tc3 + Tc4;
898
       Tc8 = Tc6 + Tc7;
899
       Tc9 = Tc5 - Tc8;
900
       Tcf = Tc5 + Tc8;
901
        }
902
        {
903
       E T1w, T21, TbY, Tc1;
904
       T1w = T1g + T1v;
905
       T21 = T1L + T20;
906
       T22 = T1w + T21;
907
       Tcb = T21 - T1w;
908
       TbY = TbW + TbX;
909
       Tc1 = TbZ + Tc0;
910
       Tc2 = TbY - Tc1;
911
       Tce = TbY + Tc1;
912
        }
913
        Cr[WS(csr, 32)] = T11 - T22;
914
        Ci[WS(csi, 32)] = Tcf - Tce;
915
        {
916
       E Tca, Tcc, Tcd, Tcg;
917
       Tca = Tc2 + Tc9;
918
       Cr[WS(csr, 48)] = FNMS(KP707106781, Tca, TbV);
919
       Cr[WS(csr, 16)] = FMA(KP707106781, Tca, TbV);
920
       Tcc = Tc9 - Tc2;
921
       Ci[WS(csi, 16)] = FMA(KP707106781, Tcc, Tcb);
922
       Ci[WS(csi, 48)] = FMS(KP707106781, Tcc, Tcb);
923
       Tcd = T11 + T22;
924
       Tcg = Tce + Tcf;
925
       Cr[WS(csr, 64)] = Tcd - Tcg;
926
       Cr[0] = Tcd + Tcg;
927
        }
928
         }
929
         {
930
        E Tch, Tct, Tck, Tcu, Tco, Tcy, Tcr, Tcz, Tci, Tcj;
931
        Tch = Tf - Tu;
932
        Tct = TZ - TK;
933
        Tci = T1g - T1v;
934
        Tcj = T1L - T20;
935
        Tck = Tci + Tcj;
936
        Tcu = Tcj - Tci;
937
        {
938
       E Tcm, Tcn, Tcp, Tcq;
939
       Tcm = TbW - TbX;
940
       Tcn = Tc0 - TbZ;
941
       Tco = FMA(KP414213562, Tcn, Tcm);
942
       Tcy = FNMS(KP414213562, Tcm, Tcn);
943
       Tcp = Tc3 - Tc4;
944
       Tcq = Tc7 - Tc6;
945
       Tcr = FNMS(KP414213562, Tcq, Tcp);
946
       Tcz = FMA(KP414213562, Tcp, Tcq);
947
        }
948
        {
949
       E Tcl, Tcs, Tcx, TcA;
950
       Tcl = FMA(KP707106781, Tck, Tch);
951
       Tcs = Tco + Tcr;
952
       Cr[WS(csr, 56)] = FNMS(KP923879532, Tcs, Tcl);
953
       Cr[WS(csr, 8)] = FMA(KP923879532, Tcs, Tcl);
954
       Tcx = FMA(KP707106781, Tcu, Tct);
955
       TcA = Tcy + Tcz;
956
       Ci[WS(csi, 8)] = FMA(KP923879532, TcA, Tcx);
957
       Ci[WS(csi, 56)] = FMS(KP923879532, TcA, Tcx);
958
        }
959
        {
960
       E Tcv, Tcw, TcB, TcC;
961
       Tcv = FNMS(KP707106781, Tcu, Tct);
962
       Tcw = Tcr - Tco;
963
       Ci[WS(csi, 24)] = FMS(KP923879532, Tcw, Tcv);
964
       Ci[WS(csi, 40)] = FMA(KP923879532, Tcw, Tcv);
965
       TcB = FNMS(KP707106781, Tck, Tch);
966
       TcC = Tcz - Tcy;
967
       Cr[WS(csr, 40)] = FNMS(KP923879532, TcC, TcB);
968
       Cr[WS(csr, 24)] = FMA(KP923879532, TcC, TcB);
969
        }
970
         }
971
         {
972
        E Ta9, TbB, Tbp, TbL, Tag, TbM, TbJ, TbR, TaO, Tbw, Tbs, TbC, TbG, TbQ, Tbl;
973
        E Tbx, Ta8, Tbo;
974
        Ta8 = Ta6 + Ta7;
975
        Ta9 = FMA(KP707106781, Ta8, Ta5);
976
        TbB = FNMS(KP707106781, Ta8, Ta5);
977
        Tbo = Ta7 - Ta6;
978
        Tbp = FMA(KP707106781, Tbo, Tbn);
979
        TbL = FNMS(KP707106781, Tbo, Tbn);
980
        {
981
       E Tac, Taf, TbH, TbI;
982
       Tac = FMA(KP414213562, Tab, Taa);
983
       Taf = FNMS(KP414213562, Tae, Tad);
984
       Tag = Tac + Taf;
985
       TbM = Taf - Tac;
986
       TbH = FNMS(KP707106781, Tba, TaV);
987
       TbI = FNMS(KP707106781, Tbj, Tbi);
988
       TbJ = FMA(KP668178637, TbI, TbH);
989
       TbR = FNMS(KP668178637, TbH, TbI);
990
        }
991
        {
992
       E TaE, TaN, Tbq, Tbr;
993
       TaE = FMA(KP707106781, TaD, Tao);
994
       TaN = FMA(KP707106781, TaM, TaL);
995
       TaO = FMA(KP198912367, TaN, TaE);
996
       Tbw = FNMS(KP198912367, TaE, TaN);
997
       Tbq = FNMS(KP414213562, Taa, Tab);
998
       Tbr = FMA(KP414213562, Tad, Tae);
999
       Tbs = Tbq + Tbr;
1000
       TbC = Tbr - Tbq;
1001
        }
1002
        {
1003
       E TbE, TbF, Tbb, Tbk;
1004
       TbE = FNMS(KP707106781, TaD, Tao);
1005
       TbF = FNMS(KP707106781, TaM, TaL);
1006
       TbG = FNMS(KP668178637, TbF, TbE);
1007
       TbQ = FMA(KP668178637, TbE, TbF);
1008
       Tbb = FMA(KP707106781, Tba, TaV);
1009
       Tbk = FMA(KP707106781, Tbj, Tbi);
1010
       Tbl = FNMS(KP198912367, Tbk, Tbb);
1011
       Tbx = FMA(KP198912367, Tbb, Tbk);
1012
        }
1013
        {
1014
       E Tah, Tbm, Tbv, Tby;
1015
       Tah = FMA(KP923879532, Tag, Ta9);
1016
       Tbm = TaO + Tbl;
1017
       Cr[WS(csr, 60)] = FNMS(KP980785280, Tbm, Tah);
1018
       Cr[WS(csr, 4)] = FMA(KP980785280, Tbm, Tah);
1019
       Tbv = FMA(KP923879532, Tbs, Tbp);
1020
       Tby = Tbw + Tbx;
1021
       Ci[WS(csi, 4)] = FMA(KP980785280, Tby, Tbv);
1022
       Ci[WS(csi, 60)] = FMS(KP980785280, Tby, Tbv);
1023
        }
1024
        {
1025
       E Tbt, Tbu, Tbz, TbA;
1026
       Tbt = FNMS(KP923879532, Tbs, Tbp);
1027
       Tbu = Tbl - TaO;
1028
       Ci[WS(csi, 28)] = FMS(KP980785280, Tbu, Tbt);
1029
       Ci[WS(csi, 36)] = FMA(KP980785280, Tbu, Tbt);
1030
       Tbz = FNMS(KP923879532, Tag, Ta9);
1031
       TbA = Tbx - Tbw;
1032
       Cr[WS(csr, 36)] = FNMS(KP980785280, TbA, Tbz);
1033
       Cr[WS(csr, 28)] = FMA(KP980785280, TbA, Tbz);
1034
        }
1035
        {
1036
       E TbD, TbK, TbP, TbS;
1037
       TbD = FMA(KP923879532, TbC, TbB);
1038
       TbK = TbG + TbJ;
1039
       Cr[WS(csr, 52)] = FNMS(KP831469612, TbK, TbD);
1040
       Cr[WS(csr, 12)] = FMA(KP831469612, TbK, TbD);
1041
       TbP = FNMS(KP923879532, TbM, TbL);
1042
       TbS = TbQ + TbR;
1043
       Ci[WS(csi, 12)] = -(FMA(KP831469612, TbS, TbP));
1044
       Ci[WS(csi, 52)] = FNMS(KP831469612, TbS, TbP);
1045
        }
1046
        {
1047
       E TbN, TbO, TbT, TbU;
1048
       TbN = FMA(KP923879532, TbM, TbL);
1049
       TbO = TbJ - TbG;
1050
       Ci[WS(csi, 20)] = FMA(KP831469612, TbO, TbN);
1051
       Ci[WS(csi, 44)] = FMS(KP831469612, TbO, TbN);
1052
       TbT = FNMS(KP923879532, TbC, TbB);
1053
       TbU = TbQ - TbR;
1054
       Cr[WS(csr, 44)] = FNMS(KP831469612, TbU, TbT);
1055
       Cr[WS(csr, 20)] = FMA(KP831469612, TbU, TbT);
1056
        }
1057
         }
1058
         {
1059
        E Tev, Tf7, Tfc, Tfm, Tff, Tfn, TeC, Tfi, TeK, Tf2, TeV, Tfh, TeY, Tf8, TeR;
1060
        E Tf3;
1061
        {
1062
       E Tet, Teu, Tfa, Tfb;
1063
       Tet = FNMS(KP707106781, TcG, TcD);
1064
       Teu = TdV - TdU;
1065
       Tev = FNMS(KP923879532, Teu, Tet);
1066
       Tf7 = FMA(KP923879532, Teu, Tet);
1067
       Tfa = FMA(KP923879532, TeF, TeE);
1068
       Tfb = FMA(KP923879532, TeI, TeH);
1069
       Tfc = FNMS(KP303346683, Tfb, Tfa);
1070
       Tfm = FMA(KP303346683, Tfa, Tfb);
1071
        }
1072
        {
1073
       E Tfd, Tfe, Tey, TeB;
1074
       Tfd = FMA(KP923879532, TeM, TeL);
1075
       Tfe = FNMS(KP923879532, TeP, TeO);
1076
       Tff = FMA(KP303346683, Tfe, Tfd);
1077
       Tfn = FNMS(KP303346683, Tfd, Tfe);
1078
       Tey = FMA(KP668178637, Tex, Tew);
1079
       TeB = FNMS(KP668178637, TeA, Tez);
1080
       TeC = Tey - TeB;
1081
       Tfi = Tey + TeB;
1082
        }
1083
        {
1084
       E TeG, TeJ, TeT, TeU;
1085
       TeG = FNMS(KP923879532, TeF, TeE);
1086
       TeJ = FNMS(KP923879532, TeI, TeH);
1087
       TeK = FMA(KP534511135, TeJ, TeG);
1088
       Tf2 = FNMS(KP534511135, TeG, TeJ);
1089
       TeT = FNMS(KP707106781, TdS, TdR);
1090
       TeU = TcN - TcK;
1091
       TeV = FMA(KP923879532, TeU, TeT);
1092
       Tfh = FNMS(KP923879532, TeU, TeT);
1093
        }
1094
        {
1095
       E TeW, TeX, TeN, TeQ;
1096
       TeW = FMA(KP668178637, Tez, TeA);
1097
       TeX = FNMS(KP668178637, Tew, Tex);
1098
       TeY = TeW - TeX;
1099
       Tf8 = TeX + TeW;
1100
       TeN = FNMS(KP923879532, TeM, TeL);
1101
       TeQ = FMA(KP923879532, TeP, TeO);
1102
       TeR = FNMS(KP534511135, TeQ, TeN);
1103
       Tf3 = FMA(KP534511135, TeN, TeQ);
1104
        }
1105
        {
1106
       E TeD, TeS, Tf1, Tf4;
1107
       TeD = FMA(KP831469612, TeC, Tev);
1108
       TeS = TeK + TeR;
1109
       Cr[WS(csr, 54)] = FNMS(KP881921264, TeS, TeD);
1110
       Cr[WS(csr, 10)] = FMA(KP881921264, TeS, TeD);
1111
       Tf1 = FMA(KP831469612, TeY, TeV);
1112
       Tf4 = Tf2 + Tf3;
1113
       Ci[WS(csi, 10)] = FMA(KP881921264, Tf4, Tf1);
1114
       Ci[WS(csi, 54)] = FMS(KP881921264, Tf4, Tf1);
1115
        }
1116
        {
1117
       E TeZ, Tf0, Tf5, Tf6;
1118
       TeZ = FNMS(KP831469612, TeY, TeV);
1119
       Tf0 = TeR - TeK;
1120
       Ci[WS(csi, 22)] = FMS(KP881921264, Tf0, TeZ);
1121
       Ci[WS(csi, 42)] = FMA(KP881921264, Tf0, TeZ);
1122
       Tf5 = FNMS(KP831469612, TeC, Tev);
1123
       Tf6 = Tf3 - Tf2;
1124
       Cr[WS(csr, 42)] = FNMS(KP881921264, Tf6, Tf5);
1125
       Cr[WS(csr, 22)] = FMA(KP881921264, Tf6, Tf5);
1126
        }
1127
        {
1128
       E Tf9, Tfg, Tfl, Tfo;
1129
       Tf9 = FMA(KP831469612, Tf8, Tf7);
1130
       Tfg = Tfc + Tff;
1131
       Cr[WS(csr, 58)] = FNMS(KP956940335, Tfg, Tf9);
1132
       Cr[WS(csr, 6)] = FMA(KP956940335, Tfg, Tf9);
1133
       Tfl = FMA(KP831469612, Tfi, Tfh);
1134
       Tfo = Tfm + Tfn;
1135
       Ci[WS(csi, 6)] = -(FMA(KP956940335, Tfo, Tfl));
1136
       Ci[WS(csi, 58)] = FNMS(KP956940335, Tfo, Tfl);
1137
        }
1138
        {
1139
       E Tfj, Tfk, Tfp, Tfq;
1140
       Tfj = FNMS(KP831469612, Tfi, Tfh);
1141
       Tfk = Tff - Tfc;
1142
       Ci[WS(csi, 26)] = FMA(KP956940335, Tfk, Tfj);
1143
       Ci[WS(csi, 38)] = FMS(KP956940335, Tfk, Tfj);
1144
       Tfp = FNMS(KP831469612, Tf8, Tf7);
1145
       Tfq = Tfm - Tfn;
1146
       Cr[WS(csr, 38)] = FNMS(KP956940335, Tfq, Tfp);
1147
       Cr[WS(csr, 26)] = FMA(KP956940335, Tfq, Tfp);
1148
        }
1149
         }
1150
         {
1151
        E TcP, Te9, Tee, Teo, Teh, Tep, Td8, Tek, Tdu, Te4, TdX, Tej, Te0, Tea, TdP;
1152
        E Te5;
1153
        {
1154
       E TcH, TcO, Tec, Ted;
1155
       TcH = FMA(KP707106781, TcG, TcD);
1156
       TcO = TcK + TcN;
1157
       TcP = FMA(KP923879532, TcO, TcH);
1158
       Te9 = FNMS(KP923879532, TcO, TcH);
1159
       Tec = FNMS(KP923879532, Tdl, Tde);
1160
       Ted = FNMS(KP923879532, Tds, Tdp);
1161
       Tee = FNMS(KP820678790, Ted, Tec);
1162
       Teo = FMA(KP820678790, Tec, Ted);
1163
        }
1164
        {
1165
       E Tef, Teg, TcY, Td7;
1166
       Tef = FNMS(KP923879532, TdG, Tdz);
1167
       Teg = FNMS(KP923879532, TdN, TdK);
1168
       Teh = FMA(KP820678790, Teg, Tef);
1169
       Tep = FNMS(KP820678790, Tef, Teg);
1170
       TcY = FMA(KP198912367, TcX, TcU);
1171
       Td7 = FNMS(KP198912367, Td6, Td3);
1172
       Td8 = TcY + Td7;
1173
       Tek = Td7 - TcY;
1174
        }
1175
        {
1176
       E Tdm, Tdt, TdT, TdW;
1177
       Tdm = FMA(KP923879532, Tdl, Tde);
1178
       Tdt = FMA(KP923879532, Tds, Tdp);
1179
       Tdu = FMA(KP098491403, Tdt, Tdm);
1180
       Te4 = FNMS(KP098491403, Tdm, Tdt);
1181
       TdT = FMA(KP707106781, TdS, TdR);
1182
       TdW = TdU + TdV;
1183
       TdX = FMA(KP923879532, TdW, TdT);
1184
       Tej = FNMS(KP923879532, TdW, TdT);
1185
        }
1186
        {
1187
       E TdY, TdZ, TdH, TdO;
1188
       TdY = FNMS(KP198912367, TcU, TcX);
1189
       TdZ = FMA(KP198912367, Td3, Td6);
1190
       Te0 = TdY + TdZ;
1191
       Tea = TdZ - TdY;
1192
       TdH = FMA(KP923879532, TdG, Tdz);
1193
       TdO = FMA(KP923879532, TdN, TdK);
1194
       TdP = FNMS(KP098491403, TdO, TdH);
1195
       Te5 = FMA(KP098491403, TdH, TdO);
1196
        }
1197
        {
1198
       E Td9, TdQ, Te3, Te6;
1199
       Td9 = FMA(KP980785280, Td8, TcP);
1200
       TdQ = Tdu + TdP;
1201
       Cr[WS(csr, 62)] = FNMS(KP995184726, TdQ, Td9);
1202
       Cr[WS(csr, 2)] = FMA(KP995184726, TdQ, Td9);
1203
       Te3 = FMA(KP980785280, Te0, TdX);
1204
       Te6 = Te4 + Te5;
1205
       Ci[WS(csi, 2)] = FMA(KP995184726, Te6, Te3);
1206
       Ci[WS(csi, 62)] = FMS(KP995184726, Te6, Te3);
1207
        }
1208
        {
1209
       E Te1, Te2, Te7, Te8;
1210
       Te1 = FNMS(KP980785280, Te0, TdX);
1211
       Te2 = TdP - Tdu;
1212
       Ci[WS(csi, 30)] = FMS(KP995184726, Te2, Te1);
1213
       Ci[WS(csi, 34)] = FMA(KP995184726, Te2, Te1);
1214
       Te7 = FNMS(KP980785280, Td8, TcP);
1215
       Te8 = Te5 - Te4;
1216
       Cr[WS(csr, 34)] = FNMS(KP995184726, Te8, Te7);
1217
       Cr[WS(csr, 30)] = FMA(KP995184726, Te8, Te7);
1218
        }
1219
        {
1220
       E Teb, Tei, Ten, Teq;
1221
       Teb = FMA(KP980785280, Tea, Te9);
1222
       Tei = Tee + Teh;
1223
       Cr[WS(csr, 50)] = FNMS(KP773010453, Tei, Teb);
1224
       Cr[WS(csr, 14)] = FMA(KP773010453, Tei, Teb);
1225
       Ten = FNMS(KP980785280, Tek, Tej);
1226
       Teq = Teo + Tep;
1227
       Ci[WS(csi, 14)] = -(FMA(KP773010453, Teq, Ten));
1228
       Ci[WS(csi, 50)] = FNMS(KP773010453, Teq, Ten);
1229
        }
1230
        {
1231
       E Tel, Tem, Ter, Tes;
1232
       Tel = FMA(KP980785280, Tek, Tej);
1233
       Tem = Teh - Tee;
1234
       Ci[WS(csi, 18)] = FMA(KP773010453, Tem, Tel);
1235
       Ci[WS(csi, 46)] = FMS(KP773010453, Tem, Tel);
1236
       Ter = FNMS(KP980785280, Tea, Te9);
1237
       Tes = Teo - Tep;
1238
       Cr[WS(csr, 46)] = FNMS(KP773010453, Tes, Ter);
1239
       Cr[WS(csr, 18)] = FMA(KP773010453, Tes, Ter);
1240
        }
1241
         }
1242
         {
1243
        E T6v, T77, T6C, T7i, T6Y, T78, T6V, T7h, T6R, T7n, T72, T7f, T6K, T7m, T73;
1244
        E T7c;
1245
        {
1246
       E T6t, T6u, T6T, T6U;
1247
       T6t = FNMS(KP923879532, T2e, T27);
1248
       T6u = T5U - T5V;
1249
       T6v = FNMS(KP980785280, T6u, T6t);
1250
       T77 = FMA(KP980785280, T6u, T6t);
1251
       {
1252
            E T6y, T6B, T6W, T6X;
1253
            T6y = FMA(KP820678790, T6x, T6w);
1254
            T6B = FNMS(KP820678790, T6A, T6z);
1255
            T6C = T6y - T6B;
1256
            T7i = T6B + T6y;
1257
            T6W = FNMS(KP820678790, T6w, T6x);
1258
            T6X = FMA(KP820678790, T6z, T6A);
1259
            T6Y = T6W - T6X;
1260
            T78 = T6X + T6W;
1261
       }
1262
       T6T = FNMS(KP923879532, T5S, T5P);
1263
       T6U = T2x - T2o;
1264
       T6V = FNMS(KP980785280, T6U, T6T);
1265
       T7h = FMA(KP980785280, T6U, T6T);
1266
       {
1267
            E T6N, T7d, T6Q, T7e, T6M, T6P;
1268
            T6M = T5I - T5H;
1269
            T6N = FNMS(KP980785280, T6M, T6L);
1270
            T7d = FMA(KP980785280, T6M, T6L);
1271
            T6P = T5v - T5e;
1272
            T6Q = FMA(KP980785280, T6P, T6O);
1273
            T7e = FNMS(KP980785280, T6P, T6O);
1274
            T6R = FNMS(KP472964775, T6Q, T6N);
1275
            T7n = FNMS(KP357805721, T7d, T7e);
1276
            T72 = FMA(KP472964775, T6N, T6Q);
1277
            T7f = FMA(KP357805721, T7e, T7d);
1278
       }
1279
       {
1280
            E T6G, T7a, T6J, T7b, T6F, T6I;
1281
            T6F = T4s - T4t;
1282
            T6G = FNMS(KP980785280, T6F, T6E);
1283
            T7a = FMA(KP980785280, T6F, T6E);
1284
            T6I = T4g - T3Z;
1285
            T6J = FNMS(KP980785280, T6I, T6H);
1286
            T7b = FMA(KP980785280, T6I, T6H);
1287
            T6K = FNMS(KP472964775, T6J, T6G);
1288
            T7m = FNMS(KP357805721, T7a, T7b);
1289
            T73 = FMA(KP472964775, T6G, T6J);
1290
            T7c = FMA(KP357805721, T7b, T7a);
1291
       }
1292
        }
1293
        {
1294
       E T6D, T6S, T71, T74;
1295
       T6D = FMA(KP773010453, T6C, T6v);
1296
       T6S = T6K + T6R;
1297
       Cr[WS(csr, 55)] = FNMS(KP903989293, T6S, T6D);
1298
       Cr[WS(csr, 9)] = FMA(KP903989293, T6S, T6D);
1299
       T71 = FNMS(KP773010453, T6Y, T6V);
1300
       T74 = T72 - T73;
1301
       Ci[WS(csi, 9)] = FMS(KP903989293, T74, T71);
1302
       Ci[WS(csi, 55)] = FMA(KP903989293, T74, T71);
1303
        }
1304
        {
1305
       E T6Z, T70, T75, T76;
1306
       T6Z = FMA(KP773010453, T6Y, T6V);
1307
       T70 = T6R - T6K;
1308
       Ci[WS(csi, 23)] = FMA(KP903989293, T70, T6Z);
1309
       Ci[WS(csi, 41)] = FMS(KP903989293, T70, T6Z);
1310
       T75 = FNMS(KP773010453, T6C, T6v);
1311
       T76 = T73 + T72;
1312
       Cr[WS(csr, 41)] = FNMS(KP903989293, T76, T75);
1313
       Cr[WS(csr, 23)] = FMA(KP903989293, T76, T75);
1314
        }
1315
        {
1316
       E T79, T7g, T7l, T7o;
1317
       T79 = FMA(KP773010453, T78, T77);
1318
       T7g = T7c + T7f;
1319
       Cr[WS(csr, 57)] = FNMS(KP941544065, T7g, T79);
1320
       Cr[WS(csr, 7)] = FMA(KP941544065, T7g, T79);
1321
       T7l = FMA(KP773010453, T7i, T7h);
1322
       T7o = T7m - T7n;
1323
       Ci[WS(csi, 7)] = FMA(KP941544065, T7o, T7l);
1324
       Ci[WS(csi, 57)] = FMS(KP941544065, T7o, T7l);
1325
        }
1326
        {
1327
       E T7j, T7k, T7p, T7q;
1328
       T7j = FNMS(KP773010453, T7i, T7h);
1329
       T7k = T7f - T7c;
1330
       Ci[WS(csi, 25)] = FMS(KP941544065, T7k, T7j);
1331
       Ci[WS(csi, 39)] = FMA(KP941544065, T7k, T7j);
1332
       T7p = FNMS(KP773010453, T78, T77);
1333
       T7q = T7m + T7n;
1334
       Cr[WS(csr, 39)] = FMA(KP941544065, T7q, T7p);
1335
       Cr[WS(csr, 25)] = FNMS(KP941544065, T7q, T7p);
1336
        }
1337
         }
1338
         {
1339
        E T99, T9L, T9g, T9W, T9C, T9M, T9z, T9V, T9v, Ta0, T9H, T9T, T9o, Ta1, T9G;
1340
        E T9Q;
1341
        {
1342
       E T97, T98, T9x, T9y;
1343
       T97 = FNMS(KP923879532, T7s, T7r);
1344
       T98 = T8z - T8y;
1345
       T99 = FNMS(KP831469612, T98, T97);
1346
       T9L = FMA(KP831469612, T98, T97);
1347
       {
1348
            E T9c, T9f, T9A, T9B;
1349
            T9c = FMA(KP534511135, T9b, T9a);
1350
            T9f = FNMS(KP534511135, T9e, T9d);
1351
            T9g = T9c - T9f;
1352
            T9W = T9c + T9f;
1353
            T9A = FMA(KP534511135, T9d, T9e);
1354
            T9B = FNMS(KP534511135, T9a, T9b);
1355
            T9C = T9A - T9B;
1356
            T9M = T9B + T9A;
1357
       }
1358
       T9x = FNMS(KP923879532, T8w, T8v);
1359
       T9y = T7z - T7w;
1360
       T9z = FMA(KP831469612, T9y, T9x);
1361
       T9V = FNMS(KP831469612, T9y, T9x);
1362
       {
1363
            E T9r, T9R, T9u, T9S, T9q, T9t;
1364
            T9q = T8p - T8q;
1365
            T9r = FNMS(KP831469612, T9q, T9p);
1366
            T9R = FMA(KP831469612, T9q, T9p);
1367
            T9t = T8j - T8g;
1368
            T9u = FNMS(KP831469612, T9t, T9s);
1369
            T9S = FMA(KP831469612, T9t, T9s);
1370
            T9v = FMA(KP599376933, T9u, T9r);
1371
            Ta0 = FMA(KP250486960, T9R, T9S);
1372
            T9H = FNMS(KP599376933, T9r, T9u);
1373
            T9T = FNMS(KP250486960, T9S, T9R);
1374
       }
1375
       {
1376
            E T9k, T9O, T9n, T9P, T9j, T9m;
1377
            T9j = T87 - T86;
1378
            T9k = FNMS(KP831469612, T9j, T9i);
1379
            T9O = FMA(KP831469612, T9j, T9i);
1380
            T9m = T7X - T80;
1381
            T9n = FNMS(KP831469612, T9m, T9l);
1382
            T9P = FMA(KP831469612, T9m, T9l);
1383
            T9o = FMA(KP599376933, T9n, T9k);
1384
            Ta1 = FMA(KP250486960, T9O, T9P);
1385
            T9G = FNMS(KP599376933, T9k, T9n);
1386
            T9Q = FNMS(KP250486960, T9P, T9O);
1387
       }
1388
        }
1389
        {
1390
       E T9h, T9w, T9F, T9I;
1391
       T9h = FMA(KP881921264, T9g, T99);
1392
       T9w = T9o + T9v;
1393
       Cr[WS(csr, 53)] = FNMS(KP857728610, T9w, T9h);
1394
       Cr[WS(csr, 11)] = FMA(KP857728610, T9w, T9h);
1395
       T9F = FMA(KP881921264, T9C, T9z);
1396
       T9I = T9G - T9H;
1397
       Ci[WS(csi, 11)] = FMA(KP857728610, T9I, T9F);
1398
       Ci[WS(csi, 53)] = FMS(KP857728610, T9I, T9F);
1399
        }
1400
        {
1401
       E T9D, T9E, T9J, T9K;
1402
       T9D = FNMS(KP881921264, T9C, T9z);
1403
       T9E = T9v - T9o;
1404
       Ci[WS(csi, 21)] = FMS(KP857728610, T9E, T9D);
1405
       Ci[WS(csi, 43)] = FMA(KP857728610, T9E, T9D);
1406
       T9J = FNMS(KP881921264, T9g, T99);
1407
       T9K = T9G + T9H;
1408
       Cr[WS(csr, 43)] = FMA(KP857728610, T9K, T9J);
1409
       Cr[WS(csr, 21)] = FNMS(KP857728610, T9K, T9J);
1410
        }
1411
        {
1412
       E T9N, T9U, T9Z, Ta2;
1413
       T9N = FMA(KP881921264, T9M, T9L);
1414
       T9U = T9Q + T9T;
1415
       Cr[WS(csr, 59)] = FNMS(KP970031253, T9U, T9N);
1416
       Cr[WS(csr, 5)] = FMA(KP970031253, T9U, T9N);
1417
       T9Z = FMA(KP881921264, T9W, T9V);
1418
       Ta2 = Ta0 - Ta1;
1419
       Ci[WS(csi, 5)] = FMS(KP970031253, Ta2, T9Z);
1420
       Ci[WS(csi, 59)] = FMA(KP970031253, Ta2, T9Z);
1421
        }
1422
        {
1423
       E T9X, T9Y, Ta3, Ta4;
1424
       T9X = FNMS(KP881921264, T9W, T9V);
1425
       T9Y = T9T - T9Q;
1426
       Ci[WS(csi, 27)] = FMA(KP970031253, T9Y, T9X);
1427
       Ci[WS(csi, 37)] = FMS(KP970031253, T9Y, T9X);
1428
       Ta3 = FNMS(KP881921264, T9M, T9L);
1429
       Ta4 = Ta1 + Ta0;
1430
       Cr[WS(csr, 37)] = FNMS(KP970031253, Ta4, Ta3);
1431
       Cr[WS(csr, 27)] = FMA(KP970031253, Ta4, Ta3);
1432
        }
1433
         }
1434
         {
1435
        E T2z, T69, T3g, T6k, T60, T6a, T5X, T6j, T5L, T6p, T64, T6h, T4w, T6o, T65;
1436
        E T6e;
1437
        {
1438
       E T2f, T2y, T5T, T5W;
1439
       T2f = FMA(KP923879532, T2e, T27);
1440
       T2y = T2o + T2x;
1441
       T2z = FMA(KP980785280, T2y, T2f);
1442
       T69 = FNMS(KP980785280, T2y, T2f);
1443
       {
1444
            E T2U, T3f, T5Y, T5Z;
1445
            T2U = FNMS(KP098491403, T2T, T2M);
1446
            T3f = FMA(KP098491403, T3e, T37);
1447
            T3g = T2U + T3f;
1448
            T6k = T3f - T2U;
1449
            T5Y = FMA(KP098491403, T2M, T2T);
1450
            T5Z = FNMS(KP098491403, T37, T3e);
1451
            T60 = T5Y + T5Z;
1452
            T6a = T5Y - T5Z;
1453
       }
1454
       T5T = FMA(KP923879532, T5S, T5P);
1455
       T5W = T5U + T5V;
1456
       T5X = FMA(KP980785280, T5W, T5T);
1457
       T6j = FNMS(KP980785280, T5W, T5T);
1458
       {
1459
            E T5x, T6f, T5K, T6g, T5w, T5J;
1460
            T5w = T5e + T5v;
1461
            T5x = FMA(KP980785280, T5w, T4X);
1462
            T6f = FNMS(KP980785280, T5w, T4X);
1463
            T5J = T5H + T5I;
1464
            T5K = FMA(KP980785280, T5J, T5G);
1465
            T6g = FNMS(KP980785280, T5J, T5G);
1466
            T5L = FNMS(KP049126849, T5K, T5x);
1467
            T6p = FNMS(KP906347169, T6f, T6g);
1468
            T64 = FMA(KP049126849, T5x, T5K);
1469
            T6h = FMA(KP906347169, T6g, T6f);
1470
       }
1471
       {
1472
            E T4i, T6c, T4v, T6d, T4h, T4u;
1473
            T4h = T3Z + T4g;
1474
            T4i = FMA(KP980785280, T4h, T3I);
1475
            T6c = FNMS(KP980785280, T4h, T3I);
1476
            T4u = T4s + T4t;
1477
            T4v = FMA(KP980785280, T4u, T4r);
1478
            T6d = FNMS(KP980785280, T4u, T4r);
1479
            T4w = FNMS(KP049126849, T4v, T4i);
1480
            T6o = FNMS(KP906347169, T6c, T6d);
1481
            T65 = FMA(KP049126849, T4i, T4v);
1482
            T6e = FMA(KP906347169, T6d, T6c);
1483
       }
1484
        }
1485
        {
1486
       E T3h, T5M, T63, T66;
1487
       T3h = FMA(KP995184726, T3g, T2z);
1488
       T5M = T4w + T5L;
1489
       Cr[WS(csr, 63)] = FNMS(KP998795456, T5M, T3h);
1490
       Cr[WS(csr, 1)] = FMA(KP998795456, T5M, T3h);
1491
       T63 = FMA(KP995184726, T60, T5X);
1492
       T66 = T64 - T65;
1493
       Ci[WS(csi, 1)] = FMS(KP998795456, T66, T63);
1494
       Ci[WS(csi, 63)] = FMA(KP998795456, T66, T63);
1495
        }
1496
        {
1497
       E T61, T62, T67, T68;
1498
       T61 = FNMS(KP995184726, T60, T5X);
1499
       T62 = T5L - T4w;
1500
       Ci[WS(csi, 31)] = FMA(KP998795456, T62, T61);
1501
       Ci[WS(csi, 33)] = FMS(KP998795456, T62, T61);
1502
       T67 = FNMS(KP995184726, T3g, T2z);
1503
       T68 = T65 + T64;
1504
       Cr[WS(csr, 33)] = FNMS(KP998795456, T68, T67);
1505
       Cr[WS(csr, 31)] = FMA(KP998795456, T68, T67);
1506
        }
1507
        {
1508
       E T6b, T6i, T6n, T6q;
1509
       T6b = FMA(KP995184726, T6a, T69);
1510
       T6i = T6e + T6h;
1511
       Cr[WS(csr, 49)] = FNMS(KP740951125, T6i, T6b);
1512
       Cr[WS(csr, 15)] = FMA(KP740951125, T6i, T6b);
1513
       T6n = FMA(KP995184726, T6k, T6j);
1514
       T6q = T6o - T6p;
1515
       Ci[WS(csi, 15)] = FMA(KP740951125, T6q, T6n);
1516
       Ci[WS(csi, 49)] = FMS(KP740951125, T6q, T6n);
1517
        }
1518
        {
1519
       E T6l, T6m, T6r, T6s;
1520
       T6l = FNMS(KP995184726, T6k, T6j);
1521
       T6m = T6h - T6e;
1522
       Ci[WS(csi, 17)] = FMS(KP740951125, T6m, T6l);
1523
       Ci[WS(csi, 47)] = FMA(KP740951125, T6m, T6l);
1524
       T6r = FNMS(KP995184726, T6a, T69);
1525
       T6s = T6o + T6p;
1526
       Cr[WS(csr, 47)] = FMA(KP740951125, T6s, T6r);
1527
       Cr[WS(csr, 17)] = FNMS(KP740951125, T6s, T6r);
1528
        }
1529
         }
1530
         {
1531
        E T7B, T8N, T7Q, T8Y, T8E, T8O, T8B, T8X, T8t, T92, T8J, T8V, T8a, T93, T8I;
1532
        E T8S;
1533
        {
1534
       E T7t, T7A, T8x, T8A;
1535
       T7t = FMA(KP923879532, T7s, T7r);
1536
       T7A = T7w + T7z;
1537
       T7B = FMA(KP831469612, T7A, T7t);
1538
       T8N = FNMS(KP831469612, T7A, T7t);
1539
       {
1540
            E T7I, T7P, T8C, T8D;
1541
            T7I = FMA(KP303346683, T7H, T7E);
1542
            T7P = FNMS(KP303346683, T7O, T7L);
1543
            T7Q = T7I + T7P;
1544
            T8Y = T7P - T7I;
1545
            T8C = FNMS(KP303346683, T7E, T7H);
1546
            T8D = FMA(KP303346683, T7L, T7O);
1547
            T8E = T8C + T8D;
1548
            T8O = T8D - T8C;
1549
       }
1550
       T8x = FMA(KP923879532, T8w, T8v);
1551
       T8A = T8y + T8z;
1552
       T8B = FMA(KP831469612, T8A, T8x);
1553
       T8X = FNMS(KP831469612, T8A, T8x);
1554
       {
1555
            E T8l, T8T, T8s, T8U, T8k, T8r;
1556
            T8k = T8g + T8j;
1557
            T8l = FMA(KP831469612, T8k, T8d);
1558
            T8T = FNMS(KP831469612, T8k, T8d);
1559
            T8r = T8p + T8q;
1560
            T8s = FMA(KP831469612, T8r, T8o);
1561
            T8U = FNMS(KP831469612, T8r, T8o);
1562
            T8t = FMA(KP148335987, T8s, T8l);
1563
            T92 = FMA(KP741650546, T8T, T8U);
1564
            T8J = FNMS(KP148335987, T8l, T8s);
1565
            T8V = FNMS(KP741650546, T8U, T8T);
1566
       }
1567
       {
1568
            E T82, T8Q, T89, T8R, T81, T88;
1569
            T81 = T7X + T80;
1570
            T82 = FMA(KP831469612, T81, T7U);
1571
            T8Q = FNMS(KP831469612, T81, T7U);
1572
            T88 = T86 + T87;
1573
            T89 = FMA(KP831469612, T88, T85);
1574
            T8R = FNMS(KP831469612, T88, T85);
1575
            T8a = FMA(KP148335987, T89, T82);
1576
            T93 = FMA(KP741650546, T8Q, T8R);
1577
            T8I = FNMS(KP148335987, T82, T89);
1578
            T8S = FNMS(KP741650546, T8R, T8Q);
1579
       }
1580
        }
1581
        {
1582
       E T7R, T8u, T8H, T8K;
1583
       T7R = FMA(KP956940335, T7Q, T7B);
1584
       T8u = T8a + T8t;
1585
       Cr[WS(csr, 61)] = FNMS(KP989176509, T8u, T7R);
1586
       Cr[WS(csr, 3)] = FMA(KP989176509, T8u, T7R);
1587
       T8H = FMA(KP956940335, T8E, T8B);
1588
       T8K = T8I - T8J;
1589
       Ci[WS(csi, 3)] = FMA(KP989176509, T8K, T8H);
1590
       Ci[WS(csi, 61)] = FMS(KP989176509, T8K, T8H);
1591
        }
1592
        {
1593
       E T8F, T8G, T8L, T8M;
1594
       T8F = FNMS(KP956940335, T8E, T8B);
1595
       T8G = T8t - T8a;
1596
       Ci[WS(csi, 29)] = FMS(KP989176509, T8G, T8F);
1597
       Ci[WS(csi, 35)] = FMA(KP989176509, T8G, T8F);
1598
       T8L = FNMS(KP956940335, T7Q, T7B);
1599
       T8M = T8I + T8J;
1600
       Cr[WS(csr, 35)] = FMA(KP989176509, T8M, T8L);
1601
       Cr[WS(csr, 29)] = FNMS(KP989176509, T8M, T8L);
1602
        }
1603
        {
1604
       E T8P, T8W, T91, T94;
1605
       T8P = FMA(KP956940335, T8O, T8N);
1606
       T8W = T8S + T8V;
1607
       Cr[WS(csr, 51)] = FNMS(KP803207531, T8W, T8P);
1608
       Cr[WS(csr, 13)] = FMA(KP803207531, T8W, T8P);
1609
       T91 = FNMS(KP956940335, T8Y, T8X);
1610
       T94 = T92 - T93;
1611
       Ci[WS(csi, 13)] = FMS(KP803207531, T94, T91);
1612
       Ci[WS(csi, 51)] = FMA(KP803207531, T94, T91);
1613
        }
1614
        {
1615
       E T8Z, T90, T95, T96;
1616
       T8Z = FMA(KP956940335, T8Y, T8X);
1617
       T90 = T8V - T8S;
1618
       Ci[WS(csi, 19)] = FMA(KP803207531, T90, T8Z);
1619
       Ci[WS(csi, 45)] = FMS(KP803207531, T90, T8Z);
1620
       T95 = FNMS(KP956940335, T8O, T8N);
1621
       T96 = T93 + T92;
1622
       Cr[WS(csr, 45)] = FNMS(KP803207531, T96, T95);
1623
       Cr[WS(csr, 19)] = FMA(KP803207531, T96, T95);
1624
        }
1625
         }
1626
    }
1627
     }
1628
}
1629
1630
static const kr2c_desc desc = { 128, "r2cf_128", { 440, 0, 516, 0 }, &GENUS };
1631
1632
void X(codelet_r2cf_128) (planner *p) { X(kr2c_register) (p, r2cf_128, &desc);
1633
}
1634
1635
#else
1636
1637
/* Generated by: ../../../genfft/gen_r2cf.native -compact -variables 4 -pipeline-latency 4 -n 128 -name r2cf_128 -include rdft/scalar/r2cf.h */
1638
1639
/*
1640
 * This function contains 956 FP additions, 330 FP multiplications,
1641
 * (or, 812 additions, 186 multiplications, 144 fused multiply/add),
1642
 * 186 stack variables, 31 constants, and 256 memory accesses
1643
 */
1644
#include "rdft/scalar/r2cf.h"
1645
1646
static void r2cf_128(R *R0, R *R1, R *Cr, R *Ci, stride rs, stride csr, stride csi, INT v, INT ivs, INT ovs)
1647
0
{
1648
0
     DK(KP803207531, +0.803207531480644909806676512963141923879569427);
1649
0
     DK(KP595699304, +0.595699304492433343467036528829969889511926338);
1650
0
     DK(KP146730474, +0.146730474455361751658850129646717819706215317);
1651
0
     DK(KP989176509, +0.989176509964780973451673738016243063983689533);
1652
0
     DK(KP740951125, +0.740951125354959091175616897495162729728955309);
1653
0
     DK(KP671558954, +0.671558954847018400625376850427421803228750632);
1654
0
     DK(KP049067674, +0.049067674327418014254954976942682658314745363);
1655
0
     DK(KP998795456, +0.998795456205172392714771604759100694443203615);
1656
0
     DK(KP242980179, +0.242980179903263889948274162077471118320990783);
1657
0
     DK(KP970031253, +0.970031253194543992603984207286100251456865962);
1658
0
     DK(KP514102744, +0.514102744193221726593693838968815772608049120);
1659
0
     DK(KP857728610, +0.857728610000272069902269984284770137042490799);
1660
0
     DK(KP336889853, +0.336889853392220050689253212619147570477766780);
1661
0
     DK(KP941544065, +0.941544065183020778412509402599502357185589796);
1662
0
     DK(KP427555093, +0.427555093430282094320966856888798534304578629);
1663
0
     DK(KP903989293, +0.903989293123443331586200297230537048710132025);
1664
0
     DK(KP098017140, +0.098017140329560601994195563888641845861136673);
1665
0
     DK(KP995184726, +0.995184726672196886244836953109479921575474869);
1666
0
     DK(KP634393284, +0.634393284163645498215171613225493370675687095);
1667
0
     DK(KP773010453, +0.773010453362736960810906609758469800971041293);
1668
0
     DK(KP881921264, +0.881921264348355029712756863660388349508442621);
1669
0
     DK(KP471396736, +0.471396736825997648556387625905254377657460319);
1670
0
     DK(KP956940335, +0.956940335732208864935797886980269969482849206);
1671
0
     DK(KP290284677, +0.290284677254462367636192375817395274691476278);
1672
0
     DK(KP555570233, +0.555570233019602224742830813948532874374937191);
1673
0
     DK(KP831469612, +0.831469612302545237078788377617905756738560812);
1674
0
     DK(KP195090322, +0.195090322016128267848284868477022240927691618);
1675
0
     DK(KP980785280, +0.980785280403230449126182236134239036973933731);
1676
0
     DK(KP382683432, +0.382683432365089771728459984030398866761344562);
1677
0
     DK(KP923879532, +0.923879532511286756128183189396788286822416626);
1678
0
     DK(KP707106781, +0.707106781186547524400844362104849039284835938);
1679
0
     {
1680
0
    INT i;
1681
0
    for (i = v; i > 0; i = i - 1, R0 = R0 + ivs, R1 = R1 + ivs, Cr = Cr + ovs, Ci = Ci + ovs, MAKE_VOLATILE_STRIDE(512, rs), MAKE_VOLATILE_STRIDE(512, csr), MAKE_VOLATILE_STRIDE(512, csi)) {
1682
0
         E TcD, TdU, T27, T7r, T5S, T8y, Tf, Ta5, Tu, Tbq, TcG, TdV, T2e, T8z, T5V;
1683
0
         E T7s, TK, Ta6, TcK, TdX, T2o, T5X, T7w, T8B, TZ, Ta7, TcN, TdY, T2x, T5Y;
1684
0
         E T7z, T8C, T1g, Taa, TcU, TeA, TcX, Tez, T1v, Tab, T2M, T6z, T7E, T9e, T7H;
1685
0
         E T9d, T2T, T6A, T4X, T6L, Tdz, TeL, TdK, TeP, T5G, T6P, T8d, T9p, TaV, Tc3;
1686
0
         E Tbi, Tc4, T8o, T9t, T3I, T6H, Tde, TeH, Tdp, TeF, T4r, T6F, T7U, T9l, Tao;
1687
0
         E TbW, TaL, TbX, T85, T9j, T1L, Tad, Td3, Tew, Td6, Tex, T20, Tae, T37, T6x;
1688
0
         E T7L, T9a, T7O, T9b, T3e, T6w, TbZ, Tc0, T3Z, T4s, Tds, TeI, T4g, T4t, T80;
1689
0
         E T87, Tdl, TeE, T7X, T86, TaD, TaM, Tc6, Tc7, T5e, T5H, TdN, TeM, T5v, T5I;
1690
0
         E T8j, T8q, TdG, TeO, T8g, T8p, Tba, Tbj;
1691
0
         {
1692
0
        E T3, T23, Td, T25, T6, T5R, Ta, T24;
1693
0
        {
1694
0
       E T1, T2, Tb, Tc;
1695
0
       T1 = R0[0];
1696
0
       T2 = R0[WS(rs, 32)];
1697
0
       T3 = T1 + T2;
1698
0
       T23 = T1 - T2;
1699
0
       Tb = R0[WS(rs, 56)];
1700
0
       Tc = R0[WS(rs, 24)];
1701
0
       Td = Tb + Tc;
1702
0
       T25 = Tb - Tc;
1703
0
        }
1704
0
        {
1705
0
       E T4, T5, T8, T9;
1706
0
       T4 = R0[WS(rs, 16)];
1707
0
       T5 = R0[WS(rs, 48)];
1708
0
       T6 = T4 + T5;
1709
0
       T5R = T4 - T5;
1710
0
       T8 = R0[WS(rs, 8)];
1711
0
       T9 = R0[WS(rs, 40)];
1712
0
       Ta = T8 + T9;
1713
0
       T24 = T8 - T9;
1714
0
        }
1715
0
        TcD = T3 - T6;
1716
0
        TdU = Td - Ta;
1717
0
        {
1718
0
       E T26, T5Q, T7, Te;
1719
0
       T26 = KP707106781 * (T24 + T25);
1720
0
       T27 = T23 + T26;
1721
0
       T7r = T23 - T26;
1722
0
       T5Q = KP707106781 * (T25 - T24);
1723
0
       T5S = T5Q - T5R;
1724
0
       T8y = T5R + T5Q;
1725
0
       T7 = T3 + T6;
1726
0
       Te = Ta + Td;
1727
0
       Tf = T7 + Te;
1728
0
       Ta5 = T7 - Te;
1729
0
        }
1730
0
         }
1731
0
         {
1732
0
        E Ti, T28, Ts, T2c, Tl, T29, Tp, T2b;
1733
0
        {
1734
0
       E Tg, Th, Tq, Tr;
1735
0
       Tg = R0[WS(rs, 4)];
1736
0
       Th = R0[WS(rs, 36)];
1737
0
       Ti = Tg + Th;
1738
0
       T28 = Tg - Th;
1739
0
       Tq = R0[WS(rs, 12)];
1740
0
       Tr = R0[WS(rs, 44)];
1741
0
       Ts = Tq + Tr;
1742
0
       T2c = Tq - Tr;
1743
0
        }
1744
0
        {
1745
0
       E Tj, Tk, Tn, To;
1746
0
       Tj = R0[WS(rs, 20)];
1747
0
       Tk = R0[WS(rs, 52)];
1748
0
       Tl = Tj + Tk;
1749
0
       T29 = Tj - Tk;
1750
0
       Tn = R0[WS(rs, 60)];
1751
0
       To = R0[WS(rs, 28)];
1752
0
       Tp = Tn + To;
1753
0
       T2b = Tn - To;
1754
0
        }
1755
0
        {
1756
0
       E Tm, Tt, TcE, TcF;
1757
0
       Tm = Ti + Tl;
1758
0
       Tt = Tp + Ts;
1759
0
       Tu = Tm + Tt;
1760
0
       Tbq = Tt - Tm;
1761
0
       TcE = Ti - Tl;
1762
0
       TcF = Tp - Ts;
1763
0
       TcG = KP707106781 * (TcE + TcF);
1764
0
       TdV = KP707106781 * (TcF - TcE);
1765
0
        }
1766
0
        {
1767
0
       E T2a, T2d, T5T, T5U;
1768
0
       T2a = FNMS(KP382683432, T29, KP923879532 * T28);
1769
0
       T2d = FMA(KP923879532, T2b, KP382683432 * T2c);
1770
0
       T2e = T2a + T2d;
1771
0
       T8z = T2d - T2a;
1772
0
       T5T = FNMS(KP923879532, T2c, KP382683432 * T2b);
1773
0
       T5U = FMA(KP382683432, T28, KP923879532 * T29);
1774
0
       T5V = T5T - T5U;
1775
0
       T7s = T5U + T5T;
1776
0
        }
1777
0
         }
1778
0
         {
1779
0
        E Ty, T2g, TB, T2m, TF, T2l, TI, T2j;
1780
0
        {
1781
0
       E Tw, Tx, Tz, TA;
1782
0
       Tw = R0[WS(rs, 2)];
1783
0
       Tx = R0[WS(rs, 34)];
1784
0
       Ty = Tw + Tx;
1785
0
       T2g = Tw - Tx;
1786
0
       Tz = R0[WS(rs, 18)];
1787
0
       TA = R0[WS(rs, 50)];
1788
0
       TB = Tz + TA;
1789
0
       T2m = Tz - TA;
1790
0
       {
1791
0
            E TD, TE, T2h, TG, TH, T2i;
1792
0
            TD = R0[WS(rs, 10)];
1793
0
            TE = R0[WS(rs, 42)];
1794
0
            T2h = TD - TE;
1795
0
            TG = R0[WS(rs, 58)];
1796
0
            TH = R0[WS(rs, 26)];
1797
0
            T2i = TG - TH;
1798
0
            TF = TD + TE;
1799
0
            T2l = KP707106781 * (T2i - T2h);
1800
0
            TI = TG + TH;
1801
0
            T2j = KP707106781 * (T2h + T2i);
1802
0
       }
1803
0
        }
1804
0
        {
1805
0
       E TC, TJ, TcI, TcJ;
1806
0
       TC = Ty + TB;
1807
0
       TJ = TF + TI;
1808
0
       TK = TC + TJ;
1809
0
       Ta6 = TC - TJ;
1810
0
       TcI = Ty - TB;
1811
0
       TcJ = TI - TF;
1812
0
       TcK = FMA(KP923879532, TcI, KP382683432 * TcJ);
1813
0
       TdX = FNMS(KP382683432, TcI, KP923879532 * TcJ);
1814
0
        }
1815
0
        {
1816
0
       E T2k, T2n, T7u, T7v;
1817
0
       T2k = T2g + T2j;
1818
0
       T2n = T2l - T2m;
1819
0
       T2o = FMA(KP980785280, T2k, KP195090322 * T2n);
1820
0
       T5X = FNMS(KP195090322, T2k, KP980785280 * T2n);
1821
0
       T7u = T2g - T2j;
1822
0
       T7v = T2m + T2l;
1823
0
       T7w = FMA(KP831469612, T7u, KP555570233 * T7v);
1824
0
       T8B = FNMS(KP555570233, T7u, KP831469612 * T7v);
1825
0
        }
1826
0
         }
1827
0
         {
1828
0
        E TN, T2p, TQ, T2v, TU, T2u, TX, T2s;
1829
0
        {
1830
0
       E TL, TM, TO, TP;
1831
0
       TL = R0[WS(rs, 62)];
1832
0
       TM = R0[WS(rs, 30)];
1833
0
       TN = TL + TM;
1834
0
       T2p = TL - TM;
1835
0
       TO = R0[WS(rs, 14)];
1836
0
       TP = R0[WS(rs, 46)];
1837
0
       TQ = TO + TP;
1838
0
       T2v = TO - TP;
1839
0
       {
1840
0
            E TS, TT, T2q, TV, TW, T2r;
1841
0
            TS = R0[WS(rs, 6)];
1842
0
            TT = R0[WS(rs, 38)];
1843
0
            T2q = TS - TT;
1844
0
            TV = R0[WS(rs, 54)];
1845
0
            TW = R0[WS(rs, 22)];
1846
0
            T2r = TV - TW;
1847
0
            TU = TS + TT;
1848
0
            T2u = KP707106781 * (T2r - T2q);
1849
0
            TX = TV + TW;
1850
0
            T2s = KP707106781 * (T2q + T2r);
1851
0
       }
1852
0
        }
1853
0
        {
1854
0
       E TR, TY, TcL, TcM;
1855
0
       TR = TN + TQ;
1856
0
       TY = TU + TX;
1857
0
       TZ = TR + TY;
1858
0
       Ta7 = TR - TY;
1859
0
       TcL = TN - TQ;
1860
0
       TcM = TX - TU;
1861
0
       TcN = FNMS(KP382683432, TcM, KP923879532 * TcL);
1862
0
       TdY = FMA(KP382683432, TcL, KP923879532 * TcM);
1863
0
        }
1864
0
        {
1865
0
       E T2t, T2w, T7x, T7y;
1866
0
       T2t = T2p + T2s;
1867
0
       T2w = T2u - T2v;
1868
0
       T2x = FNMS(KP195090322, T2w, KP980785280 * T2t);
1869
0
       T5Y = FMA(KP195090322, T2t, KP980785280 * T2w);
1870
0
       T7x = T2p - T2s;
1871
0
       T7y = T2v + T2u;
1872
0
       T7z = FNMS(KP555570233, T7y, KP831469612 * T7x);
1873
0
       T8C = FMA(KP555570233, T7x, KP831469612 * T7y);
1874
0
        }
1875
0
         }
1876
0
         {
1877
0
        E T14, T2N, T17, T2D, T1b, T2O, T1e, T2C, T1j, T1m, T2K, TcR, T2Q, T1q, T1t;
1878
0
        E T2H, TcS, T2R;
1879
0
        {
1880
0
       E T12, T13, T15, T16;
1881
0
       T12 = R0[WS(rs, 1)];
1882
0
       T13 = R0[WS(rs, 33)];
1883
0
       T14 = T12 + T13;
1884
0
       T2N = T12 - T13;
1885
0
       T15 = R0[WS(rs, 17)];
1886
0
       T16 = R0[WS(rs, 49)];
1887
0
       T17 = T15 + T16;
1888
0
       T2D = T15 - T16;
1889
0
        }
1890
0
        {
1891
0
       E T19, T1a, T2B, T1c, T1d, T2A;
1892
0
       T19 = R0[WS(rs, 9)];
1893
0
       T1a = R0[WS(rs, 41)];
1894
0
       T2B = T19 - T1a;
1895
0
       T1c = R0[WS(rs, 57)];
1896
0
       T1d = R0[WS(rs, 25)];
1897
0
       T2A = T1c - T1d;
1898
0
       T1b = T19 + T1a;
1899
0
       T2O = KP707106781 * (T2B + T2A);
1900
0
       T1e = T1c + T1d;
1901
0
       T2C = KP707106781 * (T2A - T2B);
1902
0
        }
1903
0
        {
1904
0
       E T2I, T2J, T2F, T2G;
1905
0
       {
1906
0
            E T1h, T1i, T1k, T1l;
1907
0
            T1h = R0[WS(rs, 5)];
1908
0
            T1i = R0[WS(rs, 37)];
1909
0
            T1j = T1h + T1i;
1910
0
            T2I = T1h - T1i;
1911
0
            T1k = R0[WS(rs, 21)];
1912
0
            T1l = R0[WS(rs, 53)];
1913
0
            T1m = T1k + T1l;
1914
0
            T2J = T1k - T1l;
1915
0
       }
1916
0
       T2K = FMA(KP382683432, T2I, KP923879532 * T2J);
1917
0
       TcR = T1j - T1m;
1918
0
       T2Q = FNMS(KP382683432, T2J, KP923879532 * T2I);
1919
0
       {
1920
0
            E T1o, T1p, T1r, T1s;
1921
0
            T1o = R0[WS(rs, 61)];
1922
0
            T1p = R0[WS(rs, 29)];
1923
0
            T1q = T1o + T1p;
1924
0
            T2F = T1o - T1p;
1925
0
            T1r = R0[WS(rs, 13)];
1926
0
            T1s = R0[WS(rs, 45)];
1927
0
            T1t = T1r + T1s;
1928
0
            T2G = T1r - T1s;
1929
0
       }
1930
0
       T2H = FNMS(KP923879532, T2G, KP382683432 * T2F);
1931
0
       TcS = T1q - T1t;
1932
0
       T2R = FMA(KP923879532, T2F, KP382683432 * T2G);
1933
0
        }
1934
0
        {
1935
0
       E T18, T1f, TcQ, TcT;
1936
0
       T18 = T14 + T17;
1937
0
       T1f = T1b + T1e;
1938
0
       T1g = T18 + T1f;
1939
0
       Taa = T18 - T1f;
1940
0
       TcQ = T14 - T17;
1941
0
       TcT = KP707106781 * (TcR + TcS);
1942
0
       TcU = TcQ + TcT;
1943
0
       TeA = TcQ - TcT;
1944
0
        }
1945
0
        {
1946
0
       E TcV, TcW, T1n, T1u;
1947
0
       TcV = T1e - T1b;
1948
0
       TcW = KP707106781 * (TcS - TcR);
1949
0
       TcX = TcV + TcW;
1950
0
       Tez = TcW - TcV;
1951
0
       T1n = T1j + T1m;
1952
0
       T1u = T1q + T1t;
1953
0
       T1v = T1n + T1u;
1954
0
       Tab = T1u - T1n;
1955
0
        }
1956
0
        {
1957
0
       E T2E, T2L, T7C, T7D;
1958
0
       T2E = T2C - T2D;
1959
0
       T2L = T2H - T2K;
1960
0
       T2M = T2E + T2L;
1961
0
       T6z = T2L - T2E;
1962
0
       T7C = T2N - T2O;
1963
0
       T7D = T2K + T2H;
1964
0
       T7E = T7C + T7D;
1965
0
       T9e = T7C - T7D;
1966
0
        }
1967
0
        {
1968
0
       E T7F, T7G, T2P, T2S;
1969
0
       T7F = T2D + T2C;
1970
0
       T7G = T2R - T2Q;
1971
0
       T7H = T7F + T7G;
1972
0
       T9d = T7G - T7F;
1973
0
       T2P = T2N + T2O;
1974
0
       T2S = T2Q + T2R;
1975
0
       T2T = T2P + T2S;
1976
0
       T6A = T2P - T2S;
1977
0
        }
1978
0
         }
1979
0
         {
1980
0
        E T4z, TaP, T5B, TaQ, T4G, TaT, T5y, TaS, Tbf, Tbg, T4O, Tdw, T5E, Tbc, Tbd;
1981
0
        E T4V, Tdx, T5D;
1982
0
        {
1983
0
       E T4x, T4y, T5z, T5A;
1984
0
       T4x = R1[WS(rs, 63)];
1985
0
       T4y = R1[WS(rs, 31)];
1986
0
       T4z = T4x - T4y;
1987
0
       TaP = T4x + T4y;
1988
0
       T5z = R1[WS(rs, 15)];
1989
0
       T5A = R1[WS(rs, 47)];
1990
0
       T5B = T5z - T5A;
1991
0
       TaQ = T5z + T5A;
1992
0
        }
1993
0
        {
1994
0
       E T4A, T4B, T4C, T4D, T4E, T4F;
1995
0
       T4A = R1[WS(rs, 7)];
1996
0
       T4B = R1[WS(rs, 39)];
1997
0
       T4C = T4A - T4B;
1998
0
       T4D = R1[WS(rs, 55)];
1999
0
       T4E = R1[WS(rs, 23)];
2000
0
       T4F = T4D - T4E;
2001
0
       T4G = KP707106781 * (T4C + T4F);
2002
0
       TaT = T4D + T4E;
2003
0
       T5y = KP707106781 * (T4F - T4C);
2004
0
       TaS = T4A + T4B;
2005
0
        }
2006
0
        {
2007
0
       E T4K, T4N, T4R, T4U;
2008
0
       {
2009
0
            E T4I, T4J, T4L, T4M;
2010
0
            T4I = R1[WS(rs, 3)];
2011
0
            T4J = R1[WS(rs, 35)];
2012
0
            T4K = T4I - T4J;
2013
0
            Tbf = T4I + T4J;
2014
0
            T4L = R1[WS(rs, 19)];
2015
0
            T4M = R1[WS(rs, 51)];
2016
0
            T4N = T4L - T4M;
2017
0
            Tbg = T4L + T4M;
2018
0
       }
2019
0
       T4O = FNMS(KP382683432, T4N, KP923879532 * T4K);
2020
0
       Tdw = Tbf - Tbg;
2021
0
       T5E = FMA(KP382683432, T4K, KP923879532 * T4N);
2022
0
       {
2023
0
            E T4P, T4Q, T4S, T4T;
2024
0
            T4P = R1[WS(rs, 59)];
2025
0
            T4Q = R1[WS(rs, 27)];
2026
0
            T4R = T4P - T4Q;
2027
0
            Tbc = T4P + T4Q;
2028
0
            T4S = R1[WS(rs, 11)];
2029
0
            T4T = R1[WS(rs, 43)];
2030
0
            T4U = T4S - T4T;
2031
0
            Tbd = T4S + T4T;
2032
0
       }
2033
0
       T4V = FMA(KP923879532, T4R, KP382683432 * T4U);
2034
0
       Tdx = Tbc - Tbd;
2035
0
       T5D = FNMS(KP923879532, T4U, KP382683432 * T4R);
2036
0
        }
2037
0
        {
2038
0
       E T4H, T4W, Tdv, Tdy;
2039
0
       T4H = T4z + T4G;
2040
0
       T4W = T4O + T4V;
2041
0
       T4X = T4H + T4W;
2042
0
       T6L = T4H - T4W;
2043
0
       Tdv = TaP - TaQ;
2044
0
       Tdy = KP707106781 * (Tdw + Tdx);
2045
0
       Tdz = Tdv + Tdy;
2046
0
       TeL = Tdv - Tdy;
2047
0
        }
2048
0
        {
2049
0
       E TdI, TdJ, T5C, T5F;
2050
0
       TdI = TaT - TaS;
2051
0
       TdJ = KP707106781 * (Tdx - Tdw);
2052
0
       TdK = TdI + TdJ;
2053
0
       TeP = TdJ - TdI;
2054
0
       T5C = T5y - T5B;
2055
0
       T5F = T5D - T5E;
2056
0
       T5G = T5C + T5F;
2057
0
       T6P = T5F - T5C;
2058
0
        }
2059
0
        {
2060
0
       E T8b, T8c, TaR, TaU;
2061
0
       T8b = T4z - T4G;
2062
0
       T8c = T5E + T5D;
2063
0
       T8d = T8b + T8c;
2064
0
       T9p = T8b - T8c;
2065
0
       TaR = TaP + TaQ;
2066
0
       TaU = TaS + TaT;
2067
0
       TaV = TaR - TaU;
2068
0
       Tc3 = TaR + TaU;
2069
0
        }
2070
0
        {
2071
0
       E Tbe, Tbh, T8m, T8n;
2072
0
       Tbe = Tbc + Tbd;
2073
0
       Tbh = Tbf + Tbg;
2074
0
       Tbi = Tbe - Tbh;
2075
0
       Tc4 = Tbh + Tbe;
2076
0
       T8m = T5B + T5y;
2077
0
       T8n = T4V - T4O;
2078
0
       T8o = T8m + T8n;
2079
0
       T9t = T8n - T8m;
2080
0
        }
2081
0
         }
2082
0
         {
2083
0
        E T3k, Tai, T4m, Taj, T3r, Tam, T4j, Tal, TaI, TaJ, T3z, Tdb, T4p, TaF, TaG;
2084
0
        E T3G, Tdc, T4o;
2085
0
        {
2086
0
       E T3i, T3j, T4k, T4l;
2087
0
       T3i = R1[0];
2088
0
       T3j = R1[WS(rs, 32)];
2089
0
       T3k = T3i - T3j;
2090
0
       Tai = T3i + T3j;
2091
0
       T4k = R1[WS(rs, 16)];
2092
0
       T4l = R1[WS(rs, 48)];
2093
0
       T4m = T4k - T4l;
2094
0
       Taj = T4k + T4l;
2095
0
        }
2096
0
        {
2097
0
       E T3l, T3m, T3n, T3o, T3p, T3q;
2098
0
       T3l = R1[WS(rs, 8)];
2099
0
       T3m = R1[WS(rs, 40)];
2100
0
       T3n = T3l - T3m;
2101
0
       T3o = R1[WS(rs, 56)];
2102
0
       T3p = R1[WS(rs, 24)];
2103
0
       T3q = T3o - T3p;
2104
0
       T3r = KP707106781 * (T3n + T3q);
2105
0
       Tam = T3o + T3p;
2106
0
       T4j = KP707106781 * (T3q - T3n);
2107
0
       Tal = T3l + T3m;
2108
0
        }
2109
0
        {
2110
0
       E T3v, T3y, T3C, T3F;
2111
0
       {
2112
0
            E T3t, T3u, T3w, T3x;
2113
0
            T3t = R1[WS(rs, 4)];
2114
0
            T3u = R1[WS(rs, 36)];
2115
0
            T3v = T3t - T3u;
2116
0
            TaI = T3t + T3u;
2117
0
            T3w = R1[WS(rs, 20)];
2118
0
            T3x = R1[WS(rs, 52)];
2119
0
            T3y = T3w - T3x;
2120
0
            TaJ = T3w + T3x;
2121
0
       }
2122
0
       T3z = FNMS(KP382683432, T3y, KP923879532 * T3v);
2123
0
       Tdb = TaI - TaJ;
2124
0
       T4p = FMA(KP382683432, T3v, KP923879532 * T3y);
2125
0
       {
2126
0
            E T3A, T3B, T3D, T3E;
2127
0
            T3A = R1[WS(rs, 60)];
2128
0
            T3B = R1[WS(rs, 28)];
2129
0
            T3C = T3A - T3B;
2130
0
            TaF = T3A + T3B;
2131
0
            T3D = R1[WS(rs, 12)];
2132
0
            T3E = R1[WS(rs, 44)];
2133
0
            T3F = T3D - T3E;
2134
0
            TaG = T3D + T3E;
2135
0
       }
2136
0
       T3G = FMA(KP923879532, T3C, KP382683432 * T3F);
2137
0
       Tdc = TaF - TaG;
2138
0
       T4o = FNMS(KP923879532, T3F, KP382683432 * T3C);
2139
0
        }
2140
0
        {
2141
0
       E T3s, T3H, Tda, Tdd;
2142
0
       T3s = T3k + T3r;
2143
0
       T3H = T3z + T3G;
2144
0
       T3I = T3s + T3H;
2145
0
       T6H = T3s - T3H;
2146
0
       Tda = Tai - Taj;
2147
0
       Tdd = KP707106781 * (Tdb + Tdc);
2148
0
       Tde = Tda + Tdd;
2149
0
       TeH = Tda - Tdd;
2150
0
        }
2151
0
        {
2152
0
       E Tdn, Tdo, T4n, T4q;
2153
0
       Tdn = Tam - Tal;
2154
0
       Tdo = KP707106781 * (Tdc - Tdb);
2155
0
       Tdp = Tdn + Tdo;
2156
0
       TeF = Tdo - Tdn;
2157
0
       T4n = T4j - T4m;
2158
0
       T4q = T4o - T4p;
2159
0
       T4r = T4n + T4q;
2160
0
       T6F = T4q - T4n;
2161
0
        }
2162
0
        {
2163
0
       E T7S, T7T, Tak, Tan;
2164
0
       T7S = T3k - T3r;
2165
0
       T7T = T4p + T4o;
2166
0
       T7U = T7S + T7T;
2167
0
       T9l = T7S - T7T;
2168
0
       Tak = Tai + Taj;
2169
0
       Tan = Tal + Tam;
2170
0
       Tao = Tak - Tan;
2171
0
       TbW = Tak + Tan;
2172
0
        }
2173
0
        {
2174
0
       E TaH, TaK, T83, T84;
2175
0
       TaH = TaF + TaG;
2176
0
       TaK = TaI + TaJ;
2177
0
       TaL = TaH - TaK;
2178
0
       TbX = TaK + TaH;
2179
0
       T83 = T4m + T4j;
2180
0
       T84 = T3G - T3z;
2181
0
       T85 = T83 + T84;
2182
0
       T9j = T84 - T83;
2183
0
        }
2184
0
         }
2185
0
         {
2186
0
        E T1z, T2V, T1C, T39, T1G, T38, T1J, T2Y, T1O, T1R, T32, Td0, T3c, T1V, T1Y;
2187
0
        E T35, Td1, T3b;
2188
0
        {
2189
0
       E T1x, T1y, T1A, T1B;
2190
0
       T1x = R0[WS(rs, 63)];
2191
0
       T1y = R0[WS(rs, 31)];
2192
0
       T1z = T1x + T1y;
2193
0
       T2V = T1x - T1y;
2194
0
       T1A = R0[WS(rs, 15)];
2195
0
       T1B = R0[WS(rs, 47)];
2196
0
       T1C = T1A + T1B;
2197
0
       T39 = T1A - T1B;
2198
0
        }
2199
0
        {
2200
0
       E T1E, T1F, T2W, T1H, T1I, T2X;
2201
0
       T1E = R0[WS(rs, 7)];
2202
0
       T1F = R0[WS(rs, 39)];
2203
0
       T2W = T1E - T1F;
2204
0
       T1H = R0[WS(rs, 55)];
2205
0
       T1I = R0[WS(rs, 23)];
2206
0
       T2X = T1H - T1I;
2207
0
       T1G = T1E + T1F;
2208
0
       T38 = KP707106781 * (T2X - T2W);
2209
0
       T1J = T1H + T1I;
2210
0
       T2Y = KP707106781 * (T2W + T2X);
2211
0
        }
2212
0
        {
2213
0
       E T30, T31, T33, T34;
2214
0
       {
2215
0
            E T1M, T1N, T1P, T1Q;
2216
0
            T1M = R0[WS(rs, 3)];
2217
0
            T1N = R0[WS(rs, 35)];
2218
0
            T1O = T1M + T1N;
2219
0
            T30 = T1M - T1N;
2220
0
            T1P = R0[WS(rs, 19)];
2221
0
            T1Q = R0[WS(rs, 51)];
2222
0
            T1R = T1P + T1Q;
2223
0
            T31 = T1P - T1Q;
2224
0
       }
2225
0
       T32 = FNMS(KP382683432, T31, KP923879532 * T30);
2226
0
       Td0 = T1O - T1R;
2227
0
       T3c = FMA(KP382683432, T30, KP923879532 * T31);
2228
0
       {
2229
0
            E T1T, T1U, T1W, T1X;
2230
0
            T1T = R0[WS(rs, 59)];
2231
0
            T1U = R0[WS(rs, 27)];
2232
0
            T1V = T1T + T1U;
2233
0
            T33 = T1T - T1U;
2234
0
            T1W = R0[WS(rs, 11)];
2235
0
            T1X = R0[WS(rs, 43)];
2236
0
            T1Y = T1W + T1X;
2237
0
            T34 = T1W - T1X;
2238
0
       }
2239
0
       T35 = FMA(KP923879532, T33, KP382683432 * T34);
2240
0
       Td1 = T1V - T1Y;
2241
0
       T3b = FNMS(KP923879532, T34, KP382683432 * T33);
2242
0
        }
2243
0
        {
2244
0
       E T1D, T1K, TcZ, Td2;
2245
0
       T1D = T1z + T1C;
2246
0
       T1K = T1G + T1J;
2247
0
       T1L = T1D + T1K;
2248
0
       Tad = T1D - T1K;
2249
0
       TcZ = T1z - T1C;
2250
0
       Td2 = KP707106781 * (Td0 + Td1);
2251
0
       Td3 = TcZ + Td2;
2252
0
       Tew = TcZ - Td2;
2253
0
        }
2254
0
        {
2255
0
       E Td4, Td5, T1S, T1Z;
2256
0
       Td4 = T1J - T1G;
2257
0
       Td5 = KP707106781 * (Td1 - Td0);
2258
0
       Td6 = Td4 + Td5;
2259
0
       Tex = Td5 - Td4;
2260
0
       T1S = T1O + T1R;
2261
0
       T1Z = T1V + T1Y;
2262
0
       T20 = T1S + T1Z;
2263
0
       Tae = T1Z - T1S;
2264
0
        }
2265
0
        {
2266
0
       E T2Z, T36, T7J, T7K;
2267
0
       T2Z = T2V + T2Y;
2268
0
       T36 = T32 + T35;
2269
0
       T37 = T2Z + T36;
2270
0
       T6x = T2Z - T36;
2271
0
       T7J = T2V - T2Y;
2272
0
       T7K = T3c + T3b;
2273
0
       T7L = T7J + T7K;
2274
0
       T9a = T7J - T7K;
2275
0
        }
2276
0
        {
2277
0
       E T7M, T7N, T3a, T3d;
2278
0
       T7M = T39 + T38;
2279
0
       T7N = T35 - T32;
2280
0
       T7O = T7M + T7N;
2281
0
       T9b = T7N - T7M;
2282
0
       T3a = T38 - T39;
2283
0
       T3d = T3b - T3c;
2284
0
       T3e = T3a + T3d;
2285
0
       T6w = T3d - T3a;
2286
0
        }
2287
0
         }
2288
0
         {
2289
0
        E T3L, Tdf, T3X, Tar, T42, Tdi, T4e, Tay, T3S, Tdg, T3U, Tau, T49, Tdj, T4b;
2290
0
        E TaB, Tdh, Tdk;
2291
0
        {
2292
0
       E T3J, T3K, Tap, T3V, T3W, Taq;
2293
0
       T3J = R1[WS(rs, 2)];
2294
0
       T3K = R1[WS(rs, 34)];
2295
0
       Tap = T3J + T3K;
2296
0
       T3V = R1[WS(rs, 18)];
2297
0
       T3W = R1[WS(rs, 50)];
2298
0
       Taq = T3V + T3W;
2299
0
       T3L = T3J - T3K;
2300
0
       Tdf = Tap - Taq;
2301
0
       T3X = T3V - T3W;
2302
0
       Tar = Tap + Taq;
2303
0
        }
2304
0
        {
2305
0
       E T40, T41, Taw, T4c, T4d, Tax;
2306
0
       T40 = R1[WS(rs, 62)];
2307
0
       T41 = R1[WS(rs, 30)];
2308
0
       Taw = T40 + T41;
2309
0
       T4c = R1[WS(rs, 14)];
2310
0
       T4d = R1[WS(rs, 46)];
2311
0
       Tax = T4c + T4d;
2312
0
       T42 = T40 - T41;
2313
0
       Tdi = Taw - Tax;
2314
0
       T4e = T4c - T4d;
2315
0
       Tay = Taw + Tax;
2316
0
        }
2317
0
        {
2318
0
       E T3O, Tas, T3R, Tat;
2319
0
       {
2320
0
            E T3M, T3N, T3P, T3Q;
2321
0
            T3M = R1[WS(rs, 10)];
2322
0
            T3N = R1[WS(rs, 42)];
2323
0
            T3O = T3M - T3N;
2324
0
            Tas = T3M + T3N;
2325
0
            T3P = R1[WS(rs, 58)];
2326
0
            T3Q = R1[WS(rs, 26)];
2327
0
            T3R = T3P - T3Q;
2328
0
            Tat = T3P + T3Q;
2329
0
       }
2330
0
       T3S = KP707106781 * (T3O + T3R);
2331
0
       Tdg = Tat - Tas;
2332
0
       T3U = KP707106781 * (T3R - T3O);
2333
0
       Tau = Tas + Tat;
2334
0
        }
2335
0
        {
2336
0
       E T45, Taz, T48, TaA;
2337
0
       {
2338
0
            E T43, T44, T46, T47;
2339
0
            T43 = R1[WS(rs, 6)];
2340
0
            T44 = R1[WS(rs, 38)];
2341
0
            T45 = T43 - T44;
2342
0
            Taz = T43 + T44;
2343
0
            T46 = R1[WS(rs, 54)];
2344
0
            T47 = R1[WS(rs, 22)];
2345
0
            T48 = T46 - T47;
2346
0
            TaA = T46 + T47;
2347
0
       }
2348
0
       T49 = KP707106781 * (T45 + T48);
2349
0
       Tdj = TaA - Taz;
2350
0
       T4b = KP707106781 * (T48 - T45);
2351
0
       TaB = Taz + TaA;
2352
0
        }
2353
0
        TbZ = Tar + Tau;
2354
0
        Tc0 = Tay + TaB;
2355
0
        {
2356
0
       E T3T, T3Y, Tdq, Tdr;
2357
0
       T3T = T3L + T3S;
2358
0
       T3Y = T3U - T3X;
2359
0
       T3Z = FMA(KP980785280, T3T, KP195090322 * T3Y);
2360
0
       T4s = FNMS(KP195090322, T3T, KP980785280 * T3Y);
2361
0
       Tdq = FNMS(KP382683432, Tdf, KP923879532 * Tdg);
2362
0
       Tdr = FMA(KP382683432, Tdi, KP923879532 * Tdj);
2363
0
       Tds = Tdq + Tdr;
2364
0
       TeI = Tdr - Tdq;
2365
0
        }
2366
0
        {
2367
0
       E T4a, T4f, T7Y, T7Z;
2368
0
       T4a = T42 + T49;
2369
0
       T4f = T4b - T4e;
2370
0
       T4g = FNMS(KP195090322, T4f, KP980785280 * T4a);
2371
0
       T4t = FMA(KP195090322, T4a, KP980785280 * T4f);
2372
0
       T7Y = T42 - T49;
2373
0
       T7Z = T4e + T4b;
2374
0
       T80 = FNMS(KP555570233, T7Z, KP831469612 * T7Y);
2375
0
       T87 = FMA(KP555570233, T7Y, KP831469612 * T7Z);
2376
0
        }
2377
0
        Tdh = FMA(KP923879532, Tdf, KP382683432 * Tdg);
2378
0
        Tdk = FNMS(KP382683432, Tdj, KP923879532 * Tdi);
2379
0
        Tdl = Tdh + Tdk;
2380
0
        TeE = Tdk - Tdh;
2381
0
        {
2382
0
       E T7V, T7W, Tav, TaC;
2383
0
       T7V = T3L - T3S;
2384
0
       T7W = T3X + T3U;
2385
0
       T7X = FMA(KP831469612, T7V, KP555570233 * T7W);
2386
0
       T86 = FNMS(KP555570233, T7V, KP831469612 * T7W);
2387
0
       Tav = Tar - Tau;
2388
0
       TaC = Tay - TaB;
2389
0
       TaD = KP707106781 * (Tav + TaC);
2390
0
       TaM = KP707106781 * (TaC - Tav);
2391
0
        }
2392
0
         }
2393
0
         {
2394
0
        E T50, TdA, T5c, TaY, T5h, TdD, T5t, Tb5, T57, TdB, T59, Tb1, T5o, TdE, T5q;
2395
0
        E Tb8, TdC, TdF;
2396
0
        {
2397
0
       E T4Y, T4Z, TaW, T5a, T5b, TaX;
2398
0
       T4Y = R1[WS(rs, 1)];
2399
0
       T4Z = R1[WS(rs, 33)];
2400
0
       TaW = T4Y + T4Z;
2401
0
       T5a = R1[WS(rs, 17)];
2402
0
       T5b = R1[WS(rs, 49)];
2403
0
       TaX = T5a + T5b;
2404
0
       T50 = T4Y - T4Z;
2405
0
       TdA = TaW - TaX;
2406
0
       T5c = T5a - T5b;
2407
0
       TaY = TaW + TaX;
2408
0
        }
2409
0
        {
2410
0
       E T5f, T5g, Tb3, T5r, T5s, Tb4;
2411
0
       T5f = R1[WS(rs, 61)];
2412
0
       T5g = R1[WS(rs, 29)];
2413
0
       Tb3 = T5f + T5g;
2414
0
       T5r = R1[WS(rs, 13)];
2415
0
       T5s = R1[WS(rs, 45)];
2416
0
       Tb4 = T5r + T5s;
2417
0
       T5h = T5f - T5g;
2418
0
       TdD = Tb3 - Tb4;
2419
0
       T5t = T5r - T5s;
2420
0
       Tb5 = Tb3 + Tb4;
2421
0
        }
2422
0
        {
2423
0
       E T53, TaZ, T56, Tb0;
2424
0
       {
2425
0
            E T51, T52, T54, T55;
2426
0
            T51 = R1[WS(rs, 9)];
2427
0
            T52 = R1[WS(rs, 41)];
2428
0
            T53 = T51 - T52;
2429
0
            TaZ = T51 + T52;
2430
0
            T54 = R1[WS(rs, 57)];
2431
0
            T55 = R1[WS(rs, 25)];
2432
0
            T56 = T54 - T55;
2433
0
            Tb0 = T54 + T55;
2434
0
       }
2435
0
       T57 = KP707106781 * (T53 + T56);
2436
0
       TdB = Tb0 - TaZ;
2437
0
       T59 = KP707106781 * (T56 - T53);
2438
0
       Tb1 = TaZ + Tb0;
2439
0
        }
2440
0
        {
2441
0
       E T5k, Tb6, T5n, Tb7;
2442
0
       {
2443
0
            E T5i, T5j, T5l, T5m;
2444
0
            T5i = R1[WS(rs, 5)];
2445
0
            T5j = R1[WS(rs, 37)];
2446
0
            T5k = T5i - T5j;
2447
0
            Tb6 = T5i + T5j;
2448
0
            T5l = R1[WS(rs, 53)];
2449
0
            T5m = R1[WS(rs, 21)];
2450
0
            T5n = T5l - T5m;
2451
0
            Tb7 = T5l + T5m;
2452
0
       }
2453
0
       T5o = KP707106781 * (T5k + T5n);
2454
0
       TdE = Tb7 - Tb6;
2455
0
       T5q = KP707106781 * (T5n - T5k);
2456
0
       Tb8 = Tb6 + Tb7;
2457
0
        }
2458
0
        Tc6 = TaY + Tb1;
2459
0
        Tc7 = Tb5 + Tb8;
2460
0
        {
2461
0
       E T58, T5d, TdL, TdM;
2462
0
       T58 = T50 + T57;
2463
0
       T5d = T59 - T5c;
2464
0
       T5e = FMA(KP980785280, T58, KP195090322 * T5d);
2465
0
       T5H = FNMS(KP195090322, T58, KP980785280 * T5d);
2466
0
       TdL = FNMS(KP382683432, TdA, KP923879532 * TdB);
2467
0
       TdM = FMA(KP382683432, TdD, KP923879532 * TdE);
2468
0
       TdN = TdL + TdM;
2469
0
       TeM = TdM - TdL;
2470
0
        }
2471
0
        {
2472
0
       E T5p, T5u, T8h, T8i;
2473
0
       T5p = T5h + T5o;
2474
0
       T5u = T5q - T5t;
2475
0
       T5v = FNMS(KP195090322, T5u, KP980785280 * T5p);
2476
0
       T5I = FMA(KP195090322, T5p, KP980785280 * T5u);
2477
0
       T8h = T5h - T5o;
2478
0
       T8i = T5t + T5q;
2479
0
       T8j = FNMS(KP555570233, T8i, KP831469612 * T8h);
2480
0
       T8q = FMA(KP555570233, T8h, KP831469612 * T8i);
2481
0
        }
2482
0
        TdC = FMA(KP923879532, TdA, KP382683432 * TdB);
2483
0
        TdF = FNMS(KP382683432, TdE, KP923879532 * TdD);
2484
0
        TdG = TdC + TdF;
2485
0
        TeO = TdF - TdC;
2486
0
        {
2487
0
       E T8e, T8f, Tb2, Tb9;
2488
0
       T8e = T50 - T57;
2489
0
       T8f = T5c + T59;
2490
0
       T8g = FMA(KP831469612, T8e, KP555570233 * T8f);
2491
0
       T8p = FNMS(KP555570233, T8e, KP831469612 * T8f);
2492
0
       Tb2 = TaY - Tb1;
2493
0
       Tb9 = Tb5 - Tb8;
2494
0
       Tba = KP707106781 * (Tb2 + Tb9);
2495
0
       Tbj = KP707106781 * (Tb9 - Tb2);
2496
0
        }
2497
0
         }
2498
0
         {
2499
0
        E T11, TbV, Tc9, Tcf, T22, Tcb, Tc2, Tce;
2500
0
        {
2501
0
       E Tv, T10, Tc5, Tc8;
2502
0
       Tv = Tf + Tu;
2503
0
       T10 = TK + TZ;
2504
0
       T11 = Tv + T10;
2505
0
       TbV = Tv - T10;
2506
0
       Tc5 = Tc3 + Tc4;
2507
0
       Tc8 = Tc6 + Tc7;
2508
0
       Tc9 = Tc5 - Tc8;
2509
0
       Tcf = Tc5 + Tc8;
2510
0
        }
2511
0
        {
2512
0
       E T1w, T21, TbY, Tc1;
2513
0
       T1w = T1g + T1v;
2514
0
       T21 = T1L + T20;
2515
0
       T22 = T1w + T21;
2516
0
       Tcb = T21 - T1w;
2517
0
       TbY = TbW + TbX;
2518
0
       Tc1 = TbZ + Tc0;
2519
0
       Tc2 = TbY - Tc1;
2520
0
       Tce = TbY + Tc1;
2521
0
        }
2522
0
        Cr[WS(csr, 32)] = T11 - T22;
2523
0
        Ci[WS(csi, 32)] = Tcf - Tce;
2524
0
        {
2525
0
       E Tca, Tcc, Tcd, Tcg;
2526
0
       Tca = KP707106781 * (Tc2 + Tc9);
2527
0
       Cr[WS(csr, 48)] = TbV - Tca;
2528
0
       Cr[WS(csr, 16)] = TbV + Tca;
2529
0
       Tcc = KP707106781 * (Tc9 - Tc2);
2530
0
       Ci[WS(csi, 16)] = Tcb + Tcc;
2531
0
       Ci[WS(csi, 48)] = Tcc - Tcb;
2532
0
       Tcd = T11 + T22;
2533
0
       Tcg = Tce + Tcf;
2534
0
       Cr[WS(csr, 64)] = Tcd - Tcg;
2535
0
       Cr[0] = Tcd + Tcg;
2536
0
        }
2537
0
         }
2538
0
         {
2539
0
        E Tch, Tcu, Tck, Tct, Tco, Tcy, Tcr, Tcz, Tci, Tcj;
2540
0
        Tch = Tf - Tu;
2541
0
        Tcu = TZ - TK;
2542
0
        Tci = T1g - T1v;
2543
0
        Tcj = T1L - T20;
2544
0
        Tck = KP707106781 * (Tci + Tcj);
2545
0
        Tct = KP707106781 * (Tcj - Tci);
2546
0
        {
2547
0
       E Tcm, Tcn, Tcp, Tcq;
2548
0
       Tcm = TbW - TbX;
2549
0
       Tcn = Tc0 - TbZ;
2550
0
       Tco = FMA(KP923879532, Tcm, KP382683432 * Tcn);
2551
0
       Tcy = FNMS(KP382683432, Tcm, KP923879532 * Tcn);
2552
0
       Tcp = Tc3 - Tc4;
2553
0
       Tcq = Tc7 - Tc6;
2554
0
       Tcr = FNMS(KP382683432, Tcq, KP923879532 * Tcp);
2555
0
       Tcz = FMA(KP382683432, Tcp, KP923879532 * Tcq);
2556
0
        }
2557
0
        {
2558
0
       E Tcl, Tcs, Tcx, TcA;
2559
0
       Tcl = Tch + Tck;
2560
0
       Tcs = Tco + Tcr;
2561
0
       Cr[WS(csr, 56)] = Tcl - Tcs;
2562
0
       Cr[WS(csr, 8)] = Tcl + Tcs;
2563
0
       Tcx = Tcu + Tct;
2564
0
       TcA = Tcy + Tcz;
2565
0
       Ci[WS(csi, 8)] = Tcx + TcA;
2566
0
       Ci[WS(csi, 56)] = TcA - Tcx;
2567
0
        }
2568
0
        {
2569
0
       E Tcv, Tcw, TcB, TcC;
2570
0
       Tcv = Tct - Tcu;
2571
0
       Tcw = Tcr - Tco;
2572
0
       Ci[WS(csi, 24)] = Tcv + Tcw;
2573
0
       Ci[WS(csi, 40)] = Tcw - Tcv;
2574
0
       TcB = Tch - Tck;
2575
0
       TcC = Tcz - Tcy;
2576
0
       Cr[WS(csr, 40)] = TcB - TcC;
2577
0
       Cr[WS(csr, 24)] = TcB + TcC;
2578
0
        }
2579
0
         }
2580
0
         {
2581
0
        E Ta9, TbB, Tbs, TbM, Tag, TbL, TbJ, TbR, TaO, Tbw, Tbp, TbC, TbG, TbQ, Tbl;
2582
0
        E Tbx, Ta8, Tbr;
2583
0
        Ta8 = KP707106781 * (Ta6 + Ta7);
2584
0
        Ta9 = Ta5 + Ta8;
2585
0
        TbB = Ta5 - Ta8;
2586
0
        Tbr = KP707106781 * (Ta7 - Ta6);
2587
0
        Tbs = Tbq + Tbr;
2588
0
        TbM = Tbr - Tbq;
2589
0
        {
2590
0
       E Tac, Taf, TbH, TbI;
2591
0
       Tac = FMA(KP923879532, Taa, KP382683432 * Tab);
2592
0
       Taf = FNMS(KP382683432, Tae, KP923879532 * Tad);
2593
0
       Tag = Tac + Taf;
2594
0
       TbL = Taf - Tac;
2595
0
       TbH = TaV - Tba;
2596
0
       TbI = Tbj - Tbi;
2597
0
       TbJ = FNMS(KP555570233, TbI, KP831469612 * TbH);
2598
0
       TbR = FMA(KP555570233, TbH, KP831469612 * TbI);
2599
0
        }
2600
0
        {
2601
0
       E TaE, TaN, Tbn, Tbo;
2602
0
       TaE = Tao + TaD;
2603
0
       TaN = TaL + TaM;
2604
0
       TaO = FMA(KP980785280, TaE, KP195090322 * TaN);
2605
0
       Tbw = FNMS(KP195090322, TaE, KP980785280 * TaN);
2606
0
       Tbn = FNMS(KP382683432, Taa, KP923879532 * Tab);
2607
0
       Tbo = FMA(KP382683432, Tad, KP923879532 * Tae);
2608
0
       Tbp = Tbn + Tbo;
2609
0
       TbC = Tbo - Tbn;
2610
0
        }
2611
0
        {
2612
0
       E TbE, TbF, Tbb, Tbk;
2613
0
       TbE = Tao - TaD;
2614
0
       TbF = TaM - TaL;
2615
0
       TbG = FMA(KP831469612, TbE, KP555570233 * TbF);
2616
0
       TbQ = FNMS(KP555570233, TbE, KP831469612 * TbF);
2617
0
       Tbb = TaV + Tba;
2618
0
       Tbk = Tbi + Tbj;
2619
0
       Tbl = FNMS(KP195090322, Tbk, KP980785280 * Tbb);
2620
0
       Tbx = FMA(KP195090322, Tbb, KP980785280 * Tbk);
2621
0
        }
2622
0
        {
2623
0
       E Tah, Tbm, Tbv, Tby;
2624
0
       Tah = Ta9 + Tag;
2625
0
       Tbm = TaO + Tbl;
2626
0
       Cr[WS(csr, 60)] = Tah - Tbm;
2627
0
       Cr[WS(csr, 4)] = Tah + Tbm;
2628
0
       Tbv = Tbs + Tbp;
2629
0
       Tby = Tbw + Tbx;
2630
0
       Ci[WS(csi, 4)] = Tbv + Tby;
2631
0
       Ci[WS(csi, 60)] = Tby - Tbv;
2632
0
        }
2633
0
        {
2634
0
       E Tbt, Tbu, Tbz, TbA;
2635
0
       Tbt = Tbp - Tbs;
2636
0
       Tbu = Tbl - TaO;
2637
0
       Ci[WS(csi, 28)] = Tbt + Tbu;
2638
0
       Ci[WS(csi, 36)] = Tbu - Tbt;
2639
0
       Tbz = Ta9 - Tag;
2640
0
       TbA = Tbx - Tbw;
2641
0
       Cr[WS(csr, 36)] = Tbz - TbA;
2642
0
       Cr[WS(csr, 28)] = Tbz + TbA;
2643
0
        }
2644
0
        {
2645
0
       E TbD, TbK, TbP, TbS;
2646
0
       TbD = TbB + TbC;
2647
0
       TbK = TbG + TbJ;
2648
0
       Cr[WS(csr, 52)] = TbD - TbK;
2649
0
       Cr[WS(csr, 12)] = TbD + TbK;
2650
0
       TbP = TbM + TbL;
2651
0
       TbS = TbQ + TbR;
2652
0
       Ci[WS(csi, 12)] = TbP + TbS;
2653
0
       Ci[WS(csi, 52)] = TbS - TbP;
2654
0
        }
2655
0
        {
2656
0
       E TbN, TbO, TbT, TbU;
2657
0
       TbN = TbL - TbM;
2658
0
       TbO = TbJ - TbG;
2659
0
       Ci[WS(csi, 20)] = TbN + TbO;
2660
0
       Ci[WS(csi, 44)] = TbO - TbN;
2661
0
       TbT = TbB - TbC;
2662
0
       TbU = TbR - TbQ;
2663
0
       Cr[WS(csr, 44)] = TbT - TbU;
2664
0
       Cr[WS(csr, 20)] = TbT + TbU;
2665
0
        }
2666
0
         }
2667
0
         {
2668
0
        E Tev, Tf7, Tfc, Tfm, Tff, Tfn, TeC, Tfh, TeK, Tf2, TeV, Tf8, TeY, Tfi, TeR;
2669
0
        E Tf3;
2670
0
        {
2671
0
       E Tet, Teu, Tfa, Tfb;
2672
0
       Tet = TcD - TcG;
2673
0
       Teu = TdY - TdX;
2674
0
       Tev = Tet - Teu;
2675
0
       Tf7 = Tet + Teu;
2676
0
       Tfa = TeF + TeE;
2677
0
       Tfb = TeH + TeI;
2678
0
       Tfc = FMA(KP290284677, Tfa, KP956940335 * Tfb);
2679
0
       Tfm = FNMS(KP290284677, Tfb, KP956940335 * Tfa);
2680
0
        }
2681
0
        {
2682
0
       E Tfd, Tfe, Tey, TeB;
2683
0
       Tfd = TeL + TeM;
2684
0
       Tfe = TeP + TeO;
2685
0
       Tff = FNMS(KP290284677, Tfe, KP956940335 * Tfd);
2686
0
       Tfn = FMA(KP956940335, Tfe, KP290284677 * Tfd);
2687
0
       Tey = FMA(KP555570233, Tew, KP831469612 * Tex);
2688
0
       TeB = FNMS(KP555570233, TeA, KP831469612 * Tez);
2689
0
       TeC = Tey - TeB;
2690
0
       Tfh = TeB + Tey;
2691
0
        }
2692
0
        {
2693
0
       E TeG, TeJ, TeT, TeU;
2694
0
       TeG = TeE - TeF;
2695
0
       TeJ = TeH - TeI;
2696
0
       TeK = FMA(KP471396736, TeG, KP881921264 * TeJ);
2697
0
       Tf2 = FNMS(KP471396736, TeJ, KP881921264 * TeG);
2698
0
       TeT = FNMS(KP555570233, Tex, KP831469612 * Tew);
2699
0
       TeU = FMA(KP831469612, TeA, KP555570233 * Tez);
2700
0
       TeV = TeT - TeU;
2701
0
       Tf8 = TeU + TeT;
2702
0
        }
2703
0
        {
2704
0
       E TeW, TeX, TeN, TeQ;
2705
0
       TeW = TcN - TcK;
2706
0
       TeX = TdV - TdU;
2707
0
       TeY = TeW - TeX;
2708
0
       Tfi = TeX + TeW;
2709
0
       TeN = TeL - TeM;
2710
0
       TeQ = TeO - TeP;
2711
0
       TeR = FNMS(KP471396736, TeQ, KP881921264 * TeN);
2712
0
       Tf3 = FMA(KP881921264, TeQ, KP471396736 * TeN);
2713
0
        }
2714
0
        {
2715
0
       E TeD, TeS, Tf1, Tf4;
2716
0
       TeD = Tev + TeC;
2717
0
       TeS = TeK + TeR;
2718
0
       Cr[WS(csr, 54)] = TeD - TeS;
2719
0
       Cr[WS(csr, 10)] = TeD + TeS;
2720
0
       Tf1 = TeY + TeV;
2721
0
       Tf4 = Tf2 + Tf3;
2722
0
       Ci[WS(csi, 10)] = Tf1 + Tf4;
2723
0
       Ci[WS(csi, 54)] = Tf4 - Tf1;
2724
0
        }
2725
0
        {
2726
0
       E TeZ, Tf0, Tf5, Tf6;
2727
0
       TeZ = TeV - TeY;
2728
0
       Tf0 = TeR - TeK;
2729
0
       Ci[WS(csi, 22)] = TeZ + Tf0;
2730
0
       Ci[WS(csi, 42)] = Tf0 - TeZ;
2731
0
       Tf5 = Tev - TeC;
2732
0
       Tf6 = Tf3 - Tf2;
2733
0
       Cr[WS(csr, 42)] = Tf5 - Tf6;
2734
0
       Cr[WS(csr, 22)] = Tf5 + Tf6;
2735
0
        }
2736
0
        {
2737
0
       E Tf9, Tfg, Tfl, Tfo;
2738
0
       Tf9 = Tf7 + Tf8;
2739
0
       Tfg = Tfc + Tff;
2740
0
       Cr[WS(csr, 58)] = Tf9 - Tfg;
2741
0
       Cr[WS(csr, 6)] = Tf9 + Tfg;
2742
0
       Tfl = Tfi + Tfh;
2743
0
       Tfo = Tfm + Tfn;
2744
0
       Ci[WS(csi, 6)] = Tfl + Tfo;
2745
0
       Ci[WS(csi, 58)] = Tfo - Tfl;
2746
0
        }
2747
0
        {
2748
0
       E Tfj, Tfk, Tfp, Tfq;
2749
0
       Tfj = Tfh - Tfi;
2750
0
       Tfk = Tff - Tfc;
2751
0
       Ci[WS(csi, 26)] = Tfj + Tfk;
2752
0
       Ci[WS(csi, 38)] = Tfk - Tfj;
2753
0
       Tfp = Tf7 - Tf8;
2754
0
       Tfq = Tfn - Tfm;
2755
0
       Cr[WS(csr, 38)] = Tfp - Tfq;
2756
0
       Cr[WS(csr, 26)] = Tfp + Tfq;
2757
0
        }
2758
0
         }
2759
0
         {
2760
0
        E TcP, Te9, Tee, Teo, Teh, Tep, Td8, Tej, Tdu, Te4, TdT, Tea, Te0, Tek, TdP;
2761
0
        E Te5;
2762
0
        {
2763
0
       E TcH, TcO, Tec, Ted;
2764
0
       TcH = TcD + TcG;
2765
0
       TcO = TcK + TcN;
2766
0
       TcP = TcH + TcO;
2767
0
       Te9 = TcH - TcO;
2768
0
       Tec = Tde - Tdl;
2769
0
       Ted = Tds - Tdp;
2770
0
       Tee = FMA(KP773010453, Tec, KP634393284 * Ted);
2771
0
       Teo = FNMS(KP634393284, Tec, KP773010453 * Ted);
2772
0
        }
2773
0
        {
2774
0
       E Tef, Teg, TcY, Td7;
2775
0
       Tef = Tdz - TdG;
2776
0
       Teg = TdN - TdK;
2777
0
       Teh = FNMS(KP634393284, Teg, KP773010453 * Tef);
2778
0
       Tep = FMA(KP634393284, Tef, KP773010453 * Teg);
2779
0
       TcY = FMA(KP980785280, TcU, KP195090322 * TcX);
2780
0
       Td7 = FNMS(KP195090322, Td6, KP980785280 * Td3);
2781
0
       Td8 = TcY + Td7;
2782
0
       Tej = Td7 - TcY;
2783
0
        }
2784
0
        {
2785
0
       E Tdm, Tdt, TdR, TdS;
2786
0
       Tdm = Tde + Tdl;
2787
0
       Tdt = Tdp + Tds;
2788
0
       Tdu = FMA(KP995184726, Tdm, KP098017140 * Tdt);
2789
0
       Te4 = FNMS(KP098017140, Tdm, KP995184726 * Tdt);
2790
0
       TdR = FNMS(KP195090322, TcU, KP980785280 * TcX);
2791
0
       TdS = FMA(KP195090322, Td3, KP980785280 * Td6);
2792
0
       TdT = TdR + TdS;
2793
0
       Tea = TdS - TdR;
2794
0
        }
2795
0
        {
2796
0
       E TdW, TdZ, TdH, TdO;
2797
0
       TdW = TdU + TdV;
2798
0
       TdZ = TdX + TdY;
2799
0
       Te0 = TdW + TdZ;
2800
0
       Tek = TdZ - TdW;
2801
0
       TdH = Tdz + TdG;
2802
0
       TdO = TdK + TdN;
2803
0
       TdP = FNMS(KP098017140, TdO, KP995184726 * TdH);
2804
0
       Te5 = FMA(KP098017140, TdH, KP995184726 * TdO);
2805
0
        }
2806
0
        {
2807
0
       E Td9, TdQ, Te3, Te6;
2808
0
       Td9 = TcP + Td8;
2809
0
       TdQ = Tdu + TdP;
2810
0
       Cr[WS(csr, 62)] = Td9 - TdQ;
2811
0
       Cr[WS(csr, 2)] = Td9 + TdQ;
2812
0
       Te3 = Te0 + TdT;
2813
0
       Te6 = Te4 + Te5;
2814
0
       Ci[WS(csi, 2)] = Te3 + Te6;
2815
0
       Ci[WS(csi, 62)] = Te6 - Te3;
2816
0
        }
2817
0
        {
2818
0
       E Te1, Te2, Te7, Te8;
2819
0
       Te1 = TdT - Te0;
2820
0
       Te2 = TdP - Tdu;
2821
0
       Ci[WS(csi, 30)] = Te1 + Te2;
2822
0
       Ci[WS(csi, 34)] = Te2 - Te1;
2823
0
       Te7 = TcP - Td8;
2824
0
       Te8 = Te5 - Te4;
2825
0
       Cr[WS(csr, 34)] = Te7 - Te8;
2826
0
       Cr[WS(csr, 30)] = Te7 + Te8;
2827
0
        }
2828
0
        {
2829
0
       E Teb, Tei, Ten, Teq;
2830
0
       Teb = Te9 + Tea;
2831
0
       Tei = Tee + Teh;
2832
0
       Cr[WS(csr, 50)] = Teb - Tei;
2833
0
       Cr[WS(csr, 14)] = Teb + Tei;
2834
0
       Ten = Tek + Tej;
2835
0
       Teq = Teo + Tep;
2836
0
       Ci[WS(csi, 14)] = Ten + Teq;
2837
0
       Ci[WS(csi, 50)] = Teq - Ten;
2838
0
        }
2839
0
        {
2840
0
       E Tel, Tem, Ter, Tes;
2841
0
       Tel = Tej - Tek;
2842
0
       Tem = Teh - Tee;
2843
0
       Ci[WS(csi, 18)] = Tel + Tem;
2844
0
       Ci[WS(csi, 46)] = Tem - Tel;
2845
0
       Ter = Te9 - Tea;
2846
0
       Tes = Tep - Teo;
2847
0
       Cr[WS(csr, 46)] = Ter - Tes;
2848
0
       Cr[WS(csr, 18)] = Ter + Tes;
2849
0
        }
2850
0
         }
2851
0
         {
2852
0
        E T6v, T77, T6C, T7h, T6Y, T7i, T6V, T78, T6R, T7n, T73, T7f, T6K, T7m, T72;
2853
0
        E T7c;
2854
0
        {
2855
0
       E T6t, T6u, T6T, T6U;
2856
0
       T6t = T27 - T2e;
2857
0
       T6u = T5Y - T5X;
2858
0
       T6v = T6t - T6u;
2859
0
       T77 = T6t + T6u;
2860
0
       {
2861
0
            E T6y, T6B, T6W, T6X;
2862
0
            T6y = FMA(KP773010453, T6w, KP634393284 * T6x);
2863
0
            T6B = FNMS(KP634393284, T6A, KP773010453 * T6z);
2864
0
            T6C = T6y - T6B;
2865
0
            T7h = T6B + T6y;
2866
0
            T6W = T2x - T2o;
2867
0
            T6X = T5V - T5S;
2868
0
            T6Y = T6W - T6X;
2869
0
            T7i = T6X + T6W;
2870
0
       }
2871
0
       T6T = FNMS(KP634393284, T6w, KP773010453 * T6x);
2872
0
       T6U = FMA(KP634393284, T6z, KP773010453 * T6A);
2873
0
       T6V = T6T - T6U;
2874
0
       T78 = T6U + T6T;
2875
0
       {
2876
0
            E T6N, T7d, T6Q, T7e, T6M, T6O;
2877
0
            T6M = T5I - T5H;
2878
0
            T6N = T6L - T6M;
2879
0
            T7d = T6L + T6M;
2880
0
            T6O = T5v - T5e;
2881
0
            T6Q = T6O - T6P;
2882
0
            T7e = T6P + T6O;
2883
0
            T6R = FNMS(KP427555093, T6Q, KP903989293 * T6N);
2884
0
            T7n = FMA(KP941544065, T7e, KP336889853 * T7d);
2885
0
            T73 = FMA(KP903989293, T6Q, KP427555093 * T6N);
2886
0
            T7f = FNMS(KP336889853, T7e, KP941544065 * T7d);
2887
0
       }
2888
0
       {
2889
0
            E T6G, T7a, T6J, T7b, T6E, T6I;
2890
0
            T6E = T4g - T3Z;
2891
0
            T6G = T6E - T6F;
2892
0
            T7a = T6F + T6E;
2893
0
            T6I = T4t - T4s;
2894
0
            T6J = T6H - T6I;
2895
0
            T7b = T6H + T6I;
2896
0
            T6K = FMA(KP427555093, T6G, KP903989293 * T6J);
2897
0
            T7m = FNMS(KP336889853, T7b, KP941544065 * T7a);
2898
0
            T72 = FNMS(KP427555093, T6J, KP903989293 * T6G);
2899
0
            T7c = FMA(KP336889853, T7a, KP941544065 * T7b);
2900
0
       }
2901
0
        }
2902
0
        {
2903
0
       E T6D, T6S, T71, T74;
2904
0
       T6D = T6v + T6C;
2905
0
       T6S = T6K + T6R;
2906
0
       Cr[WS(csr, 55)] = T6D - T6S;
2907
0
       Cr[WS(csr, 9)] = T6D + T6S;
2908
0
       T71 = T6Y + T6V;
2909
0
       T74 = T72 + T73;
2910
0
       Ci[WS(csi, 9)] = T71 + T74;
2911
0
       Ci[WS(csi, 55)] = T74 - T71;
2912
0
        }
2913
0
        {
2914
0
       E T6Z, T70, T75, T76;
2915
0
       T6Z = T6V - T6Y;
2916
0
       T70 = T6R - T6K;
2917
0
       Ci[WS(csi, 23)] = T6Z + T70;
2918
0
       Ci[WS(csi, 41)] = T70 - T6Z;
2919
0
       T75 = T6v - T6C;
2920
0
       T76 = T73 - T72;
2921
0
       Cr[WS(csr, 41)] = T75 - T76;
2922
0
       Cr[WS(csr, 23)] = T75 + T76;
2923
0
        }
2924
0
        {
2925
0
       E T79, T7g, T7l, T7o;
2926
0
       T79 = T77 + T78;
2927
0
       T7g = T7c + T7f;
2928
0
       Cr[WS(csr, 57)] = T79 - T7g;
2929
0
       Cr[WS(csr, 7)] = T79 + T7g;
2930
0
       T7l = T7i + T7h;
2931
0
       T7o = T7m + T7n;
2932
0
       Ci[WS(csi, 7)] = T7l + T7o;
2933
0
       Ci[WS(csi, 57)] = T7o - T7l;
2934
0
        }
2935
0
        {
2936
0
       E T7j, T7k, T7p, T7q;
2937
0
       T7j = T7h - T7i;
2938
0
       T7k = T7f - T7c;
2939
0
       Ci[WS(csi, 25)] = T7j + T7k;
2940
0
       Ci[WS(csi, 39)] = T7k - T7j;
2941
0
       T7p = T77 - T78;
2942
0
       T7q = T7n - T7m;
2943
0
       Cr[WS(csr, 39)] = T7p - T7q;
2944
0
       Cr[WS(csr, 25)] = T7p + T7q;
2945
0
        }
2946
0
         }
2947
0
         {
2948
0
        E T99, T9L, T9g, T9V, T9C, T9W, T9z, T9M, T9v, Ta1, T9H, T9T, T9o, Ta0, T9G;
2949
0
        E T9Q;
2950
0
        {
2951
0
       E T97, T98, T9x, T9y;
2952
0
       T97 = T7r - T7s;
2953
0
       T98 = T8C - T8B;
2954
0
       T99 = T97 - T98;
2955
0
       T9L = T97 + T98;
2956
0
       {
2957
0
            E T9c, T9f, T9A, T9B;
2958
0
            T9c = FMA(KP471396736, T9a, KP881921264 * T9b);
2959
0
            T9f = FNMS(KP471396736, T9e, KP881921264 * T9d);
2960
0
            T9g = T9c - T9f;
2961
0
            T9V = T9f + T9c;
2962
0
            T9A = T7z - T7w;
2963
0
            T9B = T8z - T8y;
2964
0
            T9C = T9A - T9B;
2965
0
            T9W = T9B + T9A;
2966
0
       }
2967
0
       T9x = FNMS(KP471396736, T9b, KP881921264 * T9a);
2968
0
       T9y = FMA(KP881921264, T9e, KP471396736 * T9d);
2969
0
       T9z = T9x - T9y;
2970
0
       T9M = T9y + T9x;
2971
0
       {
2972
0
            E T9r, T9R, T9u, T9S, T9q, T9s;
2973
0
            T9q = T8q - T8p;
2974
0
            T9r = T9p - T9q;
2975
0
            T9R = T9p + T9q;
2976
0
            T9s = T8j - T8g;
2977
0
            T9u = T9s - T9t;
2978
0
            T9S = T9t + T9s;
2979
0
            T9v = FNMS(KP514102744, T9u, KP857728610 * T9r);
2980
0
            Ta1 = FMA(KP970031253, T9S, KP242980179 * T9R);
2981
0
            T9H = FMA(KP857728610, T9u, KP514102744 * T9r);
2982
0
            T9T = FNMS(KP242980179, T9S, KP970031253 * T9R);
2983
0
       }
2984
0
       {
2985
0
            E T9k, T9O, T9n, T9P, T9i, T9m;
2986
0
            T9i = T80 - T7X;
2987
0
            T9k = T9i - T9j;
2988
0
            T9O = T9j + T9i;
2989
0
            T9m = T87 - T86;
2990
0
            T9n = T9l - T9m;
2991
0
            T9P = T9l + T9m;
2992
0
            T9o = FMA(KP514102744, T9k, KP857728610 * T9n);
2993
0
            Ta0 = FNMS(KP242980179, T9P, KP970031253 * T9O);
2994
0
            T9G = FNMS(KP514102744, T9n, KP857728610 * T9k);
2995
0
            T9Q = FMA(KP242980179, T9O, KP970031253 * T9P);
2996
0
       }
2997
0
        }
2998
0
        {
2999
0
       E T9h, T9w, T9F, T9I;
3000
0
       T9h = T99 + T9g;
3001
0
       T9w = T9o + T9v;
3002
0
       Cr[WS(csr, 53)] = T9h - T9w;
3003
0
       Cr[WS(csr, 11)] = T9h + T9w;
3004
0
       T9F = T9C + T9z;
3005
0
       T9I = T9G + T9H;
3006
0
       Ci[WS(csi, 11)] = T9F + T9I;
3007
0
       Ci[WS(csi, 53)] = T9I - T9F;
3008
0
        }
3009
0
        {
3010
0
       E T9D, T9E, T9J, T9K;
3011
0
       T9D = T9z - T9C;
3012
0
       T9E = T9v - T9o;
3013
0
       Ci[WS(csi, 21)] = T9D + T9E;
3014
0
       Ci[WS(csi, 43)] = T9E - T9D;
3015
0
       T9J = T99 - T9g;
3016
0
       T9K = T9H - T9G;
3017
0
       Cr[WS(csr, 43)] = T9J - T9K;
3018
0
       Cr[WS(csr, 21)] = T9J + T9K;
3019
0
        }
3020
0
        {
3021
0
       E T9N, T9U, T9Z, Ta2;
3022
0
       T9N = T9L + T9M;
3023
0
       T9U = T9Q + T9T;
3024
0
       Cr[WS(csr, 59)] = T9N - T9U;
3025
0
       Cr[WS(csr, 5)] = T9N + T9U;
3026
0
       T9Z = T9W + T9V;
3027
0
       Ta2 = Ta0 + Ta1;
3028
0
       Ci[WS(csi, 5)] = T9Z + Ta2;
3029
0
       Ci[WS(csi, 59)] = Ta2 - T9Z;
3030
0
        }
3031
0
        {
3032
0
       E T9X, T9Y, Ta3, Ta4;
3033
0
       T9X = T9V - T9W;
3034
0
       T9Y = T9T - T9Q;
3035
0
       Ci[WS(csi, 27)] = T9X + T9Y;
3036
0
       Ci[WS(csi, 37)] = T9Y - T9X;
3037
0
       Ta3 = T9L - T9M;
3038
0
       Ta4 = Ta1 - Ta0;
3039
0
       Cr[WS(csr, 37)] = Ta3 - Ta4;
3040
0
       Cr[WS(csr, 27)] = Ta3 + Ta4;
3041
0
        }
3042
0
         }
3043
0
         {
3044
0
        E T2z, T69, T3g, T6j, T60, T6k, T5P, T6a, T5L, T6p, T65, T6h, T4w, T6o, T64;
3045
0
        E T6e;
3046
0
        {
3047
0
       E T2f, T2y, T5N, T5O;
3048
0
       T2f = T27 + T2e;
3049
0
       T2y = T2o + T2x;
3050
0
       T2z = T2f + T2y;
3051
0
       T69 = T2f - T2y;
3052
0
       {
3053
0
            E T2U, T3f, T5W, T5Z;
3054
0
            T2U = FMA(KP098017140, T2M, KP995184726 * T2T);
3055
0
            T3f = FNMS(KP098017140, T3e, KP995184726 * T37);
3056
0
            T3g = T2U + T3f;
3057
0
            T6j = T3f - T2U;
3058
0
            T5W = T5S + T5V;
3059
0
            T5Z = T5X + T5Y;
3060
0
            T60 = T5W + T5Z;
3061
0
            T6k = T5Z - T5W;
3062
0
       }
3063
0
       T5N = FNMS(KP098017140, T2T, KP995184726 * T2M);
3064
0
       T5O = FMA(KP995184726, T3e, KP098017140 * T37);
3065
0
       T5P = T5N + T5O;
3066
0
       T6a = T5O - T5N;
3067
0
       {
3068
0
            E T5x, T6f, T5K, T6g, T5w, T5J;
3069
0
            T5w = T5e + T5v;
3070
0
            T5x = T4X + T5w;
3071
0
            T6f = T4X - T5w;
3072
0
            T5J = T5H + T5I;
3073
0
            T5K = T5G + T5J;
3074
0
            T6g = T5J - T5G;
3075
0
            T5L = FNMS(KP049067674, T5K, KP998795456 * T5x);
3076
0
            T6p = FMA(KP671558954, T6f, KP740951125 * T6g);
3077
0
            T65 = FMA(KP049067674, T5x, KP998795456 * T5K);
3078
0
            T6h = FNMS(KP671558954, T6g, KP740951125 * T6f);
3079
0
       }
3080
0
       {
3081
0
            E T4i, T6c, T4v, T6d, T4h, T4u;
3082
0
            T4h = T3Z + T4g;
3083
0
            T4i = T3I + T4h;
3084
0
            T6c = T3I - T4h;
3085
0
            T4u = T4s + T4t;
3086
0
            T4v = T4r + T4u;
3087
0
            T6d = T4u - T4r;
3088
0
            T4w = FMA(KP998795456, T4i, KP049067674 * T4v);
3089
0
            T6o = FNMS(KP671558954, T6c, KP740951125 * T6d);
3090
0
            T64 = FNMS(KP049067674, T4i, KP998795456 * T4v);
3091
0
            T6e = FMA(KP740951125, T6c, KP671558954 * T6d);
3092
0
       }
3093
0
        }
3094
0
        {
3095
0
       E T3h, T5M, T63, T66;
3096
0
       T3h = T2z + T3g;
3097
0
       T5M = T4w + T5L;
3098
0
       Cr[WS(csr, 63)] = T3h - T5M;
3099
0
       Cr[WS(csr, 1)] = T3h + T5M;
3100
0
       T63 = T60 + T5P;
3101
0
       T66 = T64 + T65;
3102
0
       Ci[WS(csi, 1)] = T63 + T66;
3103
0
       Ci[WS(csi, 63)] = T66 - T63;
3104
0
        }
3105
0
        {
3106
0
       E T61, T62, T67, T68;
3107
0
       T61 = T5P - T60;
3108
0
       T62 = T5L - T4w;
3109
0
       Ci[WS(csi, 31)] = T61 + T62;
3110
0
       Ci[WS(csi, 33)] = T62 - T61;
3111
0
       T67 = T2z - T3g;
3112
0
       T68 = T65 - T64;
3113
0
       Cr[WS(csr, 33)] = T67 - T68;
3114
0
       Cr[WS(csr, 31)] = T67 + T68;
3115
0
        }
3116
0
        {
3117
0
       E T6b, T6i, T6n, T6q;
3118
0
       T6b = T69 + T6a;
3119
0
       T6i = T6e + T6h;
3120
0
       Cr[WS(csr, 49)] = T6b - T6i;
3121
0
       Cr[WS(csr, 15)] = T6b + T6i;
3122
0
       T6n = T6k + T6j;
3123
0
       T6q = T6o + T6p;
3124
0
       Ci[WS(csi, 15)] = T6n + T6q;
3125
0
       Ci[WS(csi, 49)] = T6q - T6n;
3126
0
        }
3127
0
        {
3128
0
       E T6l, T6m, T6r, T6s;
3129
0
       T6l = T6j - T6k;
3130
0
       T6m = T6h - T6e;
3131
0
       Ci[WS(csi, 17)] = T6l + T6m;
3132
0
       Ci[WS(csi, 47)] = T6m - T6l;
3133
0
       T6r = T69 - T6a;
3134
0
       T6s = T6p - T6o;
3135
0
       Cr[WS(csr, 47)] = T6r - T6s;
3136
0
       Cr[WS(csr, 17)] = T6r + T6s;
3137
0
        }
3138
0
         }
3139
0
         {
3140
0
        E T7B, T8N, T7Q, T8X, T8E, T8Y, T8x, T8O, T8t, T93, T8J, T8V, T8a, T92, T8I;
3141
0
        E T8S;
3142
0
        {
3143
0
       E T7t, T7A, T8v, T8w;
3144
0
       T7t = T7r + T7s;
3145
0
       T7A = T7w + T7z;
3146
0
       T7B = T7t + T7A;
3147
0
       T8N = T7t - T7A;
3148
0
       {
3149
0
            E T7I, T7P, T8A, T8D;
3150
0
            T7I = FMA(KP956940335, T7E, KP290284677 * T7H);
3151
0
            T7P = FNMS(KP290284677, T7O, KP956940335 * T7L);
3152
0
            T7Q = T7I + T7P;
3153
0
            T8X = T7P - T7I;
3154
0
            T8A = T8y + T8z;
3155
0
            T8D = T8B + T8C;
3156
0
            T8E = T8A + T8D;
3157
0
            T8Y = T8D - T8A;
3158
0
       }
3159
0
       T8v = FNMS(KP290284677, T7E, KP956940335 * T7H);
3160
0
       T8w = FMA(KP290284677, T7L, KP956940335 * T7O);
3161
0
       T8x = T8v + T8w;
3162
0
       T8O = T8w - T8v;
3163
0
       {
3164
0
            E T8l, T8T, T8s, T8U, T8k, T8r;
3165
0
            T8k = T8g + T8j;
3166
0
            T8l = T8d + T8k;
3167
0
            T8T = T8d - T8k;
3168
0
            T8r = T8p + T8q;
3169
0
            T8s = T8o + T8r;
3170
0
            T8U = T8r - T8o;
3171
0
            T8t = FNMS(KP146730474, T8s, KP989176509 * T8l);
3172
0
            T93 = FMA(KP595699304, T8T, KP803207531 * T8U);
3173
0
            T8J = FMA(KP146730474, T8l, KP989176509 * T8s);
3174
0
            T8V = FNMS(KP595699304, T8U, KP803207531 * T8T);
3175
0
       }
3176
0
       {
3177
0
            E T82, T8Q, T89, T8R, T81, T88;
3178
0
            T81 = T7X + T80;
3179
0
            T82 = T7U + T81;
3180
0
            T8Q = T7U - T81;
3181
0
            T88 = T86 + T87;
3182
0
            T89 = T85 + T88;
3183
0
            T8R = T88 - T85;
3184
0
            T8a = FMA(KP989176509, T82, KP146730474 * T89);
3185
0
            T92 = FNMS(KP595699304, T8Q, KP803207531 * T8R);
3186
0
            T8I = FNMS(KP146730474, T82, KP989176509 * T89);
3187
0
            T8S = FMA(KP803207531, T8Q, KP595699304 * T8R);
3188
0
       }
3189
0
        }
3190
0
        {
3191
0
       E T7R, T8u, T8H, T8K;
3192
0
       T7R = T7B + T7Q;
3193
0
       T8u = T8a + T8t;
3194
0
       Cr[WS(csr, 61)] = T7R - T8u;
3195
0
       Cr[WS(csr, 3)] = T7R + T8u;
3196
0
       T8H = T8E + T8x;
3197
0
       T8K = T8I + T8J;
3198
0
       Ci[WS(csi, 3)] = T8H + T8K;
3199
0
       Ci[WS(csi, 61)] = T8K - T8H;
3200
0
        }
3201
0
        {
3202
0
       E T8F, T8G, T8L, T8M;
3203
0
       T8F = T8x - T8E;
3204
0
       T8G = T8t - T8a;
3205
0
       Ci[WS(csi, 29)] = T8F + T8G;
3206
0
       Ci[WS(csi, 35)] = T8G - T8F;
3207
0
       T8L = T7B - T7Q;
3208
0
       T8M = T8J - T8I;
3209
0
       Cr[WS(csr, 35)] = T8L - T8M;
3210
0
       Cr[WS(csr, 29)] = T8L + T8M;
3211
0
        }
3212
0
        {
3213
0
       E T8P, T8W, T91, T94;
3214
0
       T8P = T8N + T8O;
3215
0
       T8W = T8S + T8V;
3216
0
       Cr[WS(csr, 51)] = T8P - T8W;
3217
0
       Cr[WS(csr, 13)] = T8P + T8W;
3218
0
       T91 = T8Y + T8X;
3219
0
       T94 = T92 + T93;
3220
0
       Ci[WS(csi, 13)] = T91 + T94;
3221
0
       Ci[WS(csi, 51)] = T94 - T91;
3222
0
        }
3223
0
        {
3224
0
       E T8Z, T90, T95, T96;
3225
0
       T8Z = T8X - T8Y;
3226
0
       T90 = T8V - T8S;
3227
0
       Ci[WS(csi, 19)] = T8Z + T90;
3228
0
       Ci[WS(csi, 45)] = T90 - T8Z;
3229
0
       T95 = T8N - T8O;
3230
0
       T96 = T93 - T92;
3231
0
       Cr[WS(csr, 45)] = T95 - T96;
3232
0
       Cr[WS(csr, 19)] = T95 + T96;
3233
0
        }
3234
0
         }
3235
0
    }
3236
0
     }
3237
0
}
3238
3239
static const kr2c_desc desc = { 128, "r2cf_128", { 812, 186, 144, 0 }, &GENUS };
3240
3241
1
void X(codelet_r2cf_128) (planner *p) { X(kr2c_register) (p, r2cf_128, &desc);
3242
1
}
3243
3244
#endif